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1 Introduction andmain results
For a given �ABC, let a, b and c denote the side-lengths facing the angles A, B and C,
respectively. Also, let ma, mb andmc denote the corresponding medians, ra, rb and rc the
corresponding exradii, s = 

 (a + b + c) the semi-perimeter, � the area. In addition, we let

m =


√
(b + c) – a =

√
s(s – a),

m =



√
a +



(b + c),

and

r =
a
√
s(s – a)

(s – a)
.

Throughout this paper, we will customarily use the cyclic sum symbols as follows:

∑
f (a) = f (a) + f (b) + f (c)

and

∑
f (b, c) = f (a,b) + f (b, c) + f (c,a).

In , Liu [] found the following interesting geometric inequality relating to the me-
dians and the exradius in a triangle with the computer software BOTTEMA invented by
Yang [–], and Liu thought this inequality cannot be proved by a human.

Theorem . In �ABC, the best constant k for the following inequality

∑
(rb – rc) ≥ k ·

∑
(mb –mc) (.)
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is the real root on the interval (, ) of the following equation

,k – ,k – ,k – ,k + , = . (.)

Furthermore, the constant k has its numerical approximation given by ..

In this paper, the authors give an artificial proof of Theorem ..

2 Preliminary results
In order to prove Theorem ., we require the following results.

Lemma . In �ABC, if a≤ b ≤ c, then

ra + rb + rc –
(
r + m


) ≥ s(s – a)(b – c)

(s – b)(s – c)
. (.)

Proof From a = (s – b) + (s – c) and the formulas of the exradius ra = �
s–a =

√
s(s–a)(s–b)(s–c)

s–a ,
etc., we get

ra + rb + rc –
(
r + m


)

=
[


(s – a)

+


(s – b)
+


(s – c)

]
s(s – a)(s – b)(s – c) –

as(s – a)
(s – a)

– s(s – a)

=


s(s – a)

[
(s – b)(s – c)

(s – a)
+
(s – b)(s – c)

(s – b)
+
(s – b)(s – c)

(s – c)
–

a

(s – a)
– 

]

=


s(s – a)

[
(s – b)(s – c) – a

(s – a)
+ 

(
s – c
s – b

+
s – b
s – c

– 
)]

=


s(s – a)

[
–
(b – c)

(s – a)
+

(b – c)

(s – b)(s – c)

]

=


s(s – a)(b – c)

[


(s – b)(s – c)
–


(s – a)

]
. (.)

For a ≤ b≤ c, we have

s – a≥ s – b ≥ s – c > ,

then

 <


s – a
≤ 

s – b
≤ 

s – c
,

hence


(s – b)(s – c)

≥ 
(s – a)

> . (.)

Inequality (.) follows from inequalities (.)-(.) immediately. �
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Lemma . In �ABC, we have

(mb +m)(mc +m)≥ s
√
(s – b)(s – c) (.)

and

a(mb +mc) – s(s – b)(s – c) ≥ s
√
(s – b)(s – c)(b – c)

a
. (.)

Proof of inequality (.) From

m
 –



as =




(
a –

b + c


)

≥ ,

we immediately obtain

m ≥
√


as. (.)

In view of the AM-GM inequality, we get

a

=
(s – b) + (s – c)


≥ √

(s – b)(s – c). (.)

By the power mean inequality, we have

√
a

=

√
(s – b) + (s – c)


≥

√
s – b +

√
s – c


. (.)

By the well-known inequalitiesmb ≥ √
s(s – b) andmc ≥ √

s(s – c), together with inequal-
ities (.)-(.), we obtain

(mb +m)(mc +m)

≥
(√

s(s – b) +
√


as

)(√
s(s – c) +

√


as

)

= s
(√

s – b +
√


a
)(√

s – c +
√


a
)

= s
[


a +

√


a(

√
s – b +

√
s – c) +

√
(s – b)(s – c)

]

≥ s
[


(
√
s – b +

√
s – c) + 

√
(s – b)(s – c)

]

= s
[


a + 

√
(s – b)(s – c)

]

≥ s
√
(s – b)(s – c).

The proof of inequality (.) is thus complete. �
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Proof of inequality (.) According to the well-known inequalities mb ≥ √
s(s – b), mc ≥√

s(s – c) and inequality (.), we have

a(mb +mc) – s(s – b)(s – c)

=
[
a – 

√
(s – b)(s – c)

]
(mb +mc)

+ 
√
(s – b)(s – c)

[
(mb +mc) – s

√
(s – b)(s – c)

]
≥ [

a – 
√
(s – b)(s – c)

] · mbmc + 
√
(s – b)(s – c)

[(√
s(s – b) +

√
s(s – c)

)
– s

√
(s – b)(s – c)

]
≥ s

[
a – 

√
(s – b)(s – c)

]√
(s – b)(s – c) + 

√
(s – b)(s – c)

[
a – 

√
(s – b)(s – c)

]
= s

√
(s – b)(s – c)

[
a – 

√
(s – b)(s – c)

]

=
s

√
(s – b)(s – c)(b – c)

a + 
√
(s – b)(s – c)

≥ s
√
(s – b)(s – c)(b – c)

a
. (.)

Hence, we complete the proof of inequality (.). �

Lemma . In �ABC, we have

mbmc ≤ m
. (.)

Proof From the formulas of the medians, we have

mbmc –m
 =

m
bm

c –m


mbmc +m


=

 (c

 + a – b)(a + b – c) – 
 (a

 + 
 (b + c))

mbmc +m


=
{[a – (b + c)] – (b + c + bc)}(b – c)

(mbmc +m
)

≤ .

Therefore, inequality (.) holds true. �

Lemma . In �ABC, if a≤ b ≤ c, then

mb +mc

ma +m
+



(
m

m +mb
+

m

m +mc

)
–

(b + c)

(mb +mc)

≥ m

m
+

m

m
–

a(b + c)

s(s – b)(s – c)
. (.)

Proof It is obvious thatmb > c – b
 andmc > b – c

 , then we havemb +mc > 
 (b + c), thus

(mb –mc) =
(m

b –m
c )

(mb +mc)
=
(b + c)(b – c)

(mb +mc)
≤ 


(b – c). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/329
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For a ≤ b≤ c, we have that

ma ≥
⎧⎨
⎩
m

mb
≥ m ≥ mc. (.)

By Lemma . and inequalities (.)-(.), we have

mb +mc

ma +m
+



(
m

m +mb
+

m

m +mc

)
–
m

m
–

m

m

=
mb +mc – m

ma +m
+
m(m –ma)
m(ma +m)

+
m(m

 –mbmc)
m(m +mb)(m +mc)

≥ (mb +mc) – m


(ma +m)(mb +mc + m)
+

m(m
 –m

a)
m(ma +m)

=
(m

b +m
c ) – (mb –mc) – m



(ma +m)(mb +mc + m)
+

m(m
 –m

a)
m(ma +m)

=

 (b – c) – (mb –mc)

(ma +m)(mb +mc + m)
–

m(b – c)

m(ma +m)

≥

 (b – c) – 

 (b – c)

(ma +m)(mb +mc + m)
–

(b – c)

(ma +m)

=
–(b – c)

(ma +m)(mb +mc + m)
–

(b – c)

(ma +m)

≥ –(b – c)

(ma +m)(mb +mc)
–

(b – c)

(ma +m)

=
–(b – c)

(mb +mc)
–

(b – c)

(mb +mc)

≥ –(b – c)

(mb +mc)
. (.)

By inequality (.), (.) and a≤ b ≤ c, we obtain that

a(b + c)

s(s – b)(s – c)
–

(b + c)

(mb +mc)

=
(b + c)[a(mb +mc) – s(s – b)(s – c)]

s(s – b)(s – c)(mb +mc)

≥ (b + c)

s(s – b)(s – c)(mb +mc)
· s

√
(s – b)(s – c)(b – c)

a

=
(b + c)(b – c)

a
√
(s – b)(s – c)(mb +mc)

≥ (b + c)(b – c)

a(mb +mc)

≥ (b – c)

(mb +mc)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/329
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By inequalities (.)-(.), we have

[
mb +mc

ma +m
+



(
m

m +mb
+

m

m +mc

)
–

(b + c)

(mb +mc)

]

–
[
m

m
+

m

m
–

a(b + c)

s(s – b)(s – c)

]

=
[
mb +mc

ma +m
+



(
m

m +mb
+

m

m +mc

)
–
m

m
–

m

m

]

+
[

a(b + c)

s(s – b)(s – c)
–

(b + c)

(mb +mc)

]

≥ –(b – c)

(mb +mc)
+

(b – c)

(mb +mc)

=
(b – c)

(mb +mc)
≥ . (.)

Inequality (.) follows from inequality (.) immediately. �

Lemma . In �ABC, if a ≤ b≤ c, then

m

m
+

m

m
+
(b + c)

a
≥  (.)

and

m +
√
a

s
≤ √

. (.)

Proof Without loss of generality, we can take b + c =  and a = x, for a ≤ b ≤ c, we have
 < x≤ .
(i) First, we prove inequality (.).

m

m
+

m

m
+
(b + c)

a
–  =

√
 + x

 – x
+



√
 – x

 + x
+


x

– 

=
 + x


√
( – x)( + x)

+
( – x)

x
–



≥  + x

 · (–x)+(+x)


+
( – x)

x
–



=
 + x

( + x)
+
( – x)

x
–



=
(x – )
( + x)

+
( – x)

x

≥ (x – )


+
( – x)



=
( – x)


≥ . (.)

Inequality (.) terminates the proof of inequality (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/329
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(ii) Second, we prove inequality (.).

m +
√
a –

√
s

=


√
 – x –

√



( – x)

=


√
 – x

(√
 + x –

√
( – x)

)

=
–

√
 – x( – x)√

 + x +
√
( – x)

≤ . (.)

Inequality (.) follows from inequality (.) immediately. �

Lemma . In �ABC, if a ≤ b≤ c, then

mamb +mbmc +mcma – mm –m
 ≥ 


(b – c) –

s(s – a)(b – c)

(s – b)(s – c)
. (.)

Proof By the AM-GM inequality, the well-known inequalities mb ≥ √
s(s – b) and mc ≥√

s(s – c), we get

(mb +mc) ≥ mbmc ≥ s
√
(s – b)(s – c) ≥ a

√
(s – b)(s – c) ≥ (s – b)(s – c)

or

mb +mc ≥ 
√

√
(s – b)(s – c). (.)

By inequalities (.), (.), (.), (.), (.), we obtain that

mamb +mbmc +mcma – mm –m


=
(mb +mc)(m

a –m
 )

ma +m
+
m(m

b –m
)

mb +m
+
m(m

c –m
)

mc +m
–

(m
b –m

c )

(mb +mc)
+




(b – c)

=
(mb +mc)(b – c)

(ma +m)
+
m(b + c)(c – b)

(mb +m)
+
m(b + c)(b – c)

(mc +m)

–
(b + c)(b – c)

(mb +mc)
+




(b – c)

=
(mb +mc)(b – c)

(ma +m)
+

m(b – c)

(mb +m)
+

m(b – c)

(mc +m)

–
m(b + c)(b – c)

(mb +m)(mc +m)(mb +mc)

–
(b + c)(b – c)

(mb +mc)
+




(b – c)

≥ 


(
m

m
+

m

m
–

a(b + c)

s(s – b)(s – c)
–

m(b + c)


√
s(s – b)(s – c)

+



)
(b – c)

=



(
m

m
+

m

m
–
(m +

√
a)(b + c)


√
s(s – b)(s – c)

+



)
(b – c)

http://www.journalofinequalitiesandapplications.com/content/2013/1/329
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≥ 


(
m

m
+

m

m
–

(b + c)

(s – b)(s – c)
+



)
(b – c)

=



(
m

m
+

m

m
–
[(b + c) – a]
(s – b)(s – c)

+
[(b + c) – a]
(s – b)(s – c)

+



)
(b – c)

≥ 


(
m

m
+

m

m
–

s(s – a)
(s – b)(s – c)

+
[(b + c) – a]

a
+



)
(b – c)

=



(
m

m
+

m

m
+
(b + c)

a
–

s(s – a)
(s – b)(s – c)

–



)
(b – c)

≥ 


(
 –

s(s – a)
(s – b)(s – c)

–



)
(b – c)

=


(b – c) –

s(s – a)(b – c)

(s – b)(s – c)
.

The proof of Lemma . is thus completed. �

Lemma . In �ABC, if inequality (.) holds, then k ≤ .

Proof Let b = c =  and a = x. For a ≤ b ≤ c, we have x ∈ (, ], then inequality (.) is
equivalent to


(
x
√
 – x

( – x)
–

√
 – x



)

≥ k
(√

 – x


–

√
x + 


)

⇐⇒  + x
 – x

≥ k · ( + x)

(
√
 – x +

√
x + )

⇐⇒ k ≤ ( + x)(
√
 – x +

√
x + )

( – x)( + x)
. (.)

Taking x =  in inequality (.), we obtain that k ≤ . �

Lemma . In �ABC, if a≤ b ≤ c and  < k ≤ , then we have

∑
(rb – rc) – k ·

∑
(mb –mc) ≥ (r –m) – k(m –m). (.)

Proof For

∑
(rb – rc) = 

∑
ra – 

∑
rbrc = 

∑
ra – s

and

∑
(mb –mc) = 

∑
m

a – 
∑

mbmc =



∑
a – 

∑
mbmc,

hence, by Lemmas . and ., we have

∑
(rb – rc) – k ·

∑
(mb –mc) – (r –m) + k(m –m)

= 
[∑

ra – r – m


]
+ k

[∑
mbmc – mm –m

 –


(b – c)

]

http://www.journalofinequalitiesandapplications.com/content/2013/1/329
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≥ s(s – a)(b – c)

(s – b)(s – c)
–
ks(s – a)(b – c)

(s – b)(s – c)

=
( – k)s(s – a)(b – c)

(s – b)(s – c)
≥ .

The proof of Lemma . is complete. �

Lemma . (see [, , ]) Define

F(x) = axn + axn– + · · · + an,

and

G(x) = bxm + bxm– + · · · + bm.

If a 	=  or b 	= , then the polynomials F(x) and G(x) have a common root if and only if

R(F ,G) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a a · · · an
a a · · · an

. . . . . . . . .
a a · · · an

b b · · · bm
b b · · · bm

. . . . . . . . .
b b · · · bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
n

= ,

where R(F ,G) ((m + n)× (m + n) determinant) is Sylvester’s resultant of F(x) and G(x).

Lemma . (see [, ]) Given a polynomial f (x) with real coefficients

f (x) = axn + axn– + · · · + an,

if the number of the sign changes in the revised sign list of its discriminant sequence

{
D(f ),D(f ), . . . ,Dn(f )

}

is v, then the number of the pairs of distinct conjugate imaginary roots of f (x) equals v.
Furthermore, if the number of non-vanishing members in the revised sign list is l, then the
number of the distinct real roots of f (x) equals l – v.

3 The proof of Theorem 1.1

Proof If k ≤ ,we can easily find that inequality (.) holds. Hence, we only need to con-
sider the case k > , and by Lemma ., we only need to consider the case  < k ≤ .
Now we determine the best constant k such that inequality (.) holds. Since inequality

(.) is symmetrical with respect to the side-lengths a, b and c, there is no harm in suppos-
ing a ≤ b ≤ c. Thus, by Lemma ., we only need to determine the best constant k such

http://www.journalofinequalitiesandapplications.com/content/2013/1/329
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that

(r –m) – k(m –m) ≥ 

or, equivalently, that

(
a
√
(b + c) – a

(b + c – a)
–

√
(b + c) – a



)

– k
(√

(b + c) – a


–



√
a +



(b + c)

)

≥ . (.)

Without loss of generality, we can assume that

a = t and
b + c


=  ( < t ≤ ),

because inequality (.) is homogeneouswith respect to a and b+c
 . Thus, clearly, inequality

(.) is equivalent to the following inequality:

(
t
√
 – t

( – t)
–

√
 – t



)

– k
(√

 – t


–

√
t + 


)

≥ . (.)

We consider the following two cases separately.
Case . When t = , inequality (.) holds true for any k ∈ R := (–∞, +∞).
Case . When  < t < , inequality (.) is equivalent to the following inequality:

k ≤ ( + t)(
√
 – t +

√
t + )

( – t)( + t)
. (.)

Define the function

g(t) :=
( + t)(

√
 – t +

√
t + )

( – t)( + t)
, x ∈ (, ).

Calculating the derivative for g(t), we get

g ′(t) =
(

√
 – t +

√
t + ) · √ – t · [(t + t + t – ) – ( – t)

√
 – t · √t + ]

( – t)( + t)
√
t +  · √ – t

.

By setting g ′(t) = , we obtain

√
 – t · [(t + t + t – 

)
– ( – t)

√
 – t · √t + 

]
= . (.)

It is easily observed that the equation
√
 – t =  has no real root on the interval (, ).

Hence, the roots of equation (.) are also solutions of the following equation:

(
t + t + t – 

)
– ( – t)

√
 – t · √t +  = ,

that is,

( + t)ϕ(t) = , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/329
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where

ϕ(t) = t + t – .

It is obvious that the equation

( + t) =  (.)

has no real root on the interval (, ).
It is easy to find that the equation

ϕ(t) =  (.)

has one positive real root. Moreover, it is not difficult to observe that ϕ() = – <  and
ϕ() =  > . We can thus find that equation (.) has one distinct real root on the interval
(, ). So that equation (.) has only one real root t given by t = . . . .
on the interval (, ), and

g(t)max = g(t) ≈ . ∈ (, ). (.)

Nowweprove g(t) is the root of equation (.). For this purpose, we consider the following
nonlinear algebraic equation system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ(t) = ,

t +  – u = ,

 – t – v = ,

( + t)(u + v) – ( – t)( + t)k = .

(.)

It is easy to see that g(t) is also the solution of nonlinear algebraic equation system (.).
If we eliminate the v, u and t ordinal by the resultant (by using Lemma .), then we
get

,,,,, · φ
 (k) · φ

(k) = , (.)

where

φ(k) = ,k – ,k – ,k – ,k + ,

and

φ(k) = k – ,k + ,k – ,k + ,.

The revised sign list of the discriminant sequence of φ(k) is given by

[, , –,–]. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/329
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The revised sign list of the discriminant sequence of φ(k) is given by

[, , –,–]. (.)

So the number of sign changes in the revised sign list of (.) and (.) are both . Thus,
by applying Lemma ., we find that the equations

φ(k) =  (.)

and

φ(k) =  (.)

both have two distinct real roots. In addition, it is easy to find that

φ() = , > ; φ() = , > ,

φ() = –, < ; φ() = –, < ,

φ() = –, < ; φ() = –, < 

and

φ() = , > ; φ() = , > .

We can thus find that equation (.) has two distinct real roots on the intervals

(, ) and (, ).

And equation (.) has two distinct real roots on the intervals

(, ) and (, ).

Hence, by (.), we can conclude that g(t) is the root of equation (.). The proof of The-
orem . is thus completed. �
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