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Abstract
This paper introduces the notion of exceptional family of elements for generalized
variational inequalities in Hilbert spaces. The set-valued mapping is assumed to be
upper semi-continuous compact with nonempty closed convex values. Based on
topological degree for set-valued mappings, instead of the technique of continuous
selection, an alternative theorem is obtained which says that the generalized
variational inequalities have either a solution or an exceptional family of elements. In
addition, an existing result of a solution for generalized variational inequalities is
obtained.
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1 Introduction
Variational inequalities play an important role in nonlinear analysis. They have many im-
portant applications in different aspects such as mechanics, game theory, economics, op-
timization theory and nonlinear programming. How to solve the variational inequality
problems has already become a basic problem, and then several classical methods have
appeared. Several years ago, the introduction of an exceptional family of elements (ex-
ceptional family or EFE for short) opened a new research direction in the solvability of
variational inequality and complementarity problems. In the last four decades, many re-
searchers have focused their efforts on finding the existence conditions for variational
inequality and complementarity problems by virtue of the exceptional family of elements.
In , Smith [] introduced the exceptional sequence of elements to study the solu-

tion conditions for a single-valued complementarity problem in R
n. The notion of excep-

tional family of elements was first used to study the solutions of variational inequality
problems. From then on, the notion of exceptional family for complementarity problems
has been generalized to set-valued mappings, or to more general spaces such as Hilbert
spaces, Banach spaces, reflexive Banach spaces by several researchers. Some existence the-
orems for complementarity problems can be found in [–]. Zhao [] proposed the notion
of exceptional family of elements to solve a variational inequality problem. On the other
hand, many researchers generalized this notion for variational inequality problems with
a single-valued mapping defined in R

n to Hilbert spaces or normed spaces. For more de-
tails, see [–]. Applying their notions, they obtained some sufficient conditions for the
solvability of variational inequality problems. Han et al. [] established some sufficient
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conditions for the solvability of variational inequality problems with single-valued con-
tinuous mappings in R

n and proved that those conditions were also necessary if the map-
ping was pseudomonotone. They also established some sufficient conditions for a quasi-
monotone variational inequality problem. Bianchi et al. [] proved that the generalized
complementarity problem either has a solution or an exceptional family of elements in
Hilbert spaces. Under very weak assumptions on the mapping, Bianchi et al. [] proposed
a new exceptional family of elements for generalized variational inequality problems in
normed spaces again. Their concept generalized those concepts proposed in [] and [].
They also obtained some existence theorems provided that the mapping was quasimono-
tone and upper sign-continuous. Very recently, Zhi et al. [] introduced a new concept
of exceptional family of elements for finite-dimensional generalized variational inequality
problems and obtained an alternative theorem which says that the generalized variational
inequality has either a solution or an exceptional family of elements. They also presented
a sufficient condition to ensure the existence of a solution to the generalized variational
inequality, and the set-valued mapping was assumed to be upper semi-continuous with
nonempty compact convex values.
Inspired and motivated by the above research work, we apply the notion of exceptional

family of elements for set-valued mappings in Isac sense [] to a generalized variational
inequality (in short, GVI(F ,K)) in Hilbert spaces. We prove that if the mapping is up-
per semi-continuous compact with nonempty closed convex values, then the generalized
variational inequality has either a solution or an exceptional family of elements. And then,
we obtain an existence result of a solution for GVI(F ,K). Both above results are based on
the topological degree theory for set-valued mappings, instead of the technique of con-
tinuous selection. For more details on topological degree, see []. Very recently, Jie et al.
[] studied the existence of solutions to a system of generalized order complementarity
problems via an order exceptional family of elements. They proved that under certain con-
ditions, the system of generalized order complementarity problems has either a solution
or an order exceptional family of elements.
Our results extend the main results in [, , ] and the references therein.
The organization of this paper is as follows. In the next section, we present some defini-

tions and lemmas.We obtain an alternative theorem and an existence theorem of solution
for GVI(F ,K) in Section .

2 Preliminaries
For later discussion, some definitions and lemmas are introduced.
Let H be an infinite dimensional Hilbert space whose inner product and norm are de-

noted by 〈·, ·〉 and ‖ · ‖, respectively. Let K be an unbounded closed convex subset of H
(without loss of generality, we assume that x =  ∈ K from now on), let � ⊂H be an open
bounded set such that K ∩ � �= ∅. Let F : K → H be a set-valued mapping. F is said to be
upper semi-continuous at x ∈ K if for any open set V ⊂ H such that F(x)⊂ V , there exists
an open neighborhood U of x such that F(y) ⊂ V for all y ∈ U ∩ K ; if F is upper semi-
continuous at every x ∈ K , we say F is upper semi-continuous on K . F is said to be lower
semi-continuous at x ∈ K if for any open set V ⊂ H such that F(x) ∩ V �= ∅, there exists
an open neighborhood U of x such that F(y) ∩ V �= ∅ for all y ∈ U ∩ K . F is lower semi-
continuous at every x ∈ K , we say F is lower semi-continuous on K . If F is a single-valued
mapping, both the definitions above provide the ordinary definition of continuity.
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Definition . A mapping F : D(F) → H is said to be compact if F maps every bounded
subset of D(F) to a relatively compact subset in H . A set M ⊂ H is said to be relatively
compact ifM is compact in H .

We recall that the generalized variational inequality problem (GVI(F ,K)) is the follow-
ing: find x ∈ K and x∗ ∈ F(x) such that

〈
x∗, y – x

〉 ≥ , ∀y ∈ K . ()

When K is a cone, we get a particular case, which is the generalized complementarity
problem (GCP(F ,K)), as follows: find x ∈ K and x∗ ∈ F(x) such that

x∗ ∈ K∗ and
〈
x,x∗〉 = , ()

where K∗ = {x∗ ∈ H : 〈x∗,x〉 ≥ ,∀x ∈ K}. If F is single-valued mapping, then GVI(F ,K)
reduces to VI(F ,K). In addition, if K is a cone, then VI(F ,K) reduces to CP(F ,K).

Definition . Given a nonempty closed convex set K in a Hilbert space H and a set-
valued mapping F : K → H , a family {xr}r> ⊂ K is an exceptional family of elements (in
short, EFE) for F(x) = x – T(x) with respect to K if

(i) ‖xr‖ → ∞ as r → ∞;
(ii) for any r > , there exist μr >  and x∗

r ∈ T(xr) such that μrxr ∈ K and
x∗
r –μrxr ∈NK (μrxr).

Here, NK (xr) is the normal cone to K at the point xr ; i.e.,

NK (xr) =

⎧⎨
⎩{x∗ ∈ K∗ : 〈x∗,x – xr〉 ≤ ,∀x ∈ K} if xr ∈ K ,

∅ if xr ∈ H\K .

It is easy to see that λNK (xr) =NK (xr) for any λ ≥ , it means that NK (xr) is a cone.
Now we propose another definition of an exceptional family of elements. Throughout

this paper, we use the following definition of an exceptional family of elements.

Definition . {xr}r> ⊂ K is an exceptional family of elements of GVI(F ,K) if
(i) ‖xr‖ → ∞ as r → ∞;
(ii) for any r > , there exist tr ∈ (, ) and x∗

r ∈ F(xr) such that

–trxr – ( – tr)x∗
r ∈NK (xr). ()

The following lemma formulates an important property of the exceptional family of el-
ements.

Lemma . Assume that {xr}r> ⊂ K is an exceptional family of elements of GVI(F ,K) for
any xr �= , then 〈x∗

r ,xr〉 < , x∗
r ∈ F(xr).

Proof By the definition of NK (x) and (), we have

〈
–trxr – ( – tr)x∗

r , y – xr
〉 ≤ , ∀y ∈ K , r > ,x∗

r ∈ F(xr),
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i.e.,

〈
( – tr)x∗

r , y – xr
〉 ≥ –tr〈xr , y – xr〉, ∀y ∈ K , r > ,x∗

r ∈ F(xr), ()

in which we take y =  and it follows that 〈x∗
r ,xr〉 ≤ – tr

–tr ‖xr‖ < , ∀xr �= , x∗
r ∈ F(xr). The

proof is complete. �

Remark . From the proof of Lemma ., we see that () means that xr is a solution
of the generalized variational inequality. Hence, the existence of exceptional family is a
problem as difficult as the existence of GVI(F ,K). However, we discuss not the existence
of an exceptional family, but the nonexistence of the exceptional family which implies the
existence of the solution of GVI(F ,K).

Remark . Assume that {xr}r> ⊂ K is an exceptional family defined by Definition .,
then there exist μr >  and x∗

r ∈ F(xr) such that μrxr ∈ K and

xr – x∗
r –μrxr ∈NK (μrxr),

i.e.,

–
(
 –μ–

r
)
xr –μ–

r x∗
r ∈ μ–

r NK (μrxr). ()

If NK (μrxr) = μrNK (xr), then () can be rewritten as

–trxr – ( – tr)x∗
r ∈ NK (xr), ()

where tr =  – μ–
r . Obviously, () means {xr}r> ⊂ K is an exceptional family defined by

Definition ..

From the discussion above, we have the following lemma.

Lemma . Assume that μK ⊂ K and NK (μx) = μNK (x) for any μ > , x ∈ K . Then Defi-
nition . is equivalent to Definition ..

Remark. Obviously, ifH =R
n andK =R

n
+, thenK satisfies the condition of Lemma..

Now we consider a particular case: H =R
n and K is defined as follows:

K =
{
x ∈R

n : gi(x)≤ , i = , . . . , I;hi(x) = , j = , . . . , J
}
, ()

where gi :Rn → R is a continuously differentiable convex function and hj is an affine func-
tion. Furthermore, we assume that K satisfies the Slater condition, i.e., there is a point
x ∈ K such that gi(x) < , i = , . . . , I . Zhao et al. [] defined an exceptional family of
elements as follows.

Definition . {xr}r> ⊂ K which is defined by () is an exceptional family of elements for
GVI(F ,K) if
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(i) ‖xr‖ → ∞ as r → ∞;
(ii) for any r > , there exist αr > , λr ∈R

I
+ and μr ∈ R

J , x∗
r ∈ F(xr) such that

x∗
r ∈ –αrxr –




[ I∑
i=

λri∇gi(xr) +
J∑
j=

μrj∇hj(x)

]
,

I∑
i=

λri gi(xr) = . ()

It is well known that for K defined by (), we have that

NK (x) =

{
z =

I∑
=

λi∇gi(x) +
J∑
j=

μr∇hj(xr) : λ ∈R
I
+ and μ ∈R

J ,
I∑
i=

λigi(x) = 

}
. ()

It follows from () and (),

–αrxr – x∗
r ∈ NK (xr), x∗

r ∈ F(xr). ()

With α = (αr + ) and tr = α–αr , we have that tr ∈ (, ) and  – tr = α–. Hence, ()
can be written as

–trxr – ( – tr)x∗
r ∈ α–NK (xr) =NK (xr).

Therefore, we have the following result.

Lemma . If K is defined by (), Definition . is equivalent to Definition ..

Lemma . The projection operator PK is characterized by the following result:

〈
PK (x) – x, y – PK (x)

〉 ≥ , ∀y ∈ K .

Lemma . x is a solution of GVI(F ,K) if and only if x is the solution of the nonlinear
equation

 ∈ x – PK
(
x – F(x)

)
.

Next, we recall the definition of topological degree for set-valued mappings (denoted by
deg(·)) in [].

Definition . Let E be a real Banach space, � ⊂ E be an open bounded set and T : � →
E be an upper semi-continuous mapping with closed convex values. Suppose that T� is
relatively compact and x /∈ Tx for all x ∈ ∂�. Then we define

deg(I – T ,�, ) = lim
ε→

deg(I – fε ,�, ),

where fε is defined as in Lemma .. in [].

The following property follows from Definition . which is Theorem .. in [].

Lemma . The degree defined by Definition . has the following properties:
() (Normality) deg(I,�, ) =  if and only if  ∈ �;
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() (Solvability) If deg(I – T ,�, ) �= , then x ∈ Tx has a solution in �;
() (Homotopy) Let Tt : [, ]× � → E be an upper semi-continuous compact mapping

with closed convex values and x /∈ Ttx for all (t,x) ∈ [, ]× ∂�. Then
deg(I – Tt ,�, ) does not depend on t ∈ [, ];

() (Additivity) If �, � are two disjoint open subsets of � and
 /∈ (I – T)(� –� ∪ �), then

deg(I – T ,�, ) = deg(I – T ,�, ) + deg(I – T ,�, ).

3 Exceptional family of elements
The following conclusions are useful in the proof of the main result of our work, which
generalizes the corresponding result of [] from a finite dimensional space Rn to an infi-
nite dimensional Hilbert space H .
Throughout this section, let H be a Hilbert space and let K be a closed convex subset

of H .

Theorem . For any set-valued mapping F : K → H such that F(x) = x – G(x), where
G : H → H is an upper semi-continuous compact mapping with nonempty closed convex
values, then there exists a solution of GVI(F ,K) or an exceptional family of elements for
GVI(F ,K).

Proof For any r > , we denote

Br =
{
x ∈H|‖x‖ < r

}
, Sr = ∂Br =

{
x ∈H|‖x‖ = r

}
,

which is such that Br ∩K �= ∅ and Sr ∩K �= ∅. By Lemma ., we know that the solvability
of GVI(F ,K) is equivalent to the equation  ∈ x – PK (x – F(x)) is solvable in K . Let T(x) =
x – PK (x – F(x)) and

h(x, t) = tx + ( – t)T(x). ()

From the definition of T , we have

h(x, t) = tx + ( – t)
[
x – PK

(
x – F(x)

)]
= x – ( – t)PK

(
x – F(x)

)
= x –H(x, t), ()

where H(x, t) = ( – t)PK (x – F(x)) = ( – t)PK (G(x)), h(x, ) = T(x) = x – PK (x – F(x)),
h(x, ) = x. Since G is upper semi-continuous compact with nonempty closed convex
values, PK is continuous, thus H is upper semi-continuous compact with nonempty
closed convex values. It also shows that h : Br × [, ] → H is upper semi-continuous
compact with nonempty closed convex values. Since  ∈ Br , by () of Lemma ., thus
deg(I,Br , ) = .
By using the topological degree for set-valued mappings and applying Theorem ..

in [], we have the following two cases:
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() there exists an r >  such that

 /∈ h(x, t), i.e.,x /∈ H(x, t),∀x ∈ Sr ,∀t ∈ [, ].

By () of Lemma ., deg(h(x, ),Br, ) = deg(h(x, ),Br , ), i.e., deg(T ,Br , ) = deg(I,Br , ).
It follows that deg(T ,Br , ) = deg(I,Br , ) = . Thus,  ∈ x–PK (x–F(x)). From Lemma .,
then GVI(F ,K) has a solution in Br .
() For each r > , there exist a point xr ∈ Sr and a scalar tr ∈ [, ] such that

 ∈ h(xr , tr), i.e.,xr ∈H(xr , tr). ()

Wenow claim that tr �=  and tr �= . In fact, if tr = , then from ()we have that  ∈ h(xr , ),
that is, xr ∈ H(xr , ), i.e.,  ∈ T(xr), then  ∈ xr – PK (xr – F(xr)). From Lemma ., then
GVI(F ,K) has a solution. If tr = , then from () and the definition of T(x) and h(x, t), it
follows that  ∈ h(xr , ), i.e., xr = , which is impossible since xr ∈ Sr . So, we can say that
GVI(F ,K) has a solution, or for any r > , there exist a point xr ∈ Sr and tr ∈ (, ) such
that  ∈ h(xr ,xr). From (), we deduce that

 ∈ xr – ( – tr)PK
(
xr – F(xr)

)
or


 – tr

xr ∈ PK
(
xr – F(xr)

)
,

i.e.,

xr ∈ PK
(
( – tr)

(
xr – F(xr)

))
. ()

By Lemma ., we deduce that there exists x∗
r ∈ F(xr) such that

〈
xr – ( – tr)

(
xr – x∗

r
)
, y – xr

〉 ≥ , ∀y ∈ K . ()

It follows that

xr – ( – tr)
(
xr – x∗

r
) ∈ –NK (xr),

i.e.,

trxr + ( – tr)x∗
r ∈ –NK (xr).

It follows that

–trxr – ( – tr)x∗
r ∈ NK (xr).

Since for each r >  there exists a point xr ∈ Sr , from (), xr ∈ PK (( – tr)(xr – F(xr))), we
obtain that xr ∈ K . On the other hand, xr ∈ Sr , it follows that ‖xr‖ = r, and then ‖xr‖ → ∞
as r → ∞. Therefore, we know that {xr}r> is an exceptional family of GVI(F ,K). This
completes the proof. �
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Remark . As an application of exceptional family of elements for set-valued mappings
in Isac sense, in Theorem ., we establish the alternative theorem of the existence of a
solution for GVI(F ,K) based on the topological degree for set-valued mappings, instead
of the Leray Schauder type alternative and the technique of continuous selection. As a
consequence, the method used in Theorem . is quite different from that in [] and [].
When F is quasimonotone and upper sign-continuous with nonempty w∗-compact and
convex values, and K is a closed convex cone in a Hilbert space, the result is presented
in []. When H = R

n, F is upper semi-continuous set-valued with nonempty compact
convex values, the result is presented in [].WhenK is a closed convex cone, Theorem.
reduces to Theorem . in [].

From Theorem ., we have the following result.

Theorem . For any set-valued mapping F : K → H such that F(x) = x – G(x), where
G : H → H is an upper semi-continuous compact mapping with nonempty closed convex
values, if there does not exist an exceptional family of elements for GVI(F ,K), then there
exists a solution of GVI(F ,K).

Corollary . Let K be a nonempty closed convex set of H . If a mapping F : K →H is such
that F(x) = x – G(x), where G : H → H is a continuous compact mapping with nonempty
closed convex values, then there exists a solution of VI(F ,K) or an exceptional family of
elements for (VI(F ,K)).

Corollary . Let H be a Hilbert space, let K be a closed convex cone of H . For any set-
valued mapping F : K → H such that F(x) = x–G(x),where G :H → H is an upper semi-
continuous compact mapping with nonempty closed convex values, there exists a solution
of GCP(F ,K) or an exceptional family of elements for GCP(F ,K).

Corollary . Let H be a Hilbert space, let K be a closed convex cone of H . If a mapping
F : K → H is such that F(x) = x – G(x), where G : H → H is a continuous compact map-
ping with nonempty closed convex values, then there exists a solution of CP(F ,K) or an
exceptional family of elements for CP(F ,K).
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