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Abstract
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1 Introduction andmain results
The boundedness of fractional integral operators on the classicalMorrey spaces was stud-
ied by Adams [], Chiarenza and Frasca et al. []. In [], by establishing a pointwise es-
timate of fractional integrals in terms of the Hardy-Littlewood maximal function, they
showed the boundedness of fractional integral operators on the Morrey spaces. In ,
Sawano and Tanaka [] gave a natural definition of Morrey spaces for Radon measures
which might be non-doubling but satisfied the growth condition, and they investigated
the boundedness in these spaces of some classical operators in harmonic analysis. Later
on, Sawano [] defined the generalized Morrey spaces on R

n for non-doubling measure
and showed the properties of maximal operators, fractional integral operators and singu-
lar operators in this space.
Simultaneously, in , Kenig and Stein [] gave the boundedness for multilinear frac-

tional integrals on Lebesgue spaces. In , Grafakos and Torres [] obtained the bound-
edness for multilinear Calderón-Zygmund operators on Lebesgue spaces. From then on,
the theory on multilinear integral operators has attracted much attention as a rapidly de-
veloping field in harmonic analysis. Recently, the authors have studied the boundedness of
multilinear fractional integrals on Herz-Morrey spaces in [–] and the boundedness of
multilinear Calderón-Zygmund operators on the Morrey-type spaces in [–]. Particu-
larly, the authors [, , , ] established the boundedness for the multilinear operators
on Morrey spaces over Rn with non-doubling measures. In this paper, we focus on the
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multilinear operators on generalized Morrey spaces over quasi-metric space (X,ρ,μ) of
non-homogeneous type and extend the works in [–, , ].
Let (X,ρ) be a quasi-metric space with the quasi-metric function ρ : X → [,∞) satis-

fying the conditions:
() ρ(x, y) >  for all x �= y, and ρ(x,x) =  for all x ∈ X .
() There exists a constant a ≥  such that ρ(x, y)≤ aρ(y,x) for all x, y ∈ X .
() There exists a constant a ≥  such that

ρ(x, y)≤ a
(
ρ(x, z) + ρ(z, y)

)
(.)

for all x, y, z ∈ X .
Here we point out that there is no notion of dyadic cubes on the quasi-metric space

and so the method for Rn used in [] does not work on (X,ρ). Recently, Hytönen []
introduced the notion of geometrically doubling space.

Definition . The quasi-metric space (X,ρ) is called geometrically doubling if there ex-
ists some N ∈ N such that any ball B(x, r) ⊂ X, where B(x, r) := {y ∈ X : ρ(x, y) < r} with
the center x and the radius r, can be covered by at mostN balls B(xi, r/) with xi ∈ B(x, r).

Remark . Similarly as Hytönen showed in Lemma . in [], one can deduce that if
the quasi-metric space (X,ρ) is geometrically doubling, then, for any δ ∈ (, ), any ball
B(x, r) ⊂ X can be covered by at most Nδ

–n balls B(xi, δr) with xi ∈ B(x, r), where n =
logN.

Given a Borel measure μ on the quasi-metric space (X,ρ) such that μ is finite on
bounded sets, and let (X,ρ) be geometrically doubling, then continuous, boundedly sup-
ported functions are dense in Lp(X,μ) for p ∈ [,∞). See Proposition . in [] for details.
The above triple (X,ρ,μ) will be called a quasi-metric space of non-homogeneous type

if the measure μ satisfies the following growth condition,

μ
(
B(x, r)

) ≤ Cr (.)

with the constant C independent of the ball B(x, r)⊂ X. The set of all balls B⊆ X satisfy-
ing μ(B) >  is denoted by B(μ). We know that the analysis on non-homogeneous spaces
plays important roles in solving the Painlevé problem as well as the Vitushkin conjecture
[, ]. For motives of developing analysis on non-homogeneous spaces and more exam-
ples, one could see [].
Now we give the definition of the generalized Morrey space over (X,ρ,μ), which is a

generalization of the classical Morrey space. Here we remark that Morrey spaces play im-
portant roles in the study of partial differential equations.

Definition . Let  ≤ p < ∞ and a function φ : (,∞) → (,∞) be such that r

p φ(r) is

non-decreasing. The generalized Morrey space Lp,φ(X,k,μ) over X, where k > a, is de-
fined as

Lp,φ(X,k,μ) :=
{
f ∈ Lploc(μ) : ‖f ‖Lp,φ (X,k,μ) < ∞}

http://www.journalofinequalitiesandapplications.com/content/2013/1/330
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with the norm ‖f ‖Lp,φ (X,k,μ) given by

‖f ‖Lp,φ (X,k,μ) := sup
B∈B(μ)


φ(μ(kB))

(


μ(kB)

∫
B

∣∣f (x)∣∣p dμ(x)
) 

p
,

where kB is the ball with the same center and k times radius of the ball B.

In case φ(r) = r–

q ,  ≤ p < q < ∞, the space Lp,φ(X,k,μ) becomes the classical Morrey

space Lp,q(X,k,μ) over X. Particularly, Lp,p(X,k,μ) = Lp(X,μ).

Remark . It is worth to point out that if k,k > a, then Lp,φ(X,k,μ) and Lp,φ(X,k,μ)
coincide as a set and their norms are mutually equivalent. This can be observed by the
same arguments used in []. For the sake of convenience, we provide the detail. Let a <
k ≤ k. Then the inclusion Lp,φ(X,k,μ) ⊆ Lp,φ(X,k,μ) is obvious by that fact that r


p φ(r)

is non-decreasing. To see the reverse inclusion, let f ∈ Lp,φ(X,k,μ) and B(x, r) ∈ B(μ) be
fixed. It is sufficient to estimate

I =


φ(μ(B(x,kr)))

(


μ(B(x,kr))

∫
B(x,r)

∣∣f (x)∣∣p dμ(x)
) 

p
.

The geometrically doubling condition shows that the ball B(x, r) can be covered by atmost
N =Nδ

–n balls B(xi, δr) with xi ∈ B(x, r) for any δ ∈ (, ). Moreover, by the quasi-triangle
inequality (.), we can see that B(xi,kδr) ⊆ B(x,kr) if we choose  < δ < (k – a)/(ak).
Thus,

Ip ≤
N∑
i=


φ(μ(B(x,kr)))pμ(B(x,kr))

∫
B(xi ,δr)

∣∣f (x)∣∣p dμ(x)

≤
∑

i:B(xi ,δr)∈B(μ)


φ(μ(B(xi,kδr)))pμ(B(xi,kδr))

∫
B(xi ,δr)

∣∣f (x)∣∣p dμ(x)

≤ N
(‖f ‖Lp,φ (X,k,μ))p,

which implies that Lp,φ(X,k,μ) = Lp,φ(X,k,μ) for any k,k > a. With this fact in mind,
we sometimes omit parameter k in Lp,φ(X,k,μ), i.e., write it by Lp,φ(X,μ).

In this article, we consider the multilinear fractional integral operator, the multilinear
Calderón-Zygmund operator and the multi-sublinear maximal operator. The multilinear
fractional integral is defined by

Iα,m(f, . . . , fm)(x) =
∫
Xm

f(y) · · · fm(ym)
(ρ(x, y) + · · · + ρ(x, ym))m–α

dμ(y) · · · dμ(ym),

where  < α <m. When m = , we denote Iα,m by Iα .
Let T be a multilinear operator initially defined on the m-fold product of Schwartz

spaces and taking values into the space of tempered distributions. Following [], we say
that T is an m-linear Calderón-Zygmund operator if it extends to a bounded multilinear
operator from Lp (X,μ)×Lp (X,μ)× · · ·×Lpm (X,μ) to Lp(X,μ) for some  ≤ p, . . . ,pm <

http://www.journalofinequalitiesandapplications.com/content/2013/1/330
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∞ and 
p =


p
+ 

p
+ · · ·+ 

pm , and if there exists a kernel functionK, the so-called multilin-
ear Calderón-Zygmund kernel, defined away from the diagonal x = y = · · · = ym in Xm+,
satisfying

T (f, . . . , fm)(x) =
∫
Xm

K(x, y, . . . , ym)f(y) · · · fm(ym)dμ(y) · · · dμ(ym)

for all x /∈ ⋂m
i= supp fi, where fi ’s are smooth functions with compact support; and the ker-

nel function K satisfies the size condition

∣∣K(x, y, y, . . . , ym)
∣∣ ≤ C

( m∑
i=

ρ(x, yi)

)–m

(.)

and some smoothness conditions; see [, ] for details. In fact, as for the m-linear
Calderón-Zygmund operator T , we assume that, by a similar argument as that in [, ]
for the caseX =R

n, if 
p =


p
+ 

p
+ · · ·+ 

pm , then them-linear Calderón-Zygmund operator
T satisfies

T : Lp (X,μ)× Lp (X,μ)× · · · × Lpm (X,μ) → Lp(X,μ)

for any  < p,p, . . . ,pm <∞.
We will also consider the multi-sublinear maximal operatorMκ , for κ > a , defined by

Mκ (f, . . . , fm)(x) = sup
x∈B∈B(μ)

m∏
i=


μ(κB)

∫
B

∣∣fi(yi)∣∣dμ(yi).

In casem = , we denote it byMκ .
The main result of this paper can be stated as follows.

Theorem . Let  < α < m and  < pi < ∞, and let 
q = 

p
+ · · · + 

pm – α > . For each
i = , . . . ,m, let φi : (,∞) → (,∞) satisfy


C

≤ φi(t)
φi(r)

≤ C if  ≤ t
r

≤ , (.)

and

∫ ∞

r
tα/m–φi(t)dt ≤ Crα/mφi(r) (.)

with positive constants C and C independent of r > . Then there exists a constant C
independent of any admissible fi such that

∥∥Iα,m(f, . . . , fm)
∥∥
Lq,ψ (X,μ) ≤ C

m∏
i=

‖fi‖Lpi ,φi (X,μ),

where ψ(t) = tαφ(t)φ(t) · · ·φm(t).
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If we takeφi(t) = t–

li and  < li < m

α
, then φi satisfies conditions (.) and (.).We remark

that if condition (.) is replaced by

φi(u) ≤ Cφi(v) for u≥ v (.)

with the constant C > , then the theorem is also valid. This can be seen from the proof
of the theorem in the next section. Theorem . yields the following corollary.

Corollary . Let  < α <m and  < pi < ∞, and let 
q =


p
+ · · ·+ 

pm –α > . Let  < li < m
α

and 
h =


l
+ · · · + 

lm – α. Then there exists a constant C independent of fi such that

∥∥Iα,m(f, . . . , fm)
∥∥
Lq,h(X,μ) ≤ C

m∏
i=

‖fi‖Lpi ,li (X,μ).

Theorem . Let  < pi <∞ and 
p =


p
+ · · ·+ 

pm < . If the functions φi : (,∞)→ (,∞)
satisfy condition (.) or (.), and satisfy

∫ ∞

r
φi(t)

pi
p
dt
t

≤ Cφi(r)
pi
p (.)

with the constant C independent of r > , then there exists a constant C independent of
any admissible fi such that

∥∥T (f, . . . , fm)
∥∥
Lp,φ (X,μ) ≤ C

m∏
i=

‖fi‖Lpi ,φi (X,μ), (.)

where φ(t) = φ(t)φ(t) · · ·φm(t).

Here we point out that if each fi ∈ Lpi (X,μ)∩Lpi ,φi (X,μ), then the multilinear Calderón-
Zygmund operator T (f, . . . , fm) is well defined, and we will prove estimate (.) with the
absolute constant C independent of these admissible functions. More remarks on the ad-
missibility for fi ∈ Lpi ,φi (X,μ) will be given in Remark . in Section .
Observe that φi(t) = t–


li , for any  < li <∞, satisfies the conditions in the theorem, thus

the corollary follows.

Corollary . Let  < pi < ∞ and 
p =


p
+ · · · + 

pm < . Let  < li <∞ and 
l =


l
+ · · · + 

lm .
Then there exists a constant C independent of fi such that

∥∥T (f, . . . , fm)
∥∥
Lp,l(X,μ) ≤ C

m∏
i=

‖fi‖Lpi ,li (X,μ).

Theorem . Assume thatMκ is a multi-sublinear maximal operator. Let  < pi < ∞, 
p =


p
+ · · ·+ 

pm < , and φi satisfy condition (.). Then there exists a constant C independent
of any admissible fi such that

∥∥Mκ (f, . . . , fm)
∥∥
Lp,φ (X,μ) ≤ C

m∏
i=

‖fi‖Lpi ,φi (X,μ),

where φ(t) = φ(t) · · ·φm(t).
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Wenotice that the results above are new even for the case of Euclidean spaces. Through-
out this paper, the letter C always denotes a positive constant that may vary at each occur-
rence but is independent of the essential variable.

2 Proof of Theorem 1.5
Let us first give some requisite theorems and lemmas.

Theorem . [] Let  < α < ,  < p < 
α
and 

q =

p – α, then the operator Iα is bounded

from Lp(X,μ) into Lq(X,μ) if and only if μ(B(x, r)) ≤ Cr, where the constant C is indepen-
dent of x and r.

Lemma . [] Suppose that μ is a Borel measure on X with the growth condition (.).
Let 

q =

p
+ · · · + 

pm – α >  with  < α <m and  ≤ pj ≤ ∞. Then
(a) if each pj > ,

∥∥Iα,m(f, . . . , fm)
∥∥
Lq(X,μ) ≤ C

m∏
j=

‖fj‖Lpj (X,μ);

(b) if pj =  for some j,

∥∥Iα,m(f, . . . , fm)
∥∥
Lq,∞(X,μ) ≤ C

m∏
j=

‖fj‖Lpj (X,μ).

Proof This lemma can follow the same argument that, for the classical setting, was given
by Kenig and Stein []. We may assume that all ≤ pi < ∞. One can find  < αi < /pi such
that α =

∑m
i= αi. Set /qi = /pi – αi, since /q =

∑m
i= /qi,  < αi ≤ ,  < qi < ∞, and

ρ(x, y)–αρ(x, y)–α · · ·ρ(x, ym)–αm ≤ (
ρ(x, y) + · · · + ρ(x, ym)

)m–α .

It follows that

Iα,m(f, . . . , fm)(x)≤
m∏
i=

Iαi (fi)(x).

Then, by the Hölder inequality and Theorem ., we obtain the lemma. In fact, one could
also get the lemma from [] (or Remark ., p. in []). �

Now we give the proof of Theorem ..

Proof of Theorem . Let B = B(x, r) be the ball in B ∈ B(μ), with center x ∈ X and radius
r > , and let B∗ = B(x, ar). For fi ∈ Lpi ,φi (X,μ), we split it as fi = f i + f ∞

i , where f i = fiχB∗

for i = , . . . ,m. Using this decomposition, we get

∣∣Iα,m(f, . . . , fm)(x)
∣∣ ≤ ∣∣Iα,m

(
f  , . . . , f


m
)
(x)

∣∣ +∑′∣∣Iα,m
(
f τ
 , . . . , f τm

m
)
(x)

∣∣,
where each term in

∑′ contains at least one τi = ∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/330
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Then it suffices to show


ψ(μ(kB∗))

(


μ(kB∗)

∫
B

∣∣Iα,m
(
f τ
 , . . . , f τm

m
)∣∣q dμ

) 
q

≤ C
m∏
i=

‖fi‖Lpi ,φi (X,μ) (.)

for some k > a and for each τi ∈ {,∞}.
Let us first estimate for the case τ = · · · = τm = . From the definition of Lpi ,φi (X,μ) we

have

(∫
B∗

∣∣fi(x)∣∣pi dμ(x)
) 

pi ≤ C‖fi‖Lpi ,φi (X,μ)φi
(
μ

(
kB∗))μ(

kB∗) 
pi . (.)

From this and by the Lp (X,μ) × · · · × Lpm (X,μ) → Lq(X,μ) boundedness of Iα,m,
Lemma ., we have

(


μ(kB∗)

∫
B

∣∣Iα,m
(
f  , . . . , f


m
)
(x)

∣∣q dμ(x)
) 

q

≤ C

μ(kB∗)

q

m∏
i=

∥∥f i ∥∥
Lpi (X,μ) ≤ Cμ

(
kB∗)α

φ
(
μ

(
kB∗)) m∏

i=

‖fi‖Lpi ,φi (X,μ)

≤ Cψ
(
μ

(
kB∗)) m∏

i=

‖fi‖Lpi ,φi (X,μ),

which implies that in the case all τi = , inequality (.) holds.
To estimate (.) for the case τ = · · · = τm = ∞, let x ∈ B, then

∣∣Iα,m
(
f ∞
 , . . . , f ∞

m
)
(x)

∣∣ ≤
∫
(X\B∗)m

|f(y) · · · fm(ym)|dμ(y) · · · dμ(ym)
(ρ(x, y) + · · · + ρ(x, ym))m–α

.

Note, for x ∈ B and yi ∈ X \ B∗, we get by (.) that

ar < ρ(x, yi) ≤ a
(
ρ(x,x) + ρ(x, yi)

) ≤ a
(
r + ρ(x, yi)

)
,

hence ρ(x, yi)≥ r. This and condition (.) of the measure μ imply that

ρ(x, yi) ≥ r ≥ (aCk)–μ
(
kB∗) := r∗

and so

(
X \ B∗)m ⊆

m∏
i=

{
yi : ρ(x, yi) ≥ r∗

} ⊆
{
(y, y, . . . , ym) :

m∑
i=

ρ(x, yi) ≥ r∗
}
.

Hence we can derive that

∣∣Iα,m
(
f ∞
 , . . . , f ∞

m
)
(x)

∣∣
≤

∫
∑m

i= ρ(x,yi)≥r∗

|f(y) · · · fm(ym)|dμ(y) · · · dμ(ym)
(ρ(x, y) + · · · + ρ(x, ym))m–α

http://www.journalofinequalitiesandapplications.com/content/2013/1/330
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=
∞∑
j=

∫
jr∗≤∑m

i= ρ(x,yi)<j+r∗

|f(y) · · · fm(ym)|dμ(y) · · · dμ(ym)
(ρ(x, y) + · · · + ρ(x, ym))m–α

≤
∞∑
j=


(jr∗)m–α

m∏
i=

∫
ρ(x,yi)<j+r∗

∣∣fi(yi)∣∣dμ(yi).

Using theHölder inequality and the inequality similar to (.), we can see that the inequal-
ity above can be controlled by

C
∞∑
j=


(jr∗)m–α

m∏
i=

(∫
B(x,j+r∗)

∣∣fi(yi)∣∣pi dμ(yi)
) 

pi (
μ

(
B
(
x, j+r∗

)))– 
pi

≤ C
∞∑
j=


(jr∗)m–α

m∏
i=

φi
(
μ

(
B
(
x,kj+r∗

)))
μ

(
B
(
x,kj+r∗

))‖fi‖Lpi ,φi (X,μ)
≤ C

∞∑
j=


(jr∗)m–α

m∏
i=

φi
(
jμ

(
kB∗))jμ(

kB∗)‖fi‖Lpi ,φi (X,μ)
≤ C

m∏
i=

[ ∞∑
j=

(
jμ

(
kB∗))α/m

φi
(
jμ

(
kB∗))]‖fi‖Lpi ,φi (X,μ),

where, in the second inequality, we have utilized the non-decreasing of function r

pi φi(r)

and the fact μ(B(x,kj+r∗)) ≤ Ckj+r∗ ≤ jμ(kB∗). Recall conditions (.) (or (.)) and
(.) for the function φi, one sees that

∞∑
j=

(
jμ

(
kB∗))α/m

φi
(
jμ

(
kB∗)) ≤ C

∞∑
j=

∫ j+μ(kB∗)

jμ(kB∗)
tα/m–φi(t)dt

≤ C
∫ ∞

μ(B∗)
tα/m–φi(t)dt ≤ Cμ

(
kB∗)α/m

φi
(
μ

(
kB∗)).

Hence we obtain the pointwise estimate

∣∣Iα,m
(
f ∞
 , . . . , f ∞

m
)
(x)

∣∣ ≤ Cψ
(
μ

(
kB∗)) m∏

i=

‖fi‖Lpi ,φi (X,μ)

for x ∈ B, which follows from inequality (.) for the case all τi = ∞.
It is left to consider the case τi = · · · = τil =  for some {i, . . . , il} ⊂ {, . . . ,m} and  ≤

l <m. For this case, we can write for x ∈ B that

∣∣Iα,m
(
f τ
 , . . . , f τm

m
)
(x)

∣∣ ≤
∫
Xm

|f(y) · · · fm(ym)|dμ(y) · · · dμ(ym)
(ρ(x, y) + · · · + ρ(x, ym))m–α

≤
∫
(B∗)l

∏
i∈{i,...,il}

∣∣fi(yi)∣∣dμ(yi) ·
∫
(X\B∗)m–l

∏
i /∈{i,...,il} |fi(yi)|dμ(yi)

(
∑

i /∈{i,...,il} ρ(x, yi))
m–α

:= A(x) ·A(x).

http://www.journalofinequalitiesandapplications.com/content/2013/1/330
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To estimate A(x), we use the Hölder inequality to give that, for any x ∈ B,

A(x) =
∏

i∈{i,...,il}

∫
B∗

∣∣fi(yi)∣∣dμ(yi)

≤ C
∏

i∈{i,...,il}

(∫
B∗

|fi|pi dμ(yi)
) 

pi
μ

(
B∗)– 

pi

≤ Cμ
(
kB∗)l ∏

i∈{i,...,il}

(
φi

(
μ

(
kB∗))‖fi‖Lpi ,φi (X,μ)).

Estimating A(x), by the same idea used for the case all τi = ∞ above, we get for any
x ∈ B that

A(x)≤
∞∑
j=


(jr∗)m–α

∏
i /∈{i,...,il}

∫
B(x,j+r∗)

∣∣fi(yi)∣∣dμ(yi)

≤ C
∞∑
j=


(jr∗)m–α

∏
i /∈{i,...,il}

φi
(
jμ

(
kB∗))jμ(

kB∗)‖fi‖Lpi ,φi (X,μ)
≤ C

∞∑
j=


(jμ(kB∗))l–αl/m

∏
i /∈{i,...,il}

φi
(
jμ

(
kB∗))(jμ(

kB∗))α/m‖fi‖Lpi ,φi (X,μ).

Noting l – lα/m >  and using condition (.), we have

A(x)≤ C
(
μ

(
kB∗))αl/m–l ∏

i /∈{i,...,il}
φi

(
μ

(
kB∗))μ(

kB∗)α/m‖fi‖Lpi ,φi (X,μ)

≤ C
(
μ

(
kB∗))α–l ∏

i /∈{i,...,il}
φi

(
μ

(
kB∗))‖fi‖Lpi ,φi (X,μ).

Therefore, for x ∈ B, we have

∣∣Iα,m
(
f τ
 , . . . , f τm

m
)
(x)

∣∣ ≤ A(x) ·A(x)

≤ Cμ
(
kB∗)α

m∏
i=

φi
(
μ

(
kB∗))‖fi‖Lpi ,φi (X,μ)

≤ Cψ
(
μ

(
kB∗)) m∏

i=

‖fi‖Lpi ,φi (X,μ).

Hence we obtain the desired inequality (.) for any cases. The proof of the theorem is
complete. �

3 Proof of Theorems 1.7 and 1.9
In this section we first investigate the boundedness of the m-linear Calderón-Zygmund
operator T on the product of spaces Lpi ,φi (X,μ) for i = , , . . . ,m.

Proof of Theorem . We also let B = B(x, r) be the ball in B(μ), with center x ∈ X and
radius r > , and let B∗ = B(x, ar). For the admissible fi ∈ Lpi ,φi (X,μ), without loss of
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generality, we may initially assume that fi are all smooth boundedly supported functions,
which are dense in Lpi (X,μ), and let fi ∈ Lpi (X,μ)∩ Lpi ,φi (X,μ), then T (f, . . . , fm) is a well-
defined function belonging to Lp(X,μ). If we split each fi as fi = f i + f ∞

i , where f i = fiχB∗

for i = , . . . ,m, and utilize the multi-linearity of T , we have the following decomposition,

∣∣T (f, . . . , fm)(x)
∣∣ ≤ ∣∣T (

f  , . . . , f

m
)
(x)

∣∣ +∑′∣∣T (
f τ
 , . . . , f τm

m
)
(x)

∣∣,
where each term in

∑′ contains at least one τi = ∞.
Noting that T is bounded from Lp (X,μ)× · · · × Lpm (X,μ) → Lp(X,μ), we have

(


μ(kB∗)

∫
B

∣∣T (
f  , . . . , f


m
)
(x)

∣∣p dμ(x)
) 

p

≤ C

μ(kB∗)

p

m∏
i=

‖f i ‖Lpi (X,μ)

≤ Cφ
(
μ

(
kB∗)) m∏

i=

‖fi‖Lpi ,φi (X,μ). (.)

For the case τ = · · · = τm = ∞, we note that for x ∈ B and yi ∈ X \ B∗, one can deduce
from the properties of the quasi-metric ρ that


a

ρ(x, yi) ≤ ρ(x, yi) ≤
(
a


+ a
)

ρ(x, yi).

Thus we can observe that


(
∑m

i= ρ(x, yi))m
� 

(
∑m

i= ρ(x, yi))m
=m

∫ ∞

ρ(x,y)+···+ρ(x,ym)

dl
lm+ .

This, together with the Fubini theorem, we have, for x ∈ B,

∣∣T (
f ∞
 , . . . , f ∞

m
)
(x)

∣∣ ≤
∫
(X\B∗)m

∏m
i= |fi(yi)|dμ(yi)
(
∑m

i= ρ(x, yi))m

≤ C
∫

∑m
i= ρ(x,yi)≥ar

(∫ ∞

ρ(x,y)+···+ρ(x,ym)

dl
lm+

) m∏
i=

∣∣fi(yi)∣∣dμ(yi)

≤ C
∫ ∞

ar


lm+

(∫
∑m

i= ρ(x,yi)<l

m∏
i=

∣∣fi(yi)∣∣dμ(yi)

)
dl

≤ C
∫ ∞

ar


lm+

( m∏
i=

∫
ρ(x,yi)<l

∣∣fi(yi)∣∣dμ(yi)

)
dl.

Noting μ(kB∗) ≤ Ckar and applying the Hölder inequality, we see that the inequality
above is bounded by

C
∫ ∞

μ(kB∗)/Ck


lm+

m∏
i=

(∫
B(x,l)

∣∣fi(yi)∣∣pi dμ(yi)
) 

pi
μ

(
B(x, l)

)– 
pi dl

≤ C
∫ ∞

μ(kB∗)/Ck


lm+

m∏
i=

(‖fi‖Lpi ,φi (X,μ)φi
(
μ

(
kB(x, l)

))
μ

(
kB(x, l)

))
dl
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which, by using the non-decreasing of function rφi(r), is controlled by

C
∫ ∞

μ(kB∗)

( m∏
i=

φi(l)

)
dl
l

·
m∏
i=

‖fi‖Lpi ,φi (X,μ)

≤ C

( m∏
i=

∫ ∞

μ(kB∗)
φi(l)

pi
p
dl
l

) p
pi

·
m∏
i=

‖fi‖Lpi ,φi (X,μ)

≤ Cφ
(
μ

(
kB∗)) m∏

i=

‖fi‖Lpi ,φi (X,μ).

Therefore, we get for x ∈ B that

∣∣T (
f ∞
 , . . . , f ∞

m
)
(x)

∣∣ ≤ Cφ
(
μ

(
kB∗)) m∏

i=

‖fi‖Lpi ,φi (X,μ). (.)

It is left to consider the case that there is  ≤ l <m and {i, . . . , il} ⊂ {, . . . ,m} such that
τi =  if i ∈ {i, . . . , il}, and τi = ∞ if i /∈ {i, . . . , il}. For x ∈ B, we can write that

∣∣T (
f τ
 , . . . , f τm

m
)
(x)

∣∣
≤

∫
(B∗)l

∏
i∈{i,...,il}

∣∣fi(yi)∣∣dμ(yi)
∫
(X\B∗)m–l

∏
i /∈{i,...,il} |fi(yi)|dμ(yi)
(
∑

i /∈{i,...,il} ρ(x, yi))
m

:= E(x) · E(x).

With the same argument as A(x) we have

E(x) ≤ Cμ
(
kB∗)l ∏

i∈{i,...,il}
φi

(
μ

(
kB∗))‖fi‖Lpi ,φi (X,μ).

Using a similar argument as that for the estimate of T (f ∞
 , . . . , f ∞

m )(x), we can deduce
that

E(x)≤ C
∫ ∞

μ(kB∗)

( ∏
i /∈{i,...,il}

φi(t)
)

dt
tl+

·
∏

i /∈{i,...,il}
‖fi‖Lpi ,φi (X,μ)

≤ Cμ
(
kB∗)–l[ ∏

i /∈{i,...,il}

(∫ ∞

μ(kB∗)
φi(t)

pi
p
dt
t

) p
pi

] ∏
i /∈{i,...,il}

‖fi‖Lpi ,φi (X,μ)

≤ Cμ
(
kB∗)–l[ ∏

i /∈{i,...,il}
φi

(
μ

(
kB∗))] ∏

i /∈{i,...,il}
‖fi‖Lpi ,φi (X,μ).

Hence we obtain that

∣∣T (
f τ
 , . . . , f τm

m
)
(x)

∣∣ ≤ E(x) · E(x)≤ Cφ
(
μ

(
kB∗)) m∏

i=

‖fi‖Lpi ,φi (X,μ). (.)
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Therefore, combining inequalities (.), (.) and (.), we have

(


μ(kB∗)

∫
B

∣∣T (f, . . . , fm)(x)
∣∣p dμ(x)

) 
p

≤ Cφ
(
μ

(
kB∗)) m∏

i=

‖fi‖Lpi ,φi (X,μ),

which completes the proof of Theorem .. �

Remark . We have actually proved Theorem . in the case fi ∈ Lpi (X,μ)∩ Lpi ,φi (X,μ).
Here we need give some remarks about the definition and boundedness of T (f, . . . , fm)
with fi ∈ Lpi ,φi (X,μ) for i = , , . . . ,m. Fix any x ∈ X and R > , and use the same notations
f τi
i = fiχB(x,aR) if τi = , and f τi

i = fi – f i if τi = ∞. Using a similar argument as (.) and
(.), we have, if some τi = ∞,

∫
Xm

∣∣K(x, y, . . . , ym)f τ
 (y) · · · f τm

m (ym)
∣∣dμ(y) · · · dμ(ym)

≤ Cφ
(
μ

(
B
(
x, aR

))) m∏
i=

‖fi‖Lpi ,φi (X,μ)

with the constant C independent of R, for all fi ∈ Lpi ,φi (X,μ), i = , . . . ,m, and x ∈ B(x,
R)⊂ X.
In view of this fact, and if limR→∞ φ(μ(B(x, aR))) = , then we can extend the defini-

tion of T for fi ∈ Lpi ,φi (X,μ) by

T
(
f τ
 , . . . , f τm

m
)
(x)

= lim
R→∞

(
T

(
f  , . . . , f


m
)
(x)

+
∑

some τi=∞

∫
Xm

∣∣K(x, y, . . . , ym)f τ
 (y) · · · f τm

m (ym)
∣∣dμ(y) · · · dμ(ym)

)
.

By the definition, it is easy to see that the following properties hold.
() If ρ(x,x)≤ R, then the terms in the brackets on the right-hand side of the

equation above do not depend on R as long as R > R.
() Suppose that  < p, . . . ,pm <∞, and if fi ∈ Lpi (X,μ)∩ Lpi ,φi (X,μ), then the

definitions of T (f, . . . , fm) for fi ∈ Lpi (X,μ) and for fi ∈ Lpi ,φi (X,μ) coincide.
() Theorem . holds for any admissible fi ∈ Lpi ,φi (X,μ), i = , . . . ,m.

Finally, we consider the multi-sublinear maximal function Mκ (f, . . . , fm)(x), which is
strictly smaller than them-fold produce of themaximal functionMκ (fi)(x). Hence we have
the following lemma.

Lemma . If κ > a and p,pi > , and 
p = 

p
+ · · · + 

pm , then there exists a constant C
independent of fi such that

∥∥Mκ (f, . . . , fm)
∥∥
Lp(X,μ) ≤ C

m∏
i=

‖fi‖Lpi (X,μ).
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Proof of Theorem . With the same notions, we decompose each fi ∈ Lpi ,φi (X,μ) accord-
ing to the ball B∗ := B(x,a( +λ)r) as fi = f i + f ∞

i , where λ is a large positive constant that
will be determined later. We have

∣∣Mκ (f, . . . , fm)(x)
∣∣ ≤ ∣∣Mκ

(
f  , . . . , f


m
)
(x)

∣∣ +∑′∣∣Mκ

(
f τ
 , . . . , f τm

m
)
(x)

∣∣,
where each term in

∑′ contains at least one τi �= .
It follows from Lemma . that for any k > a and κ > a ,

(


μ(kB∗)

∫
B(x,r)

∣∣Mκ

(
f  , . . . , f


m
)
(x)

∣∣p dμ(x)
) 

p

≤ Cφ
(
μ

(
kB∗)) m∏

i=

‖fi‖Lpi ,φi (X,μ).

It is left to study the case τi = · · · = τil =  and τil+ = · · · = τim = ∞ for some  ≤ l <m.
Hence for x ∈ B(x, r) we have

Mκ

(
f τ
 , . . . , f τm

m
)
(x) = sup

x∈D∈B(μ)

m∏
i=


μ(κD)

∫
D

∣∣f τi
i (yi)

∣∣dμ(yi)

≤ sup
x∈D∈B(μ)

∏
i∈{i,...,il}


μ(κD)

∫
D

∣∣f i (yi)∣∣dμ(yi)

·
∏

i /∈{i,...,il}


μ(κD)

∫
D

∣∣f ∞
i (yi)

∣∣dμ(yi).

Let rD be the radius of the ballD and cD be the center ofD.Wenote that on the right-hand
side of the inequality above, the balls D in the integrals must satisfy that x ∈ D ∩ B(x, r)
and some yim ∈D∩ (X \ B∗), which implies

aρ(x, yim ) ≥ ρ(x, yim ) – aρ(x,x) ≥ aλr,

ρ(x, yim ) ≤ aaρ(cD,x) + aρ(cD, yim ) ≤ a( + a)rD.

Further, a simple calculus yields

B := B(x, r) ⊂
(
a + a ( + a)λ–)D ⊂ κ + a

a
D

as long as we take λ big enough, because of κ > a . Thus,

Mκ

(
f τ
 , . . . , f τm

m
)
(x) ≤ sup

B⊂D∈B(μ)

m∏
i=


μ( aκ

κ+a
D)

∫
D

∣∣f τi
i (yi)

∣∣dμ(yi).
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If let k = aκ/(κ + a ), then k > a, and we can get from the Hölder inequality and condi-
tion (.) on φi that

Mκ

(
f τ
 , . . . , f τm

m
)
(x)≤ sup

B⊂D∈B(μ)

m∏
i=


μ(kD)

∫
D

∣∣f τi
i (yi)

∣∣dμ(yi)

≤ C sup
B⊂D∈B(μ)

m∏
i=

‖fi‖Lpi ,φi (X,μ)φi
(
μ(kD)

)

≤ Cφ
(
μ(kB)

) m∏
i=

‖fi‖Lpi ,φi (X,μ).

The theorem is proved. �
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