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Abstract

The purpose of this paper is to introduce and analyze a weakly convergent theorem
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under mild assumptions.
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1 Introduction

In 1994, Censor and Elfving [1] first introduced the split feasibility problem (SFP) in finite-
dimensional Hilbert spaces for modeling inverse problems which arise from phase re-
trievals and in medical image reconstruction [2]. It was found that the SFP can also be
used to model intensity-modulated radiation therapy (IMRT) (see [3—6]). Very recently,
Xu [7] considered the SFP in the framework of infinite-dimensional Hilbert spaces. In
this setting, the SFP is formulated as the problem of finding a point x* with the prop-

erty
x*eC and Ax*e€Q, (1.1)

where C and Q are the nonempty closed convex subsets of the infinite-dimensional real
Hilbert spaces H; and Hj, respectively. Let A € B(Hj, H,), where B(Hj, H,) denotes the
family of all bounded linear operators from H; to Hs.

We use I' to denote the solution set of the SFP, i.e.,

F'={xeC:AxeQ}.
Assume that the SFP is consistent (i.e., (1.1) has a solution) so that I" is closed, convex

and nonempty. A special case of the SFP is the following convex constrained linear inverse
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problem:
findx € C such that Ax = b, (1.2)
which has extensively been investigated by using the Landweber iterative method [8]:

let x¢ be arbitrary for n =0,1,..., let

Xn+l = Xp + VAT(b _Axn)'

Comparatively, the SFP has received much less attention so far due to the complexity
resulting from the set Q. Therefore, whether various versions of the projected Landwe-
ber iterative method [8] can be extended to solve the SFP remains an interesting open
topic.

The original algorithm given in [1] involves the computation of the inverse A (assum-

ing the existence of the inverse of A):
xka1 = A7 Po(Pacy(Axi)), k>0,

where C,Q C R” are closed convex sets, A is a full rank # x n matrix and A(C) = {y €
R"|y = Ax,x € C}, and thus has not become popular.

A more popular algorithm that solves the SFP seems to be the CQ algorithm of Byrne [2,
9] which is found to be a gradient-projection method (GPM) in convex minimization. It is
also a special case of the proximal forward-backward splitting method [10]. The CQ algo-
rithm only involves the computations of the projections P¢ and Pg onto the sets C and Q,
respectively, and is therefore implementable in the case where P¢ and P have closed-form
expressions (for example, C and Q are closed balls or half-spaces). It remains, however, a
challenge on the CQ algorithm in the case where the projection P¢c and/or Py, fail to have
closed-form expressions though theoretically we can prove the (weak) convergence of the
algorithm.

Recently, Xu [7] gave a continuation of the study on the CQ algorithm and its conver-
gence. He applied Mann’s algorithm to the SFP and proposed an averaged CQ algorithm,
which was proved to be weakly convergent to a solution of the SFP. He derived a weak
convergence result, which shows that for suitable choices of iterative parameters (includ-
ing the regularization), the sequence of iterative solutions can converge weakly to an exact
solution of the SFP. He also established the strong convergence result, which shows that
the minimum-norm solution can be obtained. Later, Deepho and Kumam [11] extended
the results of Xu [7] by introducing and studying the modified Halpern iterative scheme
for solving the split feasibility problem (SFP) in the setting of infinite-dimensional Hilbert
spaces.

Throughout this paper, we always assume that the SFP is consistent, that is, the solution
set I of the SFP is nonempty. Let f : H; — R be a continuous differentiable function. The

minimization problem
1

minf(x) := = ||Ax — PoAx|> (1.3)
xeC 2
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is ill-posed. Therefore (see [7]), consider the following Tikhonov regularized problem:
inf(6) = = A% — PoAx| + 2] (14)
minf, (x) := 7 [|4x = PoAx|” + Sallx%, .

where o > 0 is the regularization parameter.

We observe that the gradient
Via(x) = Vf(x) + al = A*(I - Pg)A + al 1.5)

is (a + ||A]|?)-Lipschitz continuous and a-strongly monotone.
Define the Picard iterates

&%, =Pc(I -y (A*(I - Po)A + o) ). (1.6)

Xu [7] showed that if SFP (1.1) is consistent, then as n — 00, % — %, and consequently
the strong lim,_, ¢ %, exists and is the minimum-norm solution of the SFP. Note that (1.6)
is double-step iteration. Xu [7] further suggested the following single step regularized
method:

Xl = PC(I - yvfol,,)xn = PC((l - anyn)xn - ynA*(I - PQ)Axn) (17)

He proved that the sequence {x,} generated by (1.7) converges in norm to the minimum-
norm solution of the SFP provided the parameters {«,} and {y,} satisfy the following con-
ditions:

A .
IAI2+en”

(i) ay—>0and0<y, <

(ii) Zn an)’n = Oo!

EE RN D 772 o 271 iy 220 <278 G271

(111) (Oln+lyn+1)2 - 0.
Motivated by the idea of the relaxed extragradient method and Xu’s regularization,

Ceng, Ansariand Yao [12] presented the following relaxed extragradient method with reg-
ularization for finding a common element of the solution set of the split feasibility problem
and the set Fix(S) of fixed points of a nonexpansive mapping S:

x9=x € C chosen arbitrarily,
Vn = (1 - ,Bn) + ﬂnPC(xn - )\Vfan (xn)); (18)
%1 = Vo + (L= Yu)SPCn = AV, (7)), V1 2 0.

They only obtained the weak convergence of iterative algorithm (1.8).

The purpose of this paper to study and analyze an relaxed extragradient method with
regularization for finding a common element of the solution set I' of the SFP and the set
solutions of fixed points for asymptotically quasi-nonexpansive mappings and a Lipschitz
continuous mapping in a real Hilbert space. We prove that the sequence generated by the
proposed method converges weakly to an element & in Fix(T) N T.

2 Preliminaries
We first recall some definitions, notations, and conclusions which will be needed in prov-
ing our main results. Let H be a real Hilbert space with the inner product (-,-) and || - ||
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and let C be a closed and convex subset of H. Let E be a Banach space. A mapping
T : E — E is said to be demi-closed at origin if for any sequences {x,} C E with x, — x*
and ||({ — T)x,|| — 0, x* = Tx*. A Banach space E is said to have the Opial property if for
any sequence {x,} with x, — x*,

liminf||x, — &*| <liminf |x, - yl, Vy€E withy#x".
Remark 2.1 It is well known that each Hilbert space possesses the Opial property.

Definition 2.2 Let H be a real Hilbert space, let C be a nonempty and closed convex
subset. We denote by Fix(T) the set of fixed points of T, that is, Fix(7T) = {x € C : x = Tx}.
Then T is said to be
(i) nonexpansive if || Tx — Ty|| < |lx - y|| for all x,y € C;
(i) quasi-nonexpansive if || Tx — p|| < ||x —p|| forallx € C and p € F(T);
(iii) asymptotically nonexpansive if there exist a sequence k, > 1 and lim,,, oo k, = 1
such that

[T"% - T"y| <kallx -yl

forallx,y e Cand n>1;
(iv) asymptotically quasi-nonexpansive if there exist a sequence k, > 1 and

lim,,_, o k,, = 1 such that
| T"% - p| < kallx - pll

forallxe C,pe F(T)and n > 1;
(v) uniformly L-Lipschitzian if there exists a constant L > 0 such that

|7"% - T"y| < Lilx -y
forallx,y € Cand n > 1.

Remark 2.3 By the above definitions, it is clear that:
(i) anonexpansive mapping is an asymptotically quasi-nonexpansive mapping;
(i) a quasi-nonexpansive mapping is an asymptotically-quasi nonexpansive mapping;
(iii) an asymptotically nonexpansive mapping is an asymptotically quasi-nonexpansive
mapping.

Proposition 2.4 (see [9]) We have the following assertions.
(i) T is nonexpansive if and only if the complement I — T is %—z’sm.
(i) If T isv-ismandy >0, then yT is f-ism.
(iii) T is averaged if and only if the complement I — T is v-ism for some v > %
Indeed, for « € (0,1), T is a-averaged if and only if | - T is i—ism.

Proposition 2.5 (see [9, 13]) We have the following assertions.
(i) IfT=0-a)S+aV forsomea €(0,1), S is averaged and V' is nonexpansive, then T
is averaged.
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(i) T is firmly nonexpansive if and only if the complement I — T is firmly nonexpansive.

(iii) f T=Q-0a)S+aV forsomea €(0,1), S is firmly nonexpansive and V is
nonexpansive, then T is averaged.

(iv) The composite of finite many averaged mappings is averaged. That is, if each of the
mappings {T;}, is averaged, then so is the composite Ty o Ty o --- 0 Ty. In
particular, if Ty is ay-averaged and T, is ay-averaged, where ay, oy € (0,1), then the
composite Ty o Ty is a-averaged, where o = o1 + g — 010l

(v) If the mappings {T;}, are averaged and have a common fixed point, then
[\Fix(T:) = Fix(Ty - T).
i=1

Lemma 2.6 (see [14], demiclosedness principle) Let C be a nonempty closed and con-
vex subset of a real Hilbert space H and let S : C — C be a nonexpansive mapping with
Fix(S) # 0. If the sequence {x,} < C converges weakly to x and the sequence {(I — S)x,} con-
verges strongly to y, then (I — S)x = y; in particular, if y = 0, then x € Fix(S).

Lemma 2.7 (see [15]) Let the sequences {a,} and {u,} of real numbers satisfy
an < 1+ uy)a,, VYn=>1,

where a, > 0, u, > 0 and ) -, u, < 0. Then
(1) lim,_, » a, exists;

(2) ifliminf,_ o a, = 0, then lim,, o a, = 0.

The following lemma gives some characterizations and useful properties of the metric
projection Pc in a Hilbert space.

For every point x € H, there exists a unique nearest point in C, denoted by Pcx, such
that

llx = Pex|| < llx—yll, VyeC, (2.1)

where P¢ is called the metric projection of H onto C. We know that Pc is a nonexpansive

mapping of H onto C.

Proposition 2.8 For givenx € H andz e C:
(i) z=Pcxifandonly if (x —z,y—z) <0 forally € C.
(i) z=Pcx ifand only if |x —z|® < |lx = y)|?> = |y — z||* forall y € C.
(iii) Forally € H, {Pcx — Pcy,x —y) > ||Pcx — Pcy||%.

Lemma 2.9 (see [16]) Let H be a real Hilbert space. Then the following equations hold:
(@) llx=yl* = x> = Iyl1> = 2(x = 3,9) for all x,y € H;
(ii) [ltx+ (1 =)yl = tlxll® + A= O)ylI* - eQ = ) |x - yl|* for all t € [0,1] and x,y € H.

Let K be a nonempty closed convex subset of a real Hilbert space H and let F: K — H
be a monotone mapping. The variational inequality problem (VIP) is to find x € K such

Page 5 of 16
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that
(Fx,y—x)>0, VyeKk.

The solution set of the VIP is denoted by VIP(K, F). It is well known that
x € VI(K,F) <& x=Pg(x—AFx), Vi>O0.

A set-valued mapping T : H — 2/ is called monotone if forallx,y € H,f € Txand g € Ty
imply

(x—y.f-g =0.

A monotone mapping T : H — 2 is called maximal if its graph G(T) is not properly
contained in the graph of any other monotone mapping. It is known that a monotone
mapping T is maximal if and only if for (x,f) € H x H, (x —y,f —g) > 0 for every (y,g) €
G(T) implies f € Tx. Let F : K — H be a monotone and k-Lipschitz continuous mapping
and let Niv be the normal cone to K at v € K|, that is,

Ngv={weH: (v-uw)>0,VueK}
Define

Fv+ Ngv ifvek,
7] ifveK.

V=

Then T is maximal monotone and 0 € 7v if and only if v € VI(K, F); see [15] for more
details.

We can use fixed point algorithms to solve the SFP on the basis of the following obser-
vation.

Let A > 0 and assume that x* € I". Then Ax* € Q, which implies that (I — Po)Ax* = 0, and
thus AA*(I - Pg)Ax* = 0. Hence, we have the fixed point equation (I - AA*(I — Pg)A)x™ = x*.
Requiring that x* € C, we consider the fixed point equation

Pc(I - AVf)x* = Pc(I = AA*(I — Po)A)x™ = x*. (2.2)

Itis proved in [7, Proposition 3.2] that the solutions of fixed point equation (2.2) are exactly
the solutions of the SFP; namely, for given x* € Hj, x* solves the SFP if and only if x* solves
fixed point equation (2.2).

Proposition 2.10 (see [12]) Given x* € Hi, the following statements are equivalent.
(i) x* solves the SFP;
(i) x* solves fixed point equation (2.2);
(ili) x* solves the variational inequality problem (VIP) of finding x* € C such that

(Vf(x*),x-x*)>0, VxeC, (2.3)

where Vf = A*(I — Pg)A and A* is the adjoint of A.

Page 6 of 16
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Proof (i) < (ii). See the proof in [7, Proposition 3.2].
(ii) © (iii). Observe that

Pc(I-2A*I-Po)A)x* =x* & ((I-AA*(I-Po)A)x" —x*,x-x")<0, VxeC
& —MA*(I-P)Ax*,x-x*) <0, VxeC

& (Vf(x*),x—x*) >0, Vxe(C,
where Vf = A*(I — Pg)A. O
Remark 2.11 It is clear from Proposition 2.10 that
I := Fix(Pc(I - AVf)) = VI(C, Vf)

for any A > 0, where Fix(Pc(I — AVf)) and VI(C, Vf) denote the set of fixed points of Pc(I —
AV[) and the solution set of VIP.

3 Main result

Theorem 3.1 Let C be a nonempty, closed, and convex subset of a real Hilbert space H
and let T : C — C be a uniformly L-Lipschitzian and asymptotically quasi-nonexpansive
mappings with Fix(T) N T # @ and {k,} C [1,00) for all n € N such thaty_,.,(k, — 1) < cc.
Let {x,} and {y,} be the sequences in C generated by the following algorithm:

x9=x € C chosen arbitrarily,
Yn = Pcl = 1uVfa,)%n, (3.1)
Xus1 = BuXn + (1- ,Bn)Tnyn: Yn >0,

where Vf,, = Vf +a,l = A*(I - Pg)A + a1, and three sequences {a,}, {A,}, and { B} satisfy
the conditions:
(i) Yoo <00,
(i) {r.) C [a,b] for some a,b € (0, W) and Y52 kst — Ayl < 00,
(iti) {B.} C [c, d] for some c,d € (0,1).
Then the sequences {x,} and {y,} converge weakly to an element x € Fix(T) N T.

Proof We first show that Pc(I — AVf,) is ¢ -averaged for each 1, € (0, m), where

C 2+ Mo+ [JA]P)
¢ = 2 .
Indeed, it is easy to see that Vf = A*(I — Pg)A is W—ism, that is,

1
IA]I?

(VF(x) - Vf ()0 —y) = NEEOE

Observe that

(o + APV (%) - V), x — )
= (o + |AIP) [l = yII* + (V) = V), x - y)]
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=a?|lx = ylI* + a(Vf (%) - Vf(9), %~ y)
+al| Al = y11” + IAIXVF @) - VAO),x - )
> ol - yI1? + 2a(Vf (%) = V) x —y) + [ Vf @) - V)|
= Jetx =) + V@) - V)|
- | V@) - )

i — * : 1 : . 1 .
Hence, it follows that Vf, = ol + A*(I - Pg)A is W—lzsm. Thus, AVf, is e AT Cism. By
Proposition 2.4(iii) the composite (I — AVf,) is %

Pc is %—averaged and utilizing Proposition 2.5(iv), we know that for each 2 € (0, m),

Pc(I - AVfy) is ¢ -averaged with

-averaged. Therefore, noting that

L Ma+ AP 1 Mo+ IAIP) 2+ A+ A7)
+ _Z. =

= € (0,1).
¢ 2 2 2 2 4 1)

This shows that Pc(I — LVf,) is nonexpansive. Furthermore, for {1,} € [4,b] with a,b €

—L, we may assume that

1 Qe . 1 _
(0, =), utilizing the fact that lim,_, T TAE = TAR?

A2

O<a<lt,<bc< ,
" 1Al

Consequently, it follows that for each integer n > 0, Pc(I — A, Vf,) is ¢,-averaged with

1 Ao, + ||A||2) 1 Ao, + ||A||2) 2+ Ay, + ”A”2)
— + _—— =

€ (0,1).
2 2 2 2 4

Cn=

This immediately implies that Pc(I — A, Vf,,,) is nonexpansive for all n > 0.

We divide the remainder of the proof into several steps.

Step 1. We prove that {x,} is bounded. Indeed, we take a fixed p € Fix(T) N I" arbitrarily.
Then we get Pc(I — A, Vf)p =p for A, € (0, HA%)‘ Since P¢ and (I - 1, Vfq,) are nonexpan-
sive mappings, then we have

17s =PIl = | Pc = 2uVfo,)%m — Pl = 1,V )p |
< || Pcl = 4n Vo, )2n = Pcll = 2 Voo, ) |
+ | Pcl = 1uVfa,)p = Pl = 2V f)p||
< llwn = pll + | = 2 Ve, Do — T = 2,V )p|
= [lxn = pll + 14n Vo = An Vo2
= [lxn = pll + 2all Vo = Vo
= [lxn — pll + Aal Vo - Vi — apl|
< % —pll + euhallpll. (3.2)

Observe that

ln41 — pIl = ||/3nxn +(1- ﬁn)Tnyn —P”
< Bullxn —pll + A= B | Ty - p|

Page 8 of 16


http://www.journalofinequalitiesandapplications.com/content/2013/1/322

Deepho and Kumam Journal of Inequalities and Applications 2013, 2013:322 Page9of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/322

< Bullxn = pll + L= Bu)knllyn - pl

< Bulln = pll + (= Bk (1% = pll + Xnctullpll)

= Bullxn = pll + A = Bu)kull%n = pll + (1 = Bu)knctnnllPl

= (1+ (ke = DA = B) lxn = pll + A = Bu)kutudn |- (3.3)

Since Y7, (k, — 1) < 00, according to Lemma 2.7 and (i), (ii) and (3.3), we obtain that
lim ||x, — p| exists for each p € Fix(T)NT. (3.4)

This implies that {x,} is bounded and {y,} is also bounded.
It follows that

1775 - p|| < knllxn - pI.

Hence {T"x, — p} is bounded.
Step 2. We prove that

lim ||y, — Ty | = 0.
n— o0
In fact, it follows from (3.2) that

1y =PI = (%0 = pll + @udnlpll)?
< %0 = pII* + 20, Aullpll 136 — Il + 222 (1]
= 1%n = pII* + au (2221 120 — pIl + A2 1IP11%)
= s = pII* + auM,

where M = sup,._o {24, [|p |16, — pI| + otul|p]|*} < 00.
It follows that

|7 = p|” < (kullyn - p1)
= K2|ly, - pl®
= I2||%, - plI® + k2 M.

Also, observe that

w1 = pI% = | Bu + A= BTy |
< Bullt = p1% + A= B) | T"% = p||* = Bl = B)| T — 5
< Bulltn =PI + (1= Ba) (K211 — pII? + 0uk®M) = Bu(L = B) | Ty — 2]
= Bullxn —pI? + = Bk, s — pII* + (1= B)kG e, M
— Bl = B) | T — 2]
= (K2 = Bu(k2 = 1)) 2 = PI* + (1= B)K2tuM ~ B~ B) | Ty — 5.
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Hence, we have

Bu(1 = B) ” T"y, —xu ||2
< (k2 = Bu(ks = 1)) 1% = pII* = %1 — pII* + (1 = Bk, M. (3.5)

By the conditions (i), (iii) and lim,_, « k, = 1, we can conclude that
lim ” T"y, — %y, || =0. (3.6)
Consider that since y, = Pc(x, — A, Vfy,%,) and by Proposition 2.8(ii), we have

1y =PI < [0 = % Vo ) = 2| = [0 = 2 Vo (6) = 7|
= %0 = pI> = 1% = yull” + 220(Vfor, (%), 2 = ¥1)
= %0 = pI> = 190 = yull* + 220 (Vo %) = Vo, (), 2 = %)
+ (Vo @2 = %) + (Vs (60, % = Yn)
< 20 =PI = 196 = 9al* + 220 (Voo (0), 2 = %) + (Vo (), % = )
= o6 = 1% = 1% = 31 + 20 [{(@ud + VP, D = %) + (Vo (), %0 — )]
= [ltn = pII* = 120 = Yull® + 2200t (2, 2 = %) + (Vo (6) %0 = )]
= 1% = pII* = 19 = Yull” + 2200 (B, P = %) + 20V o, (%), X1s = V)
= 1% = pII* = 1% = Yull* + 22000 (D 2 = %) = 20V, (%), Y = %)
= 1% = PII* = 1% = Yull® + 22000 (0s P = %) = 20V for, K) Y = P + P — %)
= [l = pII* = 1% = Yull* + 22000 (P, p = %) = 22 Vo, (%), Y — D)
= 22{ Vo, (%), — %)
< %0 = pI* = 156 = 7 lI* + 2200 | Il11p = | = 22| Vo ) | 17 =
= 2 || Vo, ) | Il = 2. (37)

Consequently, utilizing Lemma 2.9(ii) and (3.7), we conclude that

st =PI = || Bun + L= B T"9 —p||2

= | Butn + (L= BTy = (Ba + (1= B)p |

= | Butn + (L= B9 — B — (1= Bl |
= | Bulen —p) + A= B)(T"yu - p)|*

= Bullta =1 + = B2 T"% = | = B = Ba) |20 = T’

< Bullxn = pI% + (1= K215 I = Bl = B) |50 = T

= Bulltn —pI* + (U= B2 [0 — P12 = 150 = 3 l1? + 20t Pl 12 —
= 2|V Gen) [ 197 = Il = 20| o ) | 12 = 2]
— Bl = Ba) 60— Ty

Page 10 of 16
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= (Bu+ (L= ) 120 = pII* = (1= BVl = yull*
+2(1= Bk pllllp = 4l
=21 = Bk | Vo, ) [ 13 —
= 20— Bk | Voo, o) | 12 = 2
— Bl = Ba) 60— Ty
= (ki = Bu(kz = 1))l — pII* = (1= Bk 120 = yull®
+2(1= Bkt | pllllp = ull
=201 = Bk ko | Voo, ) | 1 =
= 2(1 = Bukon | Vo, ) [ 12 = 2l
— Bl = Ba) 0w — Ty ).

It follows that we get

(1 - ﬁn)ki ”xn _yn ”2 - 2(1 - ,Bn)kiknan ||P|| ||P —Xn ”
+2(1- ﬂn)kfl)‘-n “ Ve, () ” (”yn -pll+lp- xn”) + Bu(1- ,Bn)“xn -T", ”2
< (k2 = Bu(ky = 1) 2w = pII* = 1201 - pII* (3.8)

So, taking n — 00, since lim,,_, ¢ k,, = 1, (i)-(iii), (3.6) and (3.8), we can conclude that
lim [l — 2 = 0. (3.9)
Consider

”xn+l _xn” = “ﬂnxn —Xnt (1 - IBVI)TnyVl ||
= ”_(1 = Bu)xn + (L= Bu) T"yn ”

< A= B)| TV —2u. (3.10)
From (3.6) we obtain
%1 = 2l < (L= B T"yn = %u]| > 0 (as n — o). (3.11)

Observe that

[T = yull = | T = 20 + 2 = |

< 17"y = 2| + lw = -
So, from (3.6) and (3.9), we get

lim || 7"y, -y, | = 0. (3.12)

n—00
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We compute that

191 = Yull = | Pcner = nir Vs Bne1) = Pe@n = An oy ) |
= | Pc = hus1 Vap )Ens1 = Pel = 2 Ve, )% |
< ||PC(1 = dni1 Vo )%ns1 = Pl = A1 Vo, )%n ||
+ | Pel = A1 Veps )%n — Pcl = 1n Vo, )%,
< %1 = Xull + [ (= X1 Vs J2n = (I = 2 Voo, % |
= 1tne1 = %l + %0 = At Ve ®n — @ = 2n Vo) |
= [%ns1 = X ll + 120 Ve, ®n = st Vg %l
= (%1 = %ull + | An(Vf + 0w = Ans1 (VS + 1) |
= (%1 = %ull + [ An Vfn + Aty — (ha Vi + A1 @1 |
= %ne1 = Xl + || o = i) Vo + Ao = M1 Q1 X |
= (%1 = %ull + || M = Ans1) Vo + A — 1%
+ A 1%n = M1 01 % |
= %1 =l + | = A1) Vi + M@t = @pa1)xn
+ (Mn = M) 1%
< %ne1 =l + [hn = st [Vl + Al — ot ||| %l

+ Qi1 |An = At | 16 -
From the conditions (i), (ii) and (3.11), we obtain that
Y1 = Yull = O (as n — 00). (3.13)
Since T is uniformly L-Lipschitzian continuous, then

”yn - Tyn” =< ”yn _yn+1|| + ||yn+1 - Tn+1yn+1 || + || Tn+1yn+1 - Tn+1_yn || + H Tn+1yn - Tyn ||

S |Yn = ynaall + ||yn+1 - Tn+1yn+l ” + L|lyn = yuall + L” Tnyn —In ”
Since lim,— oo [|Y141 — Y|l = 0 and lim,,—, o ||y, — Ty, || = O, it follows that
lim ||y, — Ty = 0. (3.14)
n—0oQ

Step 3. We show that ¥ € Fix(T) N T.
Since Vf = A*(I — Pg)A is Lipschitz continuous, from (3.9), we have

Tim V() — V£ 0] = 0.

Since {x,} is bounded, there is a subsequence {x,, } of {x,} that converges weakly to some %.
First, we show that X € T'. Since ||x,, — y,|| — 0, it is known that y,, — %.
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Put

Vfw1 +Ncw1 if w1 € C,
] ifwy ¢ C,

SW1 =

where New; = {z € H; : (w; —u,z) > 0,Vu € C}. Then S is maximal monotone and 0 € Sw;
if and only if w; € VI(C, Vf); (see [17]) for more details. Let (w,z) € G(S), we have

z € Swy = Vfw; + Newy,
and hence
z—Vfw; € Ncwy.
So, we have
(w1 —u,z—Vfw) >0, VueC.
On the other hand, from
Y =Pc =1, Vfy,)x, and w;€C,
we have
(% = 2nVouXn = Yns Yn = w1) 2 0,

and

n—Xn

<w1 — Y Y + Vfanxn> > 0.

n

Therefore, from z — Vfw; € Ncw, and y,,; € C, it follows that

(W1 = Yu;p2) = (W1 = Yy, Vrr)

=Xy,
Yni — Xy +Vﬁtn.xni>
A, i

i

n; _xnl‘
= (w1 — Yy, Vwr) — <w1 —y,,i,yT + fo”i>

i

> (W1 — Y, Vwr) — <W1 = Yy

- an,'<wl _yn,"xni>

= (W1 = Vi VWL = V) + W1 = Yis VI, — VfX,)

Yni = %
An

_<W1 = Vn;» >—Oln’.<W1 _yn,';xn[>

n; _x}’ll‘
Z (Wl —yn[: nyni - foni> - <W1 _yni! y}\‘—>

— Uy <W1 _yn,-yxni)'
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Hence, we obtain
(w1 —=%,2) >0 asi— oo.

Since S is maximal monotone, we have & € 710, and hence & € VI(C, Vf). Thus, it is clear
thatxeT.

Next, we show that & € Fix(T). Indeed, since y,, — & and ||y, — Ty, || = 0 by (3.14) and
Lemma 2.6, we get & € Fix(T). Therefore, we have x € Fix(T) N T.

Let {x,} be another subsequence of {x,} such that (%} — %. Then k € Fix(T) NT. Let
us show that x = x. Assume that x # x. From the Opial condition [18], we have

lim [, —&| = lim infllx,, — Z|
n—00 n;j—00

N

lim inf|jx,, — x|
n;— 00

lim ||x, — x|
n—00

lim inf [lx,, — x|
nj—00 /

N

lim inf|lx, — &I
1nj—00 /

= lim |, —X|.
n—00
This is a contradiction. Thus, we have x = . This implies
%, — & € Fix(T)NT.

Further, from ||x, — y,|| — O, it follows that y,, — x. This shows that both sequences {x,,}
and {y,} converge weakly to x € Fix(T) N T". This completes the proof. (|

Utilizing Theorem 3.1, we have the following new results in the setting of real Hilbert
spaces.
Take T" = I(identity mappings) in Theorem 3.1. Therefore the conclusion follows.

Corollary 3.2 Let C be a nonempty, closed, and convex subset of a real Hilbert space H.
Suppose that T # ). Let {x,} be a sequence in C generated by the following algorithm:

xo=x € C chosen arbitrarily,

Xp+l = ﬁnxn + (1 - ,Bn)PC(I - )"nvfa,,)xm Vn > 0,

(3.15)

where Vfy, = Vf + a,l = A*(I — Po)A + a,1, and the sequences {a,}, (1.}, and {B,} satisfy
the conditions:
(i) Yo oy <00,
(i) {Arn) C [a,b] for some a,b € (0, W) and Y02 st — Ayl < 00,
(ili) {B.} C [c, d] for some c,d € (0,1).
Then the sequence {x,} converges weakly to an element x € .

Take Pc = I(identity mappings) in Theorem 3.1. Therefore the conclusion follows.
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Corollary 3.3 Let C be a nonempty, closed, and convex subset of a real Hilbert space H
and let T : C — C be a uniformly L-Lipschitzian and quasi-nonexpansive mapping with
Fix(T) # ¥ and {k,} C [1,00) for all n € N such that y .- (k, — 1) < cc. Let {x,} be the
sequence in C generated by the following algorithm:

x9=x € C chosen arbitrarily,

Xn+l = ,ann + (1 - ﬂn)Tnxm Vn > 0,

(3.16)

and let the sequence {B,} satisfy the condition {B,} C [c,d] for some c,d € (0,1). Then the
sequence {x,} converges weakly to an element x € Fix(T).

Remark 3.4 Theorem 3.1 improves and extends [7, Theorem 5.7] in the following as-
pects:

(a) The iterative algorithm [7, Theorem 5.7] is extended for developing our relaxed
extragradient algorithm with regularization in Theorem 3.1.

(b) The technique of proving weak convergence in Theorem 3.1 is different from that in
[7, Theorem 5.7] because of our technique to use asymptotically
quasi-nonexpansive mappings and the property of maximal monotone mappings.

(c) The problem of finding a common element of Fix(T) N T for asymptotically
quasi-nonexpansive mappings which is more general than that for nonexpansive
mappings and the problem of finding a solution of the SFP in [7, Theorem 5.7].
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