RESEARCH

Open Access

Cesàro summable difference sequence space

Vinod K Bhardwaj^{1*} and Sandeep Gupta²

*Correspondence: vinodk_bhj@rediffmail.com 1^DDepartment of Mathematics, Kurukshetra University, Kurukshetra, 136119, India Full list of author information is available at the end of the article

Abstract

The difference sequence spaces $c_0(\Delta)$, $c(\Delta)$ and $\ell_{\infty}(\Delta)$ were introduced by Kizmaz (Can. Math. Bull. 24:169-176, 1981). In this paper, we introduce the Cesáro summable difference sequence space $C_1(\Delta)$ which strictly includes the spaces $c_0(\Delta)$ and $c(\Delta)$ but overlaps with $\ell_{\infty}(\Delta)$. It is shown that the newly introduced space $C_1(\Delta)$ turns out to be an inseparable BK space which does not possess any of the following: AK property, monotonicity, normality and perfectness. The Köthe-Toeplitz duals of $C_1(\Delta)$ are computed and as an application, the matrix classes $(C_1(\Delta), \ell_{\infty}), (C_1(\Delta), c; P)$ and $(C_1(\Delta), c_0)$ are also characterized.

MSC: 40C05; 40A05; 46A45

Keywords: sequence space; BK space; Schauder basis; Köthe-Toeplitz duals; matrix map

1 Notations and definitions

By *s* we shall denote the linear space of all complex sequences over \mathbb{C} (the field of complex numbers). ℓ_{∞} , *c* and c_0 denote the spaces of all bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by $||x||_{\infty} = \sup_k |x_k|$.

Throughout this paper, unless otherwise specified, we write $\sum_{k=1}^{\infty}$ for $\sum_{k=1}^{\infty}$ and $\lim_{n \to \infty}$.

The definitions given below may be conveniently found in [1-3].

A complete metric linear space is called a Frèchet space. Let X be a linear subspace of s such that X is a Frèchet space with continuous coordinate projections. Then we say that X is an FK space. If the metric of an FK space is given by a complete norm, then we say that X is a BK space.

We say that an FK space *X* has AK, or has the AK property, if (e_k) , the sequence of unit vectors, is a Schauder basis for *X*.

A sequence space X is called

- (i) normal (or solid) if $y = (y_k) \in X$ whenever $|y_k| \le |x_k|$, $k \ge 1$, for some $x = (x_k) \in X$,
- (ii) monotone if it contains the canonical preimages of all its stepspaces,
- (iii) sequence algebra if $xy = (x_k y_k) \in X$ whenever $x = (x_k), y = (y_k) \in X$,
- (iv) convergence free when, if $x = (x_k)$ is in X and if $y_k = 0$ whenever $x_k = 0$, then $y = (y_k)$ is in X.

The idea of dual sequence spaces was introduced by Köthe and Toeplitz [4] whose main results concerned α -duals; the α -dual of $X \subset s$ being defined as

$$X^{\alpha} = \left\{ a = (a_k) \in s : \sum_k |a_k x_k| < \infty \text{ for all } x = (x_k) \in X \right\}.$$

© 2013 Bhardwaj and Gupta; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the same paper [4], they also introduced another kind of dual, namely, the β -dual (see [5] also, where it is called the *g*-dual by Chillingworth) defined as

$$X^{\beta} = \left\{ a = (a_k) \in s : \sum_k a_k x_k \text{ converges for all } x = (x_k) \in X \right\}.$$

Obviously, $\phi \subset X^{\alpha} \subset X^{\beta}$, where ϕ is the well-known sequence space of finitely non-zero scalar sequences. Also, if $X \subset Y$, then $Y^{\eta} \subset X^{\eta}$ for $\eta = \alpha, \beta$. For any sequence space X, we denote $(X^{\delta})^{\eta}$ by $X^{\delta\eta}$, where $\delta, \eta = \alpha$ or β . It is clear that $X \subset X^{\eta\eta}$, where $\eta = \alpha$ or β .

For a sequence space X, if $X = X^{\alpha\alpha}$ then X is called a Köthe space or a perfect sequence space.

A sequence space $x = (x_k)$ of complex numbers is said to be (C, 1) summable (or Cesàro summable of order 1) to $\ell \in \mathbb{C}$ if $\lim_k \sigma_k = \ell$, where $\sigma_k = \frac{1}{k} \sum_{i=1}^k x_i$. By C_1 we shall denote the linear space of all (C, 1) summable sequences of complex numbers over \mathbb{C} , *i.e.*,

$$C_1 = \left\{ x = (x_k) \in s : \left(\frac{1}{k} \sum_{i=1}^k x_i \right) \in c \right\}.$$

It is easy to see that C_1 is a BK space normed by

$$||x|| = \sup_{k} \frac{1}{k} \left| \sum_{i=1}^{k} x_i \right|, \quad x = (x_k) \in C_1.$$

The notion of difference sequence space was introduced by Kizmaz [6] in 1981 as follows:

$$X(\Delta) = \left\{ x = (x_k) \in s : (\Delta x_k) \in X \right\}$$

for $X = \ell_{\infty}, c, c_0$; where $\Delta x_k = x_k - x_{k+1}$ for all $k \in \mathbb{N}$ (the set of natural numbers). For a detailed account of difference sequence spaces, one may refer to [7–18] where many more references can be found.

2 Motivation and introduction

During the last 32 years, a large amount of work has been carried out by many mathematicians regarding various generalizations of difference sequence spaces of Kizmaz. Keeping aside some exceptions (see, for instance, [7, 8]), in most of these works, the underlying spaces have remained the same, *i.e.*, ℓ_{∞} , *c* and c_0 . In the present work, we take the opportunity to introduce a difference sequence space with underlying space as C_1 .

We observe that

- (i) $C_1 \not\subseteq c(\Delta)$ as $((-1)^k) \in C_1$ but $((-1)^k) \notin c(\Delta)$,
- (ii) $c(\Delta) \nsubseteq C_1$ as $(k) \in c(\Delta)$ but $(k) \notin C_1$, and
- (iii) $c \subset c(\Delta) \cap C_1$.

Thus the sequence spaces C_1 and $c(\Delta)$ overlap but do not contain each other. Similarly, C_1 and ℓ_{∞} also overlap without containing each other as is clear from the fact that $C_1 \not\subseteq \ell_{\infty}$, $\ell_{\infty} \not\subseteq C_1$ and $c \subset C_1 \cap \ell_{\infty}$. Note that the sequence $((-1)^{k-1}\sqrt{k})$ is (C, 1) summable but not bounded, whereas the sequence $x = (x_k)$ given by $x_1 = 1$, $x_2 = 0$ and

$$x_k = \begin{cases} 1, & \text{if } 2^{i-1} < k \le 3(2^{i-2}) \ (i = 2, 3, \ldots); \\ 0, & \text{otherwise} \end{cases}$$

is bounded but not (*C*, 1) summable. This has motivated the authors to look for a new sequence space which properly includes the spaces C_1 , $c(\Delta)$ and ℓ_{∞} .

We now introduce a sequence space $C_1(\Delta)$, Cesàro summable difference sequence space, as follows:

$$C_1(\Delta) = \{ x = (x_k) \in s : (\Delta x_k) \in C_1 \}.$$

The overall picture regarding inclusions among the already existing spaces ℓ_{∞} , c, c_0 , C_1 , $\ell_{\infty}(\Delta)$, $c(\Delta)$, $c_0(\Delta)$ and the newly introduced space $C_1(\Delta)$ is as shown below:

In this paper we show that $C_1(\Delta)$ strictly includes the spaces $c_0(\Delta)$ and $c(\Delta)$ but overlaps with $\ell_{\infty}(\Delta)$. It is shown that the newly introduced space $C_1(\Delta)$ is an inseparable BK space which does not possess any of the following: AK property, monotonicity, normality and perfectness. The Köthe-Toeplitz duals of $C_1(\Delta)$ are computed, and as an application, the matrix classes $(C_1(\Delta), \ell_{\infty}), (C_1(\Delta), c; P)$ and $(C_1(\Delta), c_0)$ are also characterized.

3 Inclusion theorems and topological properties of $C_1(\Delta)$

We begin with elementary inclusion theorems justifying that $C_1(\Delta)$ is much wider than ℓ_{∞} , C_1 and $c(\Delta)$.

Theorem 3.1 $\ell_{\infty} \subset C_1(\Delta)$, the inclusion being strict.

Proof Let $x = (x_k) \in \ell_{\infty}$. Then there exists M > 0 such that $|x_1 - x_{k+1}| \le M$ for all $k \ge 1$, and so $\frac{1}{k} \sum_{i=1}^{k} \Delta x_i \to 0$ as $k \to \infty$. For strict inclusion, observe that $(k) \in C_1(\Delta)$ but $(k) \notin \ell_{\infty}$.

Theorem 3.2 $C_1 \subset C_1(\Delta)$, the inclusion being strict.

Proof For $x = (x_k) \in C_1$, we have $\lim_k \frac{1}{k}x_k = 0$, and so $\frac{1}{k}\sum_{i=1}^k \Delta x_i \to 0$ as $k \to \infty$. Inclusion is strict in view of the example cited in Theorem 3.1.

Theorem 3.3 $c(\Delta) \subset C_1(\Delta)$, the inclusion being strict.

Proof Inclusion is obvious since $c \subset C_1$. To see that the inclusion is strict, consider the sequence $x = (x_k) = (1, 2, 1, 2, 1, 2, ...)$.

Remark 3.4 Let *X* and *Y* be sequence spaces. If $X \nsubseteq Y$, then $X(\Delta) \nsubseteq Y(\Delta)$.

Proof Since $X \nsubseteq Y$, there is a sequence $x = (x_k) \in X$ such that $x \notin Y$. Consider the sequence $y = (y_k) = (0, -x_1, -x_1 - x_2, -x_1 - x_2 - x_3, ...)$. Then $y \in X(\Delta)$ but $y \notin Y(\Delta)$.

Remark 3.5 We have already observed that $C_1 \nsubseteq \ell_{\infty}$ and $\ell_{\infty} \nsubseteq C_1$, so by Remark 3.4, it follows that neither $C_1(\Delta) \subseteq \ell_{\infty}(\Delta)$ nor $\ell_{\infty}(\Delta) \subseteq C_1(\Delta)$. Also, we have $c(\Delta) \subset C_1(\Delta) \cap \ell_{\infty}(\Delta)$. In view of this and Theorem 3.3, we can say that $C_1(\Delta)$ strictly includes $c(\Delta)$ and hence $c_0(\Delta)$ but overlaps with $\ell_{\infty}(\Delta)$.

We now study the linear topological structure of $C_1(\Delta)$.

Theorem 3.6 $C_1(\Delta)$ *is a BK space normed by*

$$\|x\|_{\Delta} = |x_1| + \sup_k \frac{1}{k} \left| \sum_{i=1}^k \Delta x_i \right|, \quad x = (x_k) \in C_1(\Delta).$$

The proof is a routine verification by using 'standard' techniques and hence is omitted.

Theorem 3.7 $C_1(\Delta)$ is not separable.

Proof Let *A* be the set of all sequences x_a, x_b, \ldots , where

$$x_a = (k+a)_k = (1+a, 2+a, ...),$$
 $x_b = (k+b)_k = (1+b, 2+b, ...),$

with $|a - b| > \frac{1}{2}$; $a, b \in \mathbb{R}$. Clearly, $A \subset C_1(\Delta)$ and A is uncountable. Let D be any dense set in $C_1(\Delta)$.

Define a map $f : A \rightarrow D$ as follows:

Let $x_a \in A \subset C_1(\Delta)$. As *D* is dense in $C_1(\Delta)$, so there exists some $z_{x_a} \in D$ such that $||x_a - z_{x_a}||_{\Delta} < \frac{1}{4}$.

We set $f(x_a) = z_{x_a}$.

For $x_a, x_b \in A$, we have

$$\|x_a - x_b\|_{\Delta} = \left| (1+a) - (1+b) \right| + \sup_k \frac{1}{k} \left| \sum_{i=1}^k \Delta (x_a - x_b)_i \right|$$

$$\geq |a-b|$$

$$> \frac{1}{2}.$$

Now

$$\begin{aligned} \|z_{x_a} - x_b\|_{\Delta} &\ge \|x_a - x_b\|_{\Delta} - \|x_a - z_{x_a}\|_{\Delta} \\ &> \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \end{aligned}$$

and already we have $||x_b - z_{x_b}||_{\Delta} < \frac{1}{4}$, therefore $z_{x_a} \neq z_{x_b}$. Hence f is one-to-one. As $f(A) \subset D$ so D is uncountable. Thus, $C_1(\Delta)$ has no countable dense set.

Corollary 3.8 $C_1(\Delta)$ does not have a Schauder basis.

The result follows from the fact that if a normed space has a Schauder basis, then it is separable.

Corollary 3.9 $C_1(\Delta)$ does not have the AK property.

Theorem 3.10 $C_1(\Delta)$ is not normal (solid) and hence neither perfect nor convergence free.

Proof Taking $x = (x_k) = (k - 1)$ and $y = (y_k) = ((-1)^k (k - 1))$, we see that $x \in C_1(\Delta)$ but $y \notin C_1(\Delta)$ although $|y_k| \le |x_k|$, $k \ge 1$ and so $C_1(\Delta)$ is not normal. It is well known [1] that every perfect space, and also every convergence free space, is normal and consequently $C_1(\Delta)$ is neither perfect nor convergence free.

Theorem 3.11 $C_1(\Delta)$ *is neither monotone nor a sequence algebra.*

Proof Take $x = (x_k) = (k) \in C_1(\Delta)$. Consider $y = (y_k)$ where

$$y_k = \begin{cases} x_k, & \text{if } k \text{ is odd;} \\ 0, & \text{if } k \text{ is even} \end{cases}$$

i.e., y = (1, 0, 3, 0, 5, ...). Then $(\Delta y_k) = (1, -3, 3, -5, 5, ...)$ and so $(\Delta y_k) \notin C_1$, *i.e.*, $(y_k) \notin C_1(\Delta)$ and hence $C_1(\Delta)$ is not monotone. To see that $C_1(\Delta)$ is not a sequence algebra, take x = y = (k) and observe that $x, y \in C_1(\Delta)$ but $xy = (k^2) \notin C_1(\Delta)$.

4 Köthe-Toeplitz duals of $C_1(\Delta)$

In this section we compute the Köthe-Toeplitz duals of $C_1(\Delta)$ and show that $C_1(\Delta)$ is not perfect.

Theorem 4.1

$$\left[C_1(\Delta)\right]^{\alpha} = \left\{a = (a_k) : \sum_k k |a_k| < \infty\right\} = D_1.$$

Proof Let $a = (a_k) \in D_1$. For any $x = (x_k) \in C_1(\Delta)$, we have $(\frac{1}{k} \sum_{i=1}^k \Delta x_i) \in c$, *i.e.*, $(\frac{1}{k}(x_1 - x_{k+1})) \in c$ and so there exists some M > 0 such that $|x_k| \le M(k-1) + x_1$ for $k \ge 1$ and hence $\sup_k k^{-1}|x_k| < \infty$, which implies that

$$\sum_{k} |a_k x_k| = \sum_{k} (k|a_k|) (k^{-1}|x_k|) < \infty.$$

Thus, $a = (a_k) \in [C_1(\Delta)]^{\alpha}$.

Conversely, let $a = (a_k) \in [C_1(\Delta)]^{\alpha}$. Then $\sum_k |a_k x_k| < \infty$ for all $x = (x_k) \in C_1(\Delta)$. Taking $x_k = k$ for all $k \ge 1$, we have $x = (x_k) \in C_1(\Delta)$ whence $\sum_k k |a_k| < \infty$.

Remark 4.2 It is well known [6, 16] that $[c_0(\Delta)]^{\alpha} = [c(\Delta)]^{\alpha} = [\ell_{\infty}(\Delta)]^{\alpha} = D_1$, so we conclude that $[c_0(\Delta)]^{\alpha} = [c(\Delta)]^{\alpha} = [\ell_{\infty}(\Delta)]^{\alpha} = [C_1(\Delta)]^{\alpha}$, *i.e.*, the α -duals of $c_0(\Delta)$, $c(\Delta)$, $\ell_{\infty}(\Delta)$ and $C_1(\Delta)$ coincide.

Theorem 4.3

$$\left[C_1(\Delta)\right]^{\alpha\alpha} = \left\{a = (a_k) : \sup_k k^{-1} |a_k| < \infty\right\} = D_2.$$

Proof Taking m = 1 and X = c in [12, Theorem 2.13], we have $[c(\Delta)]^{\alpha\alpha} = \{a = (a_k) : \sup_k k^{-1} |a_k| < \infty\}$ and the result follows in view of Remark 4.2.

Corollary 4.4 $C_1(\Delta)$ is not perfect.

The proof follows at once when we observe that the sequence $((-1)^k(k-1)) \in [C_1(\Delta)]^{\alpha\alpha}$ but does not belong to $C_1(\Delta)$.

Theorem 4.5

$$\left[C_1(\Delta)\right]^{\beta} = \left\{a = (a_k) : \sum_k k|a_k| < \infty\right\} = D_3.$$

Proof Let $a = (a_k) \in D_3$ and $x = (x_k) \in C_1(\Delta)$. Then $(\frac{1}{k} \sum_{i=1}^k \Delta x_i) \in c$. For $n \in \mathbb{N}$, we have

$$\sum_{k=1}^{n} a_k x_k = -\sum_{k=2}^{n} (k-1) a_k \left(\frac{1}{k-1} \sum_{i=1}^{k-1} \Delta x_i \right) + x_1 \sum_{k=1}^{n} a_k.$$

Obviously, (a_k) and $((k-1)a_k) \in \ell_1$. We define $y = (y_k)$ by $y_1 = 0$ and $y_k = \frac{1}{k-1} \sum_{i=1}^{k-1} \Delta x_i$ for all $k \ge 2$. Then $y \in c$ and since $c^{\alpha} = \ell_1$, the series $\sum_{k=2}^{\infty} (k-1)a_k(\frac{1}{k-1}\sum_{i=1}^{k-1} \Delta x_i)$ converges absolutely.

Conversely, if $a = (a_k) \in [C_1(\Delta)]^{\beta}$, then $\sum_k a_k x_k$ converges for all $x = (x_k) \in C_1(\Delta)$. In particular, taking $x_k = 1$ for all k, we have $\sum_k a_k$ converges and so $\sum_{k=2}^{\infty} (k-1) \times a_k(\frac{1}{k-1}\sum_{i=1}^{k-1}\Delta x_i)$ converges for all $x = (x_k) \in C_1(\Delta)$. Since $x = (x_k) \in C_1(\Delta)$ if and only if $y = (\frac{1}{k}\sum_{i=1}^{k}\Delta x_i) \in c$, we have $((k-1)a_k) \in c^{\alpha}$.

Corollary 4.6 $[c_0(\Delta)]^{\alpha} = [c(\Delta)]^{\alpha} = [\ell_{\infty}(\Delta)]^{\alpha} = [C_1(\Delta)]^{\alpha} = [C_1(\Delta)]^{\beta}.$

5 Matrix maps

Finally, we characterize certain matrix classes. For any complex infinite matrix $A = (a_{nk})$, we shall write $A_n = (a_{nk})_{k \in \mathbb{N}}$ for the sequence in the *n*th row of *A*. If *X*, *Y* are any two sets of sequences, we denote by (X, Y) the class of all those infinite matrices $A = (a_{nk})$ such that the series $A_n(x) = \sum_k a_{nk} x_k$ converges for all $x = (x_k) \in X$ (n = 1, 2, ...) and the sequence $Ax = (A_n x)_{n \in \mathbb{N}}$ is in Y for all $x \in X$.

The following theorem is well known.

Theorem 5.1 [3, p.219] Let X and Y be BK spaces and suppose that $A = (a_{nk})$ is an infinite matrix such that $(\sum_{k} a_{nk}x_k)_{n\in\mathbb{N}} \in Y$ for each $x \in X$, i.e., $A \in (X, Y)$, then $A : X \to Y$ is a bounded linear operator.

Theorem 5.2 $A \in (C_1(\Delta), \ell_\infty)$ if and only if $\sup_n \sum_{k=2}^{\infty} (k-1)|a_{nk}| < \infty$.

Proof Suppose that $\sup_{n} \sum_{k=2}^{\infty} (k-1)|a_{nk}| < \infty$ and $x = (x_k) \in C_1(\Delta)$. Proceeding as in Theorem 4.5, we have $\sum_{k=2}^{\infty} |a_{nk} \sum_{i=1}^{k-1} \Delta x_i| < \infty$.

For $m \in \mathbb{N}$,

$$\sum_{k=1}^{m} a_{nk} x_k = -\sum_{k=1}^{m} a_{nk} \left(\sum_{i=1}^{k-1} \Delta x_i \right) + x_1 \sum_{k=1}^{m} a_{nk},$$

which yields the absolute convergence of $\sum_k a_{nk}x_k$ for each $n \in \mathbb{N}$, and finally we have

$$\left|\sum_{k} a_{nk} x_{k}\right| \leq \left(\sup_{k\geq 2} \left|\frac{1}{k-1}\sum_{i=1}^{k-1} \Delta x_{i}\right|\right) \left(\sup_{n}\sum_{k=2}^{\infty} (k-1)|a_{nk}|\right) + x_{1}\sup_{n}\sum_{k} (k-1)|a_{nk}|$$

for all $n \in \mathbb{N}$.

Conversely, by Theorem 5.1, we have

$$\left|\sum_{k} a_{nk} x_{k}\right| = |A_{n}(x)| \le \sup_{n} |A_{n}(x)| = \|Ax\|_{\infty} \le \|A\| \|x\|_{\Delta}$$
(5.1)

for each $n \in \mathbb{N}$ and $x = (x_k) \in C_1(\Delta)$.

Choose any $n \in \mathbb{N}$ and any $r \in \mathbb{N}$ and define

$$x_k = \begin{cases} (k-1) \operatorname{sgn} a_{nk}, & \text{if } 1 < k \le r; \\ 0, & \text{otherwise.} \end{cases}$$

Then $x = (x_k) \in c \subset C_1(\Delta)$ with $||x||_{\Delta} = 1$. Inserting this value of $x = (x_k)$ in (5.1), we have

$$\sum_{k=2}^{r} (k-1)|a_{nk}| \le ||A||.$$
(5.2)

Letting $r \to \infty$ and noting that (5.2) holds for every $n \in \mathbb{N}$, we are through.

Remark 5.3 If $x = (x_k) \in C_1(\Delta)$, then there exists some $\ell \in \mathbb{C}$ such that $\lim_k \frac{1}{k} \sum_{i=1}^k \Delta x_i = \ell$. We shall call ℓ the $C_1(\Delta)$ limit of the sequence (x_k) and by $(C_1(\Delta), c; P)$ we shall denote that subset of $(C_1(\Delta), c)$ for which $C_1(\Delta)$ limits are preserved.

Theorem 5.4 $A \in (C_1(\Delta), c; P)$ if and only if

- (i) $\sup_{n} \sum_{k=2}^{\infty} (k-1) |a_{nk}| < \infty$,
- (ii) $\lim_{k \to \infty} \sum_{k} (k-1)a_{nk} = -1$,
- (iii) $\lim_{n \to \infty} a_{nk} = 0$ for each k,
- (iv) $\lim_n \sum_k a_{nk} = 0$.

Proof Let the conditions (i)-(iv) hold and suppose that $x = (x_k) \in C_1(\Delta)$ with $\lim_k \frac{1}{k} \times \sum_{i=1}^k \Delta x_i = \ell$. It is implicit in (i) that, for each $n \in \mathbb{N}$, $\sum_k (k-1)|a_{nk}|$ converges. It follows that $\sum_{k=2}^{\infty} (k-1)a_{nk}(\frac{1}{k-1}\sum_{i=1}^{k-1}\Delta x_i)$ converges, whence

$$\sum_{k} a_{nk} x_{k} = -\sum_{k=2}^{\infty} (k-1) a_{nk} \left(\frac{1}{k-1} \sum_{i=1}^{k-1} \Delta x_{i} - \ell \right) - \ell \sum_{k} (k-1) a_{nk} + x_{1} \sum_{k} a_{nk}.$$
 (5.3)

Let $\epsilon_k = \frac{1}{k} \sum_{i=1}^k \Delta x_i - \ell$, $H = \sup_k |\epsilon_k|$ and $M = \sup_n \sum_k (k-1)|a_{nk}|$.

Then, for any $p \in \mathbb{N}$, we have

$$\left|\sum_{k=2}^{\infty} (k-1)a_{nk} \left(\frac{1}{k-1} \sum_{i=1}^{k-1} \Delta x_i - \ell\right)\right| \le H \sum_{k=2}^{p} (k-1)|a_{nk}| + M \sup_{k>p} |\epsilon_{k-1}|$$

and hence

$$\limsup_{n} \left| \sum_{k=2}^{\infty} (k-1) a_{nk} \left(\frac{1}{k-1} \sum_{i=1}^{k-1} \Delta x_i - \ell \right) \right| \le M \sup_{k>p} |\epsilon_{k-1}|.$$

Letting $p \to \infty$, we have $\sum_{k=2}^{\infty} (k-1)a_{nk}(\frac{1}{k-1}\sum_{i=1}^{k-1}\Delta x_i - \ell) \to 0$ as $n \to \infty$. Making use of this and also of (ii) and (iv) in (5.3), we get the result.

Conversely, let $A \in (C_1(\Delta), c; P)$. Then $(\sum_k a_{nk}x_k)_{n\in\mathbb{N}} \in c$ for all $x = (x_k) \in C_1(\Delta)$. By the same argument as in Theorem 5.2, we have $\sup_n \sum_{k=2}^{\infty} (k-1)|a_{nk}| < \infty$. Taking $x = e_k \in C_1(\Delta)$, we get $(a_{nk})_{n\in\mathbb{N}} \in c$ with $\lim_n a_{nk} = 0$ for each k. Also, for x = (k-1), we have $(\sum_k (k-1)a_{nk})_{n\in\mathbb{N}} \in c$ with $\lim_n \sum_k (k-1)a_{nk} = -1$, and finally $x = (1, 1, 1, \ldots) \in C_1(\Delta)$ yields $\lim_n \sum_k a_{nk} = 0$.

Theorem 5.5 $A \in (C_1(\Delta), c_0)$ *if and only if*

- (i) $\sup_{n} \sum_{k=2}^{\infty} (k-1) |a_{nk}| < \infty$,
- (ii) $\lim_{n \to \infty} \sum_{k} (k-1)a_{nk} = 0$,
- (iii) $\lim_{n \to \infty} a_{nk} = 0$ for each k,
- (iv) $\lim_{n \to k} \sum_{k} a_{nk} = 0.$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

VKB and SG contributed equally. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Kurukshetra University, Kurukshetra, 136119, India. ²Department of Mathematics, Arya PG College, Panipat, 132103, India.

Acknowledgements

The authors are grateful to the referee for his/her valuable comments and suggestions, which have improved the presentation of the paper.

Received: 15 March 2013 Accepted: 17 June 2013 Published: 5 July 2013

References

- 1. Cooke, RG: Infinite Matrices and Sequence Spaces. Macmillan & Co., London (1950)
- 2. Kamthan, PK, Gupta, M: Sequence Spaces and Series. Dekker, New York (1981)
- 3. Maddox, IJ: Elements of Functional Analysis, 2nd edn. Cambridge University Press, Cambridge (1988)
- Köthe, G, Toeplitz, O: Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen. J. Reine Angew. Math. 171, 193-226 (1934)
- 5. Chillingworth, HR: Generalized 'dual' sequence spaces. Ned. Akad. Wet. Indag. Math. 20, 307-315 (1958)
- 6. Kizmaz, H: On certain sequence spaces. Can. Math. Bull. 24(2), 169-176 (1981)
- 7. Altay, B, Başar, F: The fine spectrum and the matrix domain of the difference operator Δ on the sequence space ℓ_p . Commun. Math. Anal. **2**(2), 1-11 (2007)
- Başar, F, Altay, B: On the space of sequences of p-bounded variation and related matrix mappings. Ukr. Math. J. 55(1), 136-147 (2003)
- Bektaş, ÇA, Et, M, Çolak, R: Generalized difference sequence spaces and their dual spaces. J. Math. Anal. Appl. 292, 423-432 (2004)
- 10. Bhardwaj, VK, Bala, I: Generalized difference sequence space defined by $|\overline{N}, p_k|$ summability and an Orlicz function in seminormed space. Math. Slovaca **60**(2), 257-264 (2010)
- 11. Çolak, R: On some generalized sequence spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 38, 35-46 (1989)

- 12. Et, M, Çolak, R: On some generalized difference sequence spaces. Soochow J. Math. 21(4), 377-386 (1995)
- 13. Et, M: On some generalized Cesàro difference sequence spaces. Istanb. Üniv. Fen Fak. Mat. Derg. 55/56, 221-229 (1996/97)
- Et, M: Spaces of Cesàro difference sequences of order Δ'-defined by a modulus function in a locally convex space. Taiwan. J. Math. 10(4), 865-879 (2006)
- Et, M: Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences. Appl. Math. Comput. 219(17), 9372-9376 (2013)
- Malkowsky, E, Parashar, SD: Matrix transformations in spaces of bounded and convergent difference sequences of order *m*. Analysis 17(1), 87-97 (1997)
- 17. Malkowsky, E, Mursaleen, M, Suantai, S: The dual spaces of sets of difference sequences of order *m* and matrix transformations. Acta Math. Sin. 23(3), 521-532 (2007)
- Orhan, C: Cesàro difference sequence spaces and related matrix transformations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 32(8) 55-63 (1983)

doi:10.1186/1029-242X-2013-315

Cite this article as: Bhardwaj and Gupta: Cesàro summable difference sequence space. Journal of Inequalities and Applications 2013 2013:315.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com