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Abstract
The difference sequence spaces c0(�), c(�) and �∞(�) were introduced by Kizmaz
(Can. Math. Bull. 24:169-176, 1981). In this paper, we introduce the Cesáro summable
difference sequence space C1(�) which strictly includes the spaces c0(�) and c(�)
but overlaps with �∞(�). It is shown that the newly introduced space C1(�) turns out
to be an inseparable BK space which does not possess any of the following: AK
property, monotonicity, normality and perfectness. The Köthe-Toeplitz duals of C1(�)
are computed and as an application, the matrix classes (C1(�),�∞), (C1(�), c;P) and
(C1(�), c0) are also characterized.
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1 Notations and definitions
By s we shall denote the linear space of all complex sequences overC (the field of complex
numbers). �∞, c and c denote the spaces of all bounded, convergent and null sequences
x = (xk) with complex terms, respectively, normed by ‖x‖∞ = supk |xk|.
Throughout this paper, unless otherwise specified, we write

∑
k for

∑∞
k= and limn for

limn→∞.
The definitions given below may be conveniently found in [–].
A complete metric linear space is called a Frèchet space. Let X be a linear subspace of s

such that X is a Frèchet space with continuous coordinate projections. Then we say that
X is an FK space. If the metric of an FK space is given by a complete norm, then we say
that X is a BK space.
We say that an FK space X has AK, or has the AK property, if (ek), the sequence of unit

vectors, is a Schauder basis for X.
A sequence space X is called
(i) normal (or solid) if y = (yk) ∈ X whenever |yk| ≤ |xk|, k ≥ , for some x = (xk) ∈ X ,
(ii) monotone if it contains the canonical preimages of all its stepspaces,
(iii) sequence algebra if xy = (xkyk) ∈ X whenever x = (xk), y = (yk) ∈ X ,
(iv) convergence free when, if x = (xk) is in X and if yk =  whenever xk = , then

y = (yk) is in X .
The idea of dual sequence spaces was introduced by Köthe and Toeplitz [] whose main

results concerned α-duals; the α-dual of X ⊂ s being defined as

Xα =
{
a = (ak) ∈ s :

∑
k

|akxk| < ∞ for all x = (xk) ∈ X
}
.
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In the same paper [], they also introduced another kind of dual, namely, the β-dual (see
[] also, where it is called the g-dual by Chillingworth) defined as

Xβ =
{
a = (ak) ∈ s :

∑
k

akxk converges for all x = (xk) ∈ X
}
.

Obviously, φ ⊂ Xα ⊂ Xβ , where φ is the well-known sequence space of finitely non-zero
scalar sequences. Also, if X ⊂ Y , then Y η ⊂ Xη for η = α,β . For any sequence space X, we
denote (Xδ)η by Xδη , where δ,η = α or β . It is clear that X ⊂ Xηη , where η = α or β .
For a sequence space X, if X = Xαα then X is called a Köthe space or a perfect sequence

space.
A sequence space x = (xk) of complex numbers is said to be (C, ) summable (or Cesàro

summable of order ) to � ∈ C if limk σk = �, where σk = 
k
∑k

i= xi. By C we shall denote
the linear space of all (C, ) summable sequences of complex numbers over C, i.e.,

C =

{
x = (xk) ∈ s :

(

k

k∑
i=

xi

)
∈ c

}
.

It is easy to see that C is a BK space normed by

‖x‖ = sup
k


k

∣∣∣∣∣
k∑
i=

xi

∣∣∣∣∣, x = (xk) ∈ C.

The notion of difference sequence spacewas introduced byKizmaz [] in  as follows:

X(�) =
{
x = (xk) ∈ s : (�xk) ∈ X

}
for X = �∞, c, c; where �xk = xk – xk+ for all k ∈ N (the set of natural numbers). For a
detailed account of difference sequence spaces, one may refer to [–] where many more
references can be found.

2 Motivation and introduction
During the last  years, a large amount of work has been carried out bymanymathemati-
cians regarding various generalizations of difference sequence spaces of Kizmaz. Keeping
aside some exceptions (see, for instance, [, ]), in most of these works, the underlying
spaces have remained the same, i.e., �∞, c and c. In the present work, we take the oppor-
tunity to introduce a difference sequence space with underlying space as C.
We observe that
(i) C � c(�) as ((–)k) ∈ C but ((–)k) /∈ c(�),
(ii) c(�)� C as (k) ∈ c(�) but (k) /∈ C, and
(iii) c ⊂ c(�)∩C.

Thus the sequence spaces C and c(�) overlap but do not contain each other. Similarly, C

and �∞ also overlap without containing each other as is clear from the fact that C � �∞,
�∞ � C and c ⊂ C ∩ �∞. Note that the sequence ((–)k–

√
k) is (C, ) summable but not

bounded, whereas the sequence x = (xk) given by x = , x =  and

xk =

⎧⎨
⎩, if i– < k ≤ (i–) (i = , , . . .);

, otherwise
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is bounded but not (C, ) summable. This has motivated the authors to look for a new
sequence space which properly includes the spaces C, c(�) and �∞.
Wenow introduce a sequence spaceC(�), Cesàro summable difference sequence space,

as follows:

C(�) =
{
x = (xk) ∈ s : (�xk) ∈ C

}
.

The overall picture regarding inclusions among the already existing spaces �∞, c, c, C,
�∞(�), c(�), c(�) and the newly introduced space C(�) is as shown below:

C ⊂ C(�)
∪ ∪

c ⊂ c ⊂ �∞
∩ ∩ ∩

c(�) ⊂ c(�) ⊂ �∞(�)
∩

C(�)

In this paper we show thatC(�) strictly includes the spaces c(�) and c(�) but overlaps
with �∞(�). It is shown that the newly introduced space C(�) is an inseparable BK space
which does not possess any of the following: AK property, monotonicity, normality and
perfectness. The Köthe-Toeplitz duals of C(�) are computed, and as an application, the
matrix classes (C(�),�∞), (C(�), c;P) and (C(�), c) are also characterized.

3 Inclusion theorems and topological properties of C1(�)
We begin with elementary inclusion theorems justifying that C(�) is much wider than
�∞, C and c(�).

Theorem . �∞ ⊂ C(�), the inclusion being strict.

Proof Let x = (xk) ∈ �∞. Then there existsM >  such that |x –xk+| ≤ M for all k ≥ , and
so 

k
∑k

i= �xi →  as k → ∞. For strict inclusion, observe that (k) ∈ C(�) but (k) /∈ �∞.
�

Theorem . C ⊂ C(�), the inclusion being strict.

Proof For x = (xk) ∈ C, we have limk

k xk = , and so 

k
∑k

i= �xi →  as k → ∞. Inclusion
is strict in view of the example cited in Theorem .. �

Theorem . c(�)⊂ C(�), the inclusion being strict.

Proof Inclusion is obvious since c ⊂ C. To see that the inclusion is strict, consider the
sequence x = (xk) = (, , , , , , . . .). �

Remark . Let X and Y be sequence spaces. If X � Y , then X(�)� Y (�).

http://www.journalofinequalitiesandapplications.com/content/2013/1/315
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Proof SinceX � Y , there is a sequence x = (xk) ∈ X such that x /∈ Y . Consider the sequence
y = (yk) = (,–x, –x – x, –x – x – x, . . .). Then y ∈ X(�) but y /∈ Y (�). �

Remark . We have already observed that C � �∞ and �∞ � C, so by Remark ., it
follows that neither C(�) ⊆ �∞(�) nor �∞(�) ⊆ C(�). Also, we have c(�) ⊂ C(�) ∩
�∞(�). In view of this and Theorem ., we can say that C(�) strictly includes c(�) and
hence c(�) but overlaps with �∞(�).

We now study the linear topological structure of C(�).

Theorem . C(�) is a BK space normed by

‖x‖� = |x| + sup
k


k

∣∣∣∣∣
k∑
i=

�xi

∣∣∣∣∣, x = (xk) ∈ C(�).

The proof is a routine verification by using ‘standard’ techniques and hence is omitted.

Theorem . C(�) is not separable.

Proof Let A be the set of all sequences xa,xb, . . . , where

xa = (k + a)k = ( + a,  + a, . . .), xb = (k + b)k = ( + b,  + b, . . .), . . .

with |a – b| > 
 ; a,b ∈R. Clearly, A⊂ C(�) and A is uncountable. Let D be any dense set

in C(�).
Define a map f : A→D as follows:
Let xa ∈ A⊂ C(�). As D is dense in C(�), so there exists some zxa ∈D such that ‖xa –

zxa‖� < 
 .

We set f (xa) = zxa .
For xa,xb ∈ A, we have

‖xa – xb‖� =
∣∣( + a) – ( + b)

∣∣ + sup
k


k

∣∣∣∣∣
k∑
i=

�(xa – xb)i

∣∣∣∣∣
≥ |a – b|
>



.

Now

‖zxa – xb‖� ≥ ‖xa – xb‖� – ‖xa – zxa‖�

>


–


=



and alreadywe have ‖xb–zxb‖� < 
 , therefore zxa 
= zxb . Hence f is one-to-one. As f (A) ⊂D

so D is uncountable. Thus, C(�) has no countable dense set. �

Corollary . C(�) does not have a Schauder basis.
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The result follows from the fact that if a normed space has a Schauder basis, then it is
separable.

Corollary . C(�) does not have the AK property.

Theorem . C(�) is not normal (solid) and hence neither perfect nor convergence free.

Proof Taking x = (xk) = (k – ) and y = (yk) = ((–)k(k – )), we see that x ∈ C(�) but y /∈
C(�) although |yk| ≤ |xk|, k ≥  and so C(�) is not normal. It is well known [] that every
perfect space, and also every convergence free space, is normal and consequently C(�) is
neither perfect nor convergence free. �

Theorem . C(�) is neither monotone nor a sequence algebra.

Proof Take x = (xk) = (k) ∈ C(�). Consider y = (yk) where

yk =

⎧⎨
⎩xk , if k is odd;

, if k is even

i.e., y = (, , , , , . . .). Then (�yk) = (, –, ,–, , . . .) and so (�yk) /∈ C, i.e., (yk) /∈ C(�)
and hence C(�) is not monotone. To see that C(�) is not a sequence algebra, take x =
y = (k) and observe that x, y ∈ C(�) but xy = (k) /∈ C(�). �

4 Köthe-Toeplitz duals of C1(�)
In this section we compute the Köthe-Toeplitz duals of C(�) and show that C(�) is not
perfect.

Theorem .

[
C(�)

]α =
{
a = (ak) :

∑
k

k|ak| < ∞
}
=D.

Proof Let a = (ak) ∈ D. For any x = (xk) ∈ C(�), we have ( k
∑k

i= �xi) ∈ c, i.e., ( k (x –
xk+)) ∈ c and so there exists someM >  such that |xk| ≤ M(k – ) + x for k ≥  and hence
supk k–|xk| < ∞, which implies that

∑
k

|akxk| =
∑
k

(
k|ak|

)(
k–|xk|

)
<∞.

Thus, a = (ak) ∈ [C(�)]α .
Conversely, let a = (ak) ∈ [C(�)]α . Then

∑
k |akxk| < ∞ for all x = (xk) ∈ C(�). Taking

xk = k for all k ≥ , we have x = (xk) ∈ C(�) whence
∑

k k|ak| < ∞. �

Remark . It is well known [, ] that [c(�)]α = [c(�)]α = [�∞(�)]α = D, so we con-
clude that [c(�)]α = [c(�)]α = [�∞(�)]α = [C(�)]α , i.e., the α-duals of c(�), c(�), �∞(�)
and C(�) coincide.
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Theorem .

[
C(�)

]αα =
{
a = (ak) : sup

k
k–|ak| < ∞

}
=D.

Proof Taking m =  and X = c in [, Theorem .], we have [c(�)]αα = {a = (ak) :
supk k–|ak| < ∞} and the result follows in view of Remark .. �

Corollary . C(�) is not perfect.

The proof follows at once when we observe that the sequence ((–)k(k – )) ∈ [C(�)]αα

but does not belong to C(�).

Theorem .

[
C(�)

]β =
{
a = (ak) :

∑
k

k|ak| <∞
}
=D.

Proof Let a = (ak) ∈D and x = (xk) ∈ C(�). Then ( k
∑k

i= �xi) ∈ c. For n ∈N, we have

n∑
k=

akxk = –
n∑

k=

(k – )ak

(


k – 

k–∑
i=

�xi

)
+ x

n∑
k=

ak .

Obviously, (ak) and ((k – )ak) ∈ �. We define y = (yk) by y =  and yk = 
k–

∑k–
i= �xi for

all k ≥ . Then y ∈ c and since cα = �, the series
∑∞

k=(k – )ak( 
k–

∑k–
i= �xi) converges

absolutely.
Conversely, if a = (ak) ∈ [C(�)]β , then

∑
k akxk converges for all x = (xk) ∈ C(�).

In particular, taking xk =  for all k, we have
∑

k ak converges and so
∑∞

k=(k – )×
ak( 

k–
∑k–

i= �xi) converges for all x = (xk) ∈ C(�). Since x = (xk) ∈ C(�) if and only if
y = ( k

∑k
i= �xi) ∈ c, we have ((k – )ak) ∈ cα . �

Corollary . [c(�)]α = [c(�)]α = [�∞(�)]α = [C(�)]α = [C(�)]β .

5 Matrix maps
Finally, we characterize certain matrix classes. For any complex infinite matrix A = (ank),
we shall writeAn = (ank)k∈N for the sequence in the nth row ofA. If X, Y are any two sets of
sequences, we denote by (X,Y ) the class of all those infinite matrices A = (ank) such that
the series An(x) =

∑
k ankxk converges for all x = (xk) ∈ X (n = , , . . .) and the sequence

Ax = (Anx)n∈N is in Y for all x ∈ X.
The following theorem is well known.

Theorem . [, p.] Let X and Y be BK spaces and suppose that A = (ank) is an infinite
matrix such that (

∑
k ankxk)n∈N ∈ Y for each x ∈ X, i.e., A ∈ (X,Y ), then A : X → Y is a

bounded linear operator.

Theorem . A ∈ (C(�),�∞) if and only if supn
∑∞

k=(k – )|ank| <∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/315
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Proof Suppose that supn
∑∞

k=(k –)|ank| <∞ and x = (xk) ∈ C(�). Proceeding as in The-
orem ., we have

∑∞
k= |ank ∑k–

i= �xi| < ∞.
Form ∈N,

m∑
k=

ankxk = –
m∑
k=

ank

( k–∑
i=

�xi

)
+ x

m∑
k=

ank ,

which yields the absolute convergence of
∑

k ankxk for each n ∈N, and finally we have

∣∣∣∣∑
k

ankxk
∣∣∣∣ ≤

(
sup
k≥

∣∣∣∣∣ 
k – 

k–∑
i=

�xi

∣∣∣∣∣
)(

sup
n

∞∑
k=

(k – )|ank|
)
+ x sup

n

∑
k

(k – )|ank|

for all n ∈N.
Conversely, by Theorem ., we have∣∣∣∣∑

k

ankxk
∣∣∣∣ = ∣∣An(x)

∣∣ ≤ sup
n

∣∣An(x)
∣∣ = ‖Ax‖∞ ≤ ‖A‖‖x‖� (.)

for each n ∈ N and x = (xk) ∈ C(�).
Choose any n ∈N and any r ∈N and define

xk =

⎧⎨
⎩(k – ) sgnank , if  < k ≤ r;

, otherwise.

Then x = (xk) ∈ c⊂ C(�) with ‖x‖� = . Inserting this value of x = (xk) in (.) , we have

r∑
k=

(k – )|ank| ≤ ‖A‖. (.)

Letting r → ∞ and noting that (.) holds for every n ∈N, we are through. �

Remark. If x = (xk) ∈ C(�), then there exists some � ∈C such that limk

k
∑k

i= �xi = �.
We shall call � the C(�) limit of the sequence (xk) and by (C(�), c;P) we shall denote that
subset of (C(�), c) for which C(�) limits are preserved.

Theorem . A ∈ (C(�), c;P) if and only if
(i) supn

∑∞
k=(k – )|ank| < ∞,

(ii) limn
∑

k(k – )ank = –,
(iii) limn ank =  for each k,
(iv) limn

∑
k ank = .

Proof Let the conditions (i)-(iv) hold and suppose that x = (xk) ∈ C(�) with limk

k ×∑k

i= �xi = �. It is implicit in (i) that, for each n ∈ N,
∑

k(k – )|ank| converges. It follows
that

∑∞
k=(k – )ank( 

k–
∑k–

i= �xi) converges, whence

∑
k

ankxk = –
∞∑
k=

(k – )ank

(


k – 

k–∑
i=

�xi – �

)
– �

∑
k

(k – )ank + x
∑
k

ank . (.)

Let εk = 
k
∑k

i= �xi – �, H = supk |εk| andM = supn
∑

k(k – )|ank|.

http://www.journalofinequalitiesandapplications.com/content/2013/1/315
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Then, for any p ∈N, we have

∣∣∣∣∣
∞∑
k=

(k – )ank

(


k – 

k–∑
i=

�xi – �

)∣∣∣∣∣ ≤ H
p∑

k=

(k – )|ank| +M sup
k>p

|εk–|

and hence

lim sup
n

∣∣∣∣∣
∞∑
k=

(k – )ank

(


k – 

k–∑
i=

�xi – �

)∣∣∣∣∣ ≤ M sup
k>p

|εk–|.

Letting p → ∞, we have
∑∞

k=(k – )ank( 
k–

∑k–
i= �xi – �) →  as n → ∞. Making use of

this and also of (ii) and (iv) in (.), we get the result.
Conversely, let A ∈ (C(�), c;P). Then (

∑
k ankxk)n∈N ∈ c for all x = (xk) ∈ C(�). By the

same argument as in Theorem ., we have supn
∑∞

k=(k – )|ank| < ∞. Taking x = ek ∈
C(�), we get (ank)n∈N ∈ c with limn ank =  for each k. Also, for x = (k – ), we have
(
∑

k(k – )ank)n∈N ∈ c with limn
∑

k(k – )ank = –, and finally x = (, , , . . .) ∈ C(�) yields
limn

∑
k ank = . �

Theorem . A ∈ (C(�), c) if and only if
(i) supn

∑∞
k=(k – )|ank| < ∞,

(ii) limn
∑

k(k – )ank = ,
(iii) limn ank =  for each k,
(iv) limn

∑
k ank = .
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