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Abstract
The purpose of this paper is to introduce and analyze a weakly convergent theorem
by using the regularized method and the relaxed extragradient method for finding a
common element of the solution set � of the split feasibility problem and Fix(T ) of
fixed points of asymptotically quasi-nonexpansive mappings T in the setting of
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under mild assumptions.
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1 Introduction
In , Censor and Elfving [] first introduced the split feasibility problem (SFP) in finite-
dimensional Hilbert spaces for modeling inverse problems which arise from phase re-
trievals and in medical image reconstruction []. It was found that the SFP can also be
used to model intensity-modulated radiation therapy (IMRT) (see [–]). Very recently,
Xu [] considered the SFP in the framework of infinite-dimensional Hilbert spaces. In
this setting, the SFP is formulated as the problem of finding a point x∗ with the prop-
erty

x∗ ∈ C and Ax∗ ∈ Q, (.)

where C and Q are the nonempty closed convex subsets of the infinite-dimensional real
Hilbert spaces H and H, respectively. Let A ∈ B(H,H), where B(H,H) denotes the
family of all bounded linear operators from H to H.
We use � to denote the solution set of the SFP, i.e.,

� = {x ∈ C : Ax ∈Q}.

Assume that the SFP is consistent (i.e., (.) has a solution) so that � is closed, convex
and nonempty. A special case of the SFP is the following convex constrained linear inverse
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problem:

find x ∈ C such that Ax = b, (.)

which has extensively been investigated by using the Landweber iterative method []:

let x be arbitrary for n = , , . . . , let

xn+ = xn + γAT (b –Axn).

Comparatively, the SFP has received much less attention so far due to the complexity
resulting from the set Q. Therefore, whether various versions of the projected Landwe-
ber iterative method [] can be extended to solve the SFP remains an interesting open
topic.
The original algorithm given in [] involves the computation of the inverse A– (assum-

ing the existence of the inverse of A):

xk+ = A–PQ
(
PA(C)(Axk)

)
, k ≥ ,

where C,Q ⊂ R
n are closed convex sets, A is a full rank n × n matrix and A(C) = {y ∈

R
n|y = Ax,x ∈ C}, and thus has not become popular.
Amore popular algorithm that solves the SFP seems to be the CQ algorithm of Byrne [,

] which is found to be a gradient-projection method (GPM) in convex minimization. It is
also a special case of the proximal forward-backward splitting method []. The CQ algo-
rithm only involves the computations of the projections PC and PQ onto the sets C and Q,
respectively, and is therefore implementable in the casewhere PC and PQ have closed-form
expressions (for example, C and Q are closed balls or half-spaces). It remains, however, a
challenge on the CQ algorithm in the case where the projection PC and/or PQ fail to have
closed-form expressions though theoretically we can prove the (weak) convergence of the
algorithm.
Recently, Xu [] gave a continuation of the study on the CQ algorithm and its conver-

gence. He applied Mann’s algorithm to the SFP and proposed an averaged CQ algorithm,
which was proved to be weakly convergent to a solution of the SFP. He derived a weak
convergence result, which shows that for suitable choices of iterative parameters (includ-
ing the regularization), the sequence of iterative solutions can converge weakly to an exact
solution of the SFP. He also established the strong convergence result, which shows that
the minimum-norm solution can be obtained. Later, Deepho and Kumam [] extended
the results of Xu [] by introducing and studying the modified Halpern iterative scheme
for solving the split feasibility problem (SFP) in the setting of infinite-dimensional Hilbert
spaces.
Throughout this paper, we always assume that the SFP is consistent, that is, the solution

set � of the SFP is nonempty. Let f :H → R be a continuous differentiable function. The
minimization problem

min
x∈C f (x) :=



‖Ax – PQAx‖ (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/322
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is ill-posed. Therefore (see []), consider the following Tikhonov regularized problem:

min
x∈C fα(x) :=



‖Ax – PQAx‖ + 


α‖x‖, (.)

where α >  is the regularization parameter.
We observe that the gradient

∇fα(x) = ∇f (x) + αI = A∗(I – PQ)A + αI (.)

is (α + ‖A‖)-Lipschitz continuous and α-strongly monotone.
Define the Picard iterates

xα
n+ = PC

(
I – γ

(
A∗(I – PQ)A + αI

))
xα
n . (.)

Xu [] showed that if SFP (.) is consistent, then as n → ∞, xα
n → xα and consequently

the strong limα→ xα exists and is the minimum-norm solution of the SFP. Note that (.)
is double-step iteration. Xu [] further suggested the following single step regularized
method:

xn+ = PC(I – γ∇fαn )xn = PC
(
( – αnγn)xn – γnA∗(I – PQ)Axn

)
. (.)

He proved that the sequence {xn} generated by (.) converges in norm to the minimum-
norm solution of the SFP provided the parameters {αn} and {γn} satisfy the following con-
ditions:

(i) αn →  and  < γn < αn
‖A‖+αn

;
(ii)

∑
n αnγn = ∞;

(iii) |γn+–γn|+γn|αn+–αn|
(αn+γn+)

→ .
Motivated by the idea of the relaxed extragradient method and Xu’s regularization,

Ceng, Ansari and Yao [] presented the following relaxed extragradientmethod with reg-
ularization for finding a common element of the solution set of the split feasibility problem
and the set Fix(S) of fixed points of a nonexpansive mapping S:

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C chosen arbitrarily,

yn = ( – βn) + βnPC(xn – λ∇fαn (xn)),

xn+ = γnxn + ( – γn)SPC(yn – λ∇fαn (yn)), ∀n≥ .

(.)

They only obtained the weak convergence of iterative algorithm (.).
The purpose of this paper to study and analyze an relaxed extragradient method with

regularization for finding a common element of the solution set � of the SFP and the set
solutions of fixed points for asymptotically quasi-nonexpansive mappings and a Lipschitz
continuous mapping in a real Hilbert space. We prove that the sequence generated by the
proposed method converges weakly to an element x̂ in Fix(T)∩ �.

2 Preliminaries
We first recall some definitions, notations, and conclusions which will be needed in prov-
ing our main results. Let H be a real Hilbert space with the inner product 〈·, ·〉 and ‖ · ‖
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and let C be a closed and convex subset of H . Let E be a Banach space. A mapping
T : E → E is said to be demi-closed at origin if for any sequences {xn} ⊂ E with xn ⇀ x∗

and ‖(I – T)xn‖ → , x∗ = Tx∗. A Banach space E is said to have the Opial property if for
any sequence {xn} with xn ⇀ x∗,

lim inf
n→∞

∥∥xn – x∗∥∥ < lim inf
n→∞ ‖xn – y‖, ∀y ∈ E with y �= x∗.

Remark . It is well known that each Hilbert space possesses the Opial property.

Definition . Let H be a real Hilbert space, let C be a nonempty and closed convex
subset. We denote by Fix(T) the set of fixed points of T , that is, Fix(T) = {x ∈ C : x = Tx}.
Then T is said to be

(i) nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C;
(ii) quasi-nonexpansive if ‖Tx – p‖ ≤ ‖x – p‖ for all x ∈ C and p ∈ F(T);
(iii) asymptotically nonexpansive if there exist a sequence kn ≥  and limn→∞ kn = 

such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖

for all x, y ∈ C and n≥ ;
(iv) asymptotically quasi-nonexpansive if there exist a sequence kn ≥  and

limn→∞ kn =  such that

∥∥Tnx – p
∥∥ ≤ kn‖x – p‖

for all x ∈ C, p ∈ F(T) and n≥ ;
(v) uniformly L-Lipschitzian if there exists a constant L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖

for all x, y ∈ C and n≥ .

Remark . By the above definitions, it is clear that:
(i) a nonexpansive mapping is an asymptotically quasi-nonexpansive mapping;
(ii) a quasi-nonexpansive mapping is an asymptotically-quasi nonexpansive mapping;
(iii) an asymptotically nonexpansive mapping is an asymptotically quasi-nonexpansive

mapping.

Proposition . (see []) We have the following assertions.
(i) T is nonexpansive if and only if the complement I – T is 

 -ism.
(ii) If T is ν-ism and γ > , then γT is ν

γ
-ism.

(iii) T is averaged if and only if the complement I – T is ν-ism for some ν > 
 .

Indeed, for α ∈ (, ), T is α-averaged if and only if I – T is 
α -ism.

Proposition . (see [, ]) We have the following assertions.
(i) If T = ( – α)S + αV for some α ∈ (, ), S is averaged and V is nonexpansive, then T

is averaged.

http://www.journalofinequalitiesandapplications.com/content/2013/1/322
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(ii) T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.
(iii) If T = ( – α)S + αV for some α ∈ (, ), S is firmly nonexpansive and V is

nonexpansive, then T is averaged.
(iv) The composite of finite many averaged mappings is averaged. That is, if each of the

mappings {Ti}ni= is averaged, then so is the composite T ◦ T ◦ · · · ◦ TN . In
particular, if T is α-averaged and T is α-averaged, where α,α ∈ (, ), then the
composite T ◦ T is α-averaged, where α = α + α – αα.

(v) If the mappings {Ti}ni= are averaged and have a common fixed point, then

n⋂
i=

Fix(Ti) = Fix(T · · ·TN ).

Lemma . (see [], demiclosedness principle) Let C be a nonempty closed and con-
vex subset of a real Hilbert space H and let S : C → C be a nonexpansive mapping with
Fix(S) �= ∅. If the sequence {xn} ⊆ C converges weakly to x and the sequence {(I – S)xn} con-
verges strongly to y, then (I – S)x = y; in particular, if y = , then x ∈ Fix(S).

Lemma . (see []) Let the sequences {an} and {un} of real numbers satisfy

an+ ≤ ( + un)an, ∀n≥ ,

where an ≥ , un ≥  and
∑∞

n= un < ∞. Then
() limn→∞ an exists;
() if lim infn→∞ an = , then limn→∞ an = .

The following lemma gives some characterizations and useful properties of the metric
projection PC in a Hilbert space.
For every point x ∈ H , there exists a unique nearest point in C, denoted by PCx, such

that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C, (.)

where PC is called themetric projection of H onto C. We know that PC is a nonexpansive
mapping of H onto C.

Proposition . For given x ∈ H and z ∈ C:
(i) z = PCx if and only if 〈x – z, y – z〉 ≤  for all y ∈ C.
(ii) z = PCx if and only if ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖ for all y ∈ C.
(iii) For all y ∈H , 〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖.

Lemma . (see []) Let H be a real Hilbert space. Then the following equations hold:
(i) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈H ;
(ii) ‖tx + ( – t)y‖ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖ for all t ∈ [, ] and x, y ∈H .

Let K be a nonempty closed convex subset of a real Hilbert space H and let F : K → H
be a monotone mapping. The variational inequality problem (VIP) is to find x ∈ K such

http://www.journalofinequalitiesandapplications.com/content/2013/1/322
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that

〈Fx, y – x〉 ≥ , ∀y ∈ K .

The solution set of the VIP is denoted by VIP(K ,F). It is well known that

x ∈VI(K ,F) ⇔ x = PK (x – λFx), ∀λ > .

A set-valuedmapping T :H → H is calledmonotone if for all x, y ∈H , f ∈ Tx and g ∈ Ty
imply

〈x – y, f – g〉 ≥ .

A monotone mapping T : H → H is called maximal if its graph G(T) is not properly
contained in the graph of any other monotone mapping. It is known that a monotone
mapping T is maximal if and only if for (x, f ) ∈ H ×H , 〈x – y, f – g〉 ≥  for every (y, g) ∈
G(T) implies f ∈ Tx. Let F : K → H be a monotone and k-Lipschitz continuous mapping
and let NKv be the normal cone to K at v ∈ K , that is,

NKv =
{
w ∈H : 〈v – u,w〉 ≥ ,∀u ∈ K

}
.

Define

Tv =

⎧⎨
⎩
Fv +NKv if v ∈ K ,

∅ if v /∈ K .

Then T is maximal monotone and  ∈ Tv if and only if v ∈ VI(K ,F); see [] for more
details.
We can use fixed point algorithms to solve the SFP on the basis of the following obser-

vation.
Let λ >  and assume that x∗ ∈ �. Then Ax∗ ∈ Q, which implies that (I –PQ)Ax∗ = , and

thus λA∗(I–PQ)Ax∗ = .Hence, we have the fixed point equation (I–λA∗(I–PQ)A)x∗ = x∗.
Requiring that x∗ ∈ C, we consider the fixed point equation

PC(I – λ∇f )x∗ = PC
(
I – λA∗(I – PQ)A

)
x∗ = x∗. (.)

It is proved in [, Proposition .] that the solutions of fixed point equation (.) are exactly
the solutions of the SFP; namely, for given x∗ ∈H, x∗ solves the SFP if and only if x∗ solves
fixed point equation (.).

Proposition . (see []) Given x∗ ∈ H, the following statements are equivalent.
(i) x∗ solves the SFP;
(ii) x∗ solves fixed point equation (.);
(iii) x∗ solves the variational inequality problem (VIP) of finding x∗ ∈ C such that

〈∇f
(
x∗),x – x∗〉 ≥ , ∀x ∈ C, (.)

where ∇f = A∗(I – PQ)A and A∗ is the adjoint of A.

http://www.journalofinequalitiesandapplications.com/content/2013/1/322
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Proof (i) ⇔ (ii). See the proof in [, Proposition .].
(ii) ⇔ (iii). Observe that

PC
(
I – λA∗(I – PQ)A

)
x∗ = x∗ ⇔ 〈(

I – λA∗(I – PQ)A
)
x∗ – x∗,x – x∗〉 ≤ , ∀x ∈ C

⇔ –λ
〈
A∗(I – PQ)Ax∗,x – x∗〉 ≤ , ∀x ∈ C

⇔ 〈∇f
(
x∗),x – x∗〉 ≥ , ∀x ∈ C,

where ∇f = A∗(I – PQ)A. �

Remark . It is clear from Proposition . that

� := Fix
(
PC(I – λ∇f )

)
=VI(C,∇f )

for any λ > , where Fix(PC(I –λ∇f )) andVI(C,∇f ) denote the set of fixed points of PC(I –
λ∇f ) and the solution set of VIP.

3 Main result
Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H
and let T : C → C be a uniformly L-Lipschitzian and asymptotically quasi-nonexpansive
mappings with Fix(T)∩ � �= ∅ and {kn} ⊂ [,∞) for all n ∈ N such that

∑∞
n=(kn – ) < ∞.

Let {xn} and {yn} be the sequences in C generated by the following algorithm:

⎧⎪⎪⎨
⎪⎪⎩
x = x ∈ C chosen arbitrarily,

yn = PC(I – λn∇fαn )xn,

xn+ = βnxn + ( – βn)Tnyn, ∀n≥ ,

(.)

where ∇fαn = ∇f +αnI = A∗(I –PQ)A+αnI , and three sequences {αn}, {λn}, and {βn} satisfy
the conditions:

(i)
∑∞

n= αn < ∞,
(ii) {λn} ⊂ [a,b] for some a,b ∈ (, 

‖A‖ ) and
∑∞

n= |λn+ – λn| < ∞,
(iii) {βn} ⊂ [c,d] for some c,d ∈ (, ).

Then the sequences {xn} and {yn} converge weakly to an element x̂ ∈ Fix(T)∩ �.

Proof We first show that PC(I – λ∇fα) is ζ -averaged for each λn ∈ (, 
α+‖A‖ ), where

ζ =
 + λ(α + ‖A‖)


.

Indeed, it is easy to see that ∇f = A∗(I – PQ)A is 
‖A‖ -ism, that is,

〈∇f (x) –∇f (y),x – y
〉 ≥ 

‖A‖
∥∥∇f (x) –∇f (y)

∥∥.

Observe that

(
α + ‖A‖)〈∇fα(x) –∇fα(y),x – y

〉
=

(
α + ‖A‖)[α‖x – y‖ + 〈∇f (x) –∇f (y),x – y

〉]

http://www.journalofinequalitiesandapplications.com/content/2013/1/322
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= α‖x – y‖ + α
〈∇f (x) –∇f (y),x – y

〉
+ α‖A‖‖x – y‖ + ‖A‖〈∇f (x) –∇f (y),x – y

〉
≥ α‖x – y‖ + α

〈∇f (x) –∇f (y),x – y
〉
+

∥∥∇f (x) –∇f (y)
∥∥

=
∥∥α(x – y) +∇f (x) –∇f (y)

∥∥

=
∥∥∇f (x) –∇f (y)

∥∥.

Hence, it follows that ∇fα = αI +A∗(I –PQ)A is 
α+‖A‖ -ism. Thus, λ∇fα is 

λ(α+‖A‖) -ism. By

Proposition .(iii) the composite (I – λ∇fα) is λ(α+‖A‖)
 -averaged. Therefore, noting that

PC is 
 -averaged and utilizing Proposition .(iv), we know that for each λ ∈ (, 

α+‖A‖ ),
PC(I – λ∇fα) is ζ -averaged with

ζ =


+

λ(α + ‖A‖)


–



· λ(α + ‖A‖)


=
 + λ(α + ‖A‖)


∈ (, ).

This shows that PC(I – λ∇fα) is nonexpansive. Furthermore, for {λn} ∈ [a,b] with a,b ∈
(, 

‖A‖ ), utilizing the fact that limn→∞ 
αn+‖A‖ =


‖A‖ , we may assume that

 < a≤ λn ≤ b <


‖A‖ , ∀n≥ .

Consequently, it follows that for each integer n≥ , PC(I – λn∇fαn ) is ζn-averaged with

ζn =


+

λn(αn + ‖A‖)


–



· λn(αn + ‖A‖)


=
 + λn(αn + ‖A‖)


∈ (, ).

This immediately implies that PC(I – λn∇fαn ) is nonexpansive for all n≥ .
We divide the remainder of the proof into several steps.
Step . We prove that {xn} is bounded. Indeed, we take a fixed p ∈ Fix(T)∩� arbitrarily.

Then we get PC(I – λn∇f )p = p for λn ∈ (, 
‖A‖ ). Since PC and (I – λn∇fαn ) are nonexpan-

sive mappings, then we have

‖yn – p‖ =
∥∥PC(I – λn∇fαn )xn – PC(I – λn∇f )p

∥∥
≤ ∥∥PC(I – λn∇fαn )xn – PC(I – λn∇fαn )p

∥∥
+

∥∥PC(I – λn∇fαn )p – PC(I – λn∇f )p
∥∥

≤ ‖xn – p‖ + ∥∥(I – λn∇fαn )p – (I – λn∇f )p
∥∥

= ‖xn – p‖ + ‖λn∇fp – λn∇fαnp‖
= ‖xn – p‖ + λn‖∇fp –∇fαnp‖
= ‖xn – p‖ + λn‖∇fp –∇fp – αnp‖
≤ ‖xn – p‖ + αnλn‖p‖. (.)

Observe that

‖xn+ – p‖ =
∥∥βnxn + ( – βn)Tnyn – p

∥∥
≤ βn‖xn – p‖ + ( – βn)

∥∥Tnyn – p
∥∥

http://www.journalofinequalitiesandapplications.com/content/2013/1/322
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≤ βn‖xn – p‖ + ( – βn)kn‖yn – p‖
≤ βn‖xn – p‖ + ( – βn)kn

(‖xn – p‖ + λnαn‖p‖
)

= βn‖xn – p‖ + ( – βn)kn‖xn – p‖ + ( – βn)knαnλn‖p‖
=

(
 + (kn – )( – βn)

)‖xn – p‖ + ( – βn)knαnλn‖p‖. (.)

Since
∑∞

n=(kn – ) < ∞, according to Lemma . and (i), (ii) and (.), we obtain that

lim
n→∞‖xn – p‖ exists for each p ∈ Fix(T)∩ �. (.)

This implies that {xn} is bounded and {yn} is also bounded.
It follows that

∥∥Tnxn – p
∥∥ ≤ kn‖xn – p‖.

Hence {Tnxn – p} is bounded.
Step . We prove that

lim
n→∞‖yn – Tyn‖ = .

In fact, it follows from (.) that

‖yn – p‖ =
(‖xn – p‖ + αnλn‖p‖

)
≤ ‖xn – p‖ + αnλn‖p‖‖xn – p‖ + α

nλ

n‖p‖

= ‖xn – p‖ + αn
(
λn‖p‖‖xn – p‖ + αnλ


n‖p‖

)
= ‖xn – p‖ + αnM,

whereM = supn≥{λn‖p‖‖xn – p‖ + αnλ

n‖p‖} < ∞.

It follows that

∥∥Tnyn – p
∥∥ ≤ (

kn‖yn – p‖)
= kn‖yn – p‖

= kn‖xn – p‖ + αnknM.

Also, observe that

‖xn+ – p‖ =
∥∥βnxn + ( – βn)Tnyn – p

∥∥

≤ βn‖xn – p‖ + ( – βn)
∥∥Tnyn – p

∥∥ – βn( – βn)
∥∥Tnyn – xn

∥∥

≤ βn‖xn – p‖ + ( – βn)
(
kn‖xn – p‖ + αnknM

)
– βn( – βn)

∥∥Tnyn – xn
∥∥

= βn‖xn – p‖ + ( – βn)kn‖xn – p‖ + ( – βn)knαnM

– βn( – βn)
∥∥Tnyn – xn

∥∥

=
(
kn – βn

(
kn – 

))‖xn – p‖ + ( – βn)knαnM – βn( – βn)
∥∥Tnyn – xn

∥∥.

http://www.journalofinequalitiesandapplications.com/content/2013/1/322
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Hence, we have

βn( – βn)
∥∥Tnyn – xn

∥∥

≤ (
kn – βn

(
kn – 

))‖xn – p‖ – ‖xn+ – p‖ + ( – βn)knαnM. (.)

By the conditions (i), (iii) and limn→∞ kn = , we can conclude that

lim
n→∞

∥∥Tnyn – xn
∥∥ = . (.)

Consider that since yn = PC(xn – λn∇fαnxn) and by Proposition .(ii), we have

‖yn – p‖ ≤ ∥∥xn – λn∇fαn (xn) – p
∥∥ –

∥∥xn – λn∇fαn (xn) – yn
∥∥

= ‖xn – p‖ – ‖xn – yn‖ + λn
〈∇fαn (xn),p – yn

〉
= ‖xn – p‖ – ‖xn – yn‖ + λn

(〈∇fαn (xn) –∇fαn (p),p – xn
〉

+
〈∇fαn (p),p – xn

〉
+

〈∇fαn (xn),xn – yn
〉)

≤ ‖xn – p‖ – ‖xn – yn‖ + λn
(〈∇fαn (p),p – xn

〉
+

〈∇fαn (xn),xn – yn
〉)

= ‖xn – p‖ – ‖xn – yn‖ + λn
[〈
(αnI +∇f )p,p – xn

〉
+

〈∇fαn (xn),xn – yn
〉]

= ‖xn – p‖ – ‖xn – yn‖ + λn
[
αn〈p,p – xn〉 +

〈∇fαn (xn),xn – yn
〉]

= ‖xn – p‖ – ‖xn – yn‖ + λnαn〈p,p – xn〉 + λn
〈∇fαn (xn),xn – yn

〉
= ‖xn – p‖ – ‖xn – yn‖ + λnαn〈p,p – xn〉 – λn

〈∇fαn (xn), yn – xn
〉

= ‖xn – p‖ – ‖xn – yn‖ + λnαn〈p,p – xn〉 – λn
〈∇fαn (xn), yn – p + p – xn

〉
= ‖xn – p‖ – ‖xn – yn‖ + λnαn〈p,p – xn〉 – λn

〈∇fαn (xn), yn – p
〉

– λn
〈∇fαn (xn),p – xn

〉
≤ ‖xn – p‖ – ‖xn – yn‖ + λnαn‖p‖‖p – xn‖ – λn

∥∥∇fαn (xn)
∥∥‖yn – p‖

– λn
∥∥∇fαn (xn)

∥∥‖p – xn‖. (.)

Consequently, utilizing Lemma .(ii) and (.), we conclude that

‖xn+ – p‖ =
∥∥βnxn + ( – βn)Tnyn – p

∥∥

=
∥∥βnxn + ( – βn)Tnyn –

(
βn + ( – βn)

)
p
∥∥

=
∥∥βnxn + ( – βn)Tnyn – βnp – ( – βn)p

∥∥

=
∥∥βn(xn – p) + ( – βn)

(
Tnyn – p

)∥∥

= βn‖xn – p‖ + ( – βn)
∥∥Tnyn – p

∥∥ – βn( – βn
)∥∥xn – Tnyn

∥∥

≤ βn‖xn – p‖ + ( – βn)kn‖yn – p‖ – βn( – βn)
∥∥xn – Tnyn

∥∥

= βn‖xn – p‖ + ( – βn)kn
[‖xn – p‖ – ‖xn – yn‖ + λnαn‖p‖‖p – xn‖

– λn
∥∥∇fαn (xn)

∥∥‖yn – p‖ – λn
∥∥∇fαn (xn)

∥∥‖p – xn‖
]

– βn( – βn)
∥∥xn – Tnyn

∥∥
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=
(
βn + ( – βn)kn

)‖xn – p‖ – ( – βn)kn‖xn – yn‖

+ ( – βn)knλnαn‖p‖‖p – xn‖
– ( – βn)knλn

∥∥∇fαn (xn)
∥∥‖yn – p‖

– ( – βn)knλn
∥∥∇fαn (xn)

∥∥‖p – xn‖
– βn( – βn)

∥∥xn – Tnyn
∥∥

=
(
kn – βn

(
kn – 

))‖xn – p‖ – ( – βn)kn‖xn – yn‖

+ ( – βn)knλnαn‖p‖‖p – xn‖
– ( – βn)knλn

∥∥∇fαn (xn)
∥∥‖yn – p‖

– ( – βn)knλn
∥∥∇fαn (xn)

∥∥‖p – xn‖
– βn( – βn)

∥∥xn – Tnyn
∥∥.

It follows that we get

( – βn)kn‖xn – yn‖ – ( – βn)knλnαn‖p‖‖p – xn‖
+ ( – βn)knλn

∥∥∇fαn (xn)
∥∥(‖yn – p‖ + ‖p – xn‖

)
+ βn( – βn)

∥∥xn – Tnyn
∥∥

≤ (
kn – βn

(
kn – 

))‖xn – p‖ – ‖xn+ – p‖. (.)

So, taking n→ ∞, since limn→ kn = , (i)-(iii), (.) and (.), we can conclude that

lim
n→

‖yn – xn‖ = . (.)

Consider

‖xn+ – xn‖ =
∥∥βnxn – xn + ( – βn)Tnyn

∥∥
=

∥∥–( – βn)xn + ( – βn)Tnyn
∥∥

≤ ( – βn)
∥∥Tnyn – xn

∥∥. (.)

From (.) we obtain

‖xn+ – xn‖ ≤ ( – βn)
∥∥Tnyn – xn

∥∥ →  (as n→ ∞). (.)

Observe that

∥∥Tnyn – yn
∥∥ =

∥∥Tnyn – xn + xn – yn
∥∥

≤ ∥∥Tnyn – xn
∥∥ + ‖xn – yn‖.

So, from (.) and (.), we get

lim
n→∞

∥∥Tnyn – yn
∥∥ = . (.)
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We compute that

‖yn+ – yn‖ =
∥∥PC(xn+ – λn+∇fαn+xn+) – PC(xn – λn∇fαnxn)

∥∥
=

∥∥PC(I – λn+∇fαn+ )xn+ – PC(I – λn∇fαn )xn
∥∥

≤ ∥∥PC(I – λn+∇fαn+ )xn+ – PC(I – λn+∇fαn+ )xn
∥∥

+
∥∥PC(I – λn+∇fαn+ )xn – PC(I – λn∇fαn )xn

∥∥
≤ ‖xn+ – xn‖ +

∥∥(I – λn+∇fαn+ )xn – (I – λn∇fαn )xn
∥∥

= ‖xn+ – xn‖ +
∥∥xn – λn+∇fαn+xn – (xn – λn∇fαnxn)

∥∥
= ‖xn+ – xn‖ + ‖λn∇fαnxn – λn+∇fαn+xn‖
= ‖xn+ – xn‖ +

∥∥λn(∇f + αn)xn – λn+(∇f + αn+)xn
∥∥

= ‖xn+ – xn‖ +
∥∥λn∇fxn + λnαnxn – (λn+∇fxn + λn+αn+xn)

∥∥
= ‖xn+ – xn‖ +

∥∥(λn – λn+)∇fxn + λnαnxn – λn+αn+xn
∥∥

= ‖xn+ – xn‖ +
∥∥(λn – λn+)∇fxn + λnαnxn – λnαn+xn

+ λnαn+xn – λn+αn+xn
∥∥

= ‖xn+ – xn‖ +
∥∥(λn – λn+)∇fxn + λn(αn – αn+)xn

+ (λn – λn+)αn+xn
∥∥

≤ ‖xn+ – xn‖ + |λn – λn+|‖∇fxn‖ + λn|αn – αn+|‖xn‖
+ αn+|λn – λn+|‖xn‖.

From the conditions (i), (ii) and (.), we obtain that

‖yn+ – yn‖ →  (as n→ ∞). (.)

Since T is uniformly L-Lipschitzian continuous, then

‖yn – Tyn‖ ≤ ‖yn – yn+‖ +
∥∥yn+ – Tn+yn+

∥∥ +
∥∥Tn+yn+ – Tn+yn

∥∥ +
∥∥Tn+yn – Tyn

∥∥
≤ ‖yn – yn+‖ +

∥∥yn+ – Tn+yn+
∥∥ + L‖yn – yn+‖ + L

∥∥Tnyn – yn
∥∥.

Since limn→∞ ‖yn+ – yn‖ =  and limn→∞ ‖yn – Tnyn‖ = , it follows that

lim
n→∞‖yn – Tyn‖ = . (.)

Step . We show that x̂ ∈ Fix(T)∩ �.
Since ∇f = A∗(I – PQ)A is Lipschitz continuous, from (.), we have

lim
n→∞

∥∥∇f (xn) –∇f (yn)
∥∥ = .

Since {xn} is bounded, there is a subsequence {xni} of {xn} that converges weakly to some x̂.
First, we show that x̂ ∈ �. Since ‖xn – yn‖ → , it is known that yni ⇀ x̂.
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Put

Sw =

⎧⎨
⎩

∇fw +NCw if w ∈ C,

∅ if w /∈ C,

where NCw = {z ∈H : 〈w –u, z〉 ≥ ,∀u ∈ C}. Then S is maximal monotone and  ∈ Sw

if and only if w ∈VI(C,∇f ); (see []) for more details. Let (w, z) ∈G(S), we have

z ∈ Sw = ∇fw +NCw,

and hence

z –∇fw ∈NCw.

So, we have

〈w – u, z –∇fw〉 ≥ , ∀u ∈ C.

On the other hand, from

yn = PC(I – λn∇fαn )xn and w ∈ C,

we have

〈xn – λn∇fαnxn – yn, yn –w〉 ≥ ,

and
〈
w – yn,

yn – xn
λn

+∇fαnxn
〉
≥ .

Therefore, from z –∇fw ∈ NCw and yni ∈ C, it follows that

〈w – yni , z〉 ≥ 〈w – yni ,∇fw〉

≥ 〈w – yni ,∇fw〉 –
〈
w – yni ,

yni – xni
λni

+∇fαni xni

〉

= 〈w – yni ,∇fw〉 –
〈
w – yni ,

yni – xni
λni

+∇fxni

〉

– αni〈w – yni ,xni〉
= 〈w – yni ,∇fw –∇fyni〉 + 〈w – yni ,∇fyni –∇fxni〉

–
〈
w – yni ,

yni – xni
λni

〉
– αni〈w – yni ,xni〉

≥ 〈w – yni ,∇fyni –∇fxni〉 –
〈
w – yni ,

yni – xni
λni

〉

– αni〈w – yni ,xni〉.
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Hence, we obtain

〈w – x̂, z〉 ≥  as i→ ∞.

Since S is maximal monotone, we have x̂ ∈ S–, and hence x̂ ∈VI(C,∇f ). Thus, it is clear
that x̂ ∈ �.
Next, we show that x̂ ∈ Fix(T). Indeed, since yni ⇀ x̂ and ‖yni –Tyni‖ →  by (.) and

Lemma ., we get x̂ ∈ Fix(T). Therefore, we have x̂ ∈ Fix(T)∩ �.
Let {xnj} be another subsequence of {xn} such that {xnj} ⇀ x̄. Then x̄ ∈ Fix(T) ∩ �. Let

us show that x̂ = x̄. Assume that x̂ �= x̄. From the Opial condition [], we have

lim
n→∞‖xn – x̂‖ = lim

ni→∞ inf‖xni – x̂‖
< lim

ni→∞ inf‖xni – x̄‖
= lim

n→∞‖xn – x̄‖
= lim

nj→∞ inf‖xnj – x̄‖

< lim
nj→∞ inf‖xnj – x̂‖

= lim
n→∞‖xn – x̂‖.

This is a contradiction. Thus, we have x̂ = x̄. This implies

xn ⇀ x̂ ∈ Fix(T)∩ �.

Further, from ‖xn – yn‖ → , it follows that yn ⇀ x̂. This shows that both sequences {xn}
and {yn} converge weakly to x̂ ∈ Fix(T)∩ �. This completes the proof. �

Utilizing Theorem ., we have the following new results in the setting of real Hilbert
spaces.
Take Tn ≡ I(identity mappings) in Theorem .. Therefore the conclusion follows.

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Suppose that � �= ∅. Let {xn} be a sequence in C generated by the following algorithm:

⎧⎨
⎩
x = x ∈ C chosen arbitrarily,

xn+ = βnxn + ( – βn)PC(I – λn∇fαn )xn, ∀n≥ ,
(.)

where ∇fαn = ∇f + αnI = A∗(I – PQ)A + αnI , and the sequences {αn}, {λn}, and {βn} satisfy
the conditions:

(i)
∑∞

n= αn < ∞,
(ii) {λn} ⊂ [a,b] for some a,b ∈ (, 

‖A‖ ) and
∑∞

n= |λn+ – λn| < ∞,
(iii) {βn} ⊂ [c,d] for some c,d ∈ (, ).

Then the sequence {xn} converges weakly to an element x̂ ∈ �.

Take PC ≡ I(identity mappings) in Theorem .. Therefore the conclusion follows.
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Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H
and let T : C → C be a uniformly L-Lipschitzian and quasi-nonexpansive mapping with
Fix(T) �= ∅ and {kn} ⊂ [,∞) for all n ∈ N such that

∑∞
n=(kn – ) < ∞. Let {xn} be the

sequence in C generated by the following algorithm:

⎧⎨
⎩
x = x ∈ C chosen arbitrarily,

xn+ = βnxn + ( – βn)Tnxn, ∀n≥ ,
(.)

and let the sequence {βn} satisfy the condition {βn} ⊂ [c,d] for some c,d ∈ (, ). Then the
sequence {xn} converges weakly to an element x̂ ∈ Fix(T).

Remark . Theorem . improves and extends [, Theorem .] in the following as-
pects:
(a) The iterative algorithm [, Theorem .] is extended for developing our relaxed

extragradient algorithm with regularization in Theorem ..
(b) The technique of proving weak convergence in Theorem . is different from that in

[, Theorem .] because of our technique to use asymptotically
quasi-nonexpansive mappings and the property of maximal monotone mappings.

(c) The problem of finding a common element of Fix(T)∩ � for asymptotically
quasi-nonexpansive mappings which is more general than that for nonexpansive
mappings and the problem of finding a solution of the SFP in [, Theorem .].
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