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1 Introduction and results required

In the usual notation, let C denote the set of complex numbers. For
ajeC (j=1,...,p) and B;eC\Z, (ZB :=ZU{0} = {O,—l,—2,...}),

the generalized hypergeometric function ,F, with p numerator parameters oy, ...,a, and g
denominator parameters f;,..., B, is defined by (see, for example, [1, Chapter 4]; see also
[2, pp.71-72))

oo p

o1;...,0p; j:l(a/)n z"

qu zZ|= E q —‘:qu(Oll,.‘.,Olp; ﬁl,...,ﬁq; Z)
ﬁl, ey ,Bq; n=0 j:l(ﬁj)n n:

(p,quo =NU{0}={0,1,2,..};p S g+ 1;p < g and |z| < oo;

p=q+land|z|]<L;p=q+1,|z] =1and R(w) > 0), 1.1)
where
q »
=Y B-Y o (eCli=1,...,p)peC\Z(j=1,...,q)) (12)
j=1 j=1
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and (1), is the Pochhammer symbol defined (for A € C), in terms of the familiar gamma

function I', by

T(A+n) 1 (n=0),

(M i= —5— = 1.3)
@) AMA+1)--(A+n-1) (meN).

The generalized Lauricella series in several variables is defined and represented in the

following manner (see, for example, [3, p.37]; see also [4]):

21

A:B/;.,.;B(m
FC:D’;M;D(”)

FA:B/;...;B<VI) < [(ﬂ) : 9/’ cees 0(}1)] :
.. .pn)
C:D';..;D! [(C):w/“”’w(n)]:

(@) .5 [(B"):0™];
Z15..432y
(@:8"; ...; [(@d™):8"];

=Y Ay my) R (1.4)

where, for convenience,

A(ml, .. ';mn)

A B (1 B 7 ()
nle(“i)m19}f+...+mnej”) H/‘:I(bj)mm; Il 67,40

= C o , D) ) ! ) (15)
njzl(cf)mlvf,./+.u+mnw;") nle(d/)mw; 1o (g )mna}">

the coefficients

Qj(k) (jzly...,A)’ ¢j(k) (j:L'u»B(k))’ wj(k) (i:l,...,C),

59 (j=1,...,0%) (Vke{l,...,n});

are real and nonnegative, and (a) abbreviates the array of A parameters aj, ..., a4; (b®)

abbreviates the array of B¥) parameters

b}(-k) (j: 1,...,BP;Vk e {1,...,n}),

with similar interpretations for (c), etc.

In the course of study of hypergeometric functions of two or more variables, Srivastava
[5, 6], Buschman and Srivastava [7], Grosjean and Sharma [8] and Grosjean and Srivastava
[9] established a large number of double and multiple series identities involving essen-
tially arbitrary coefficients (see, for example, [10]). Later Jaimini et al. [11] presented three
substantially more general multiple series identities involving similar coefficients, one of

which is recalled here as in the following theorem (see [11, Theorem 3]).
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Theorem 1 Let Q(m) represent a single-valued, bounded and real or complex function of

the nonnegative integer-valued parameter m. Then we have

oo

2 Mmm~~wm>mMW”IiFWM%W}
1

1500111y =0 (a)nq (a)mz i Mj!
= m+2n
X
= Z Q(m+2n)(u1+--.+ur+2n)mw ) (16)
(00)n m!n!
m,n=0

provided that each of the series involved is absolutely convergent.

From Theorem 1, with

nle (@)

Q =
"= L6,

(}’l € NO):

we arrive at the following multiple hypergeometric identity involving the generalized Lau-
ricella function defined by (1.4) (see [11, Equation (3.1)]):

el ([(ap) :1,...,1],[«:1,1,0,...,0] :
Fq:l;l;O;“.;O
[(By):1,...,1]:

(m1:1); (u2:1); (u3:1); .5 (1) )
Xyeoery X
(:1);  (@:1)y; —— .. ;

oo

= (@1)2n -+ (@p)an (U1)n(K2)n aﬁ
B ;:0: (b1)on- - (b)on (@), 7!

e 2n, 21,..., 2n;
F, Hiteoo b 20, @20, ap k20 | 17)
by +2n,...,b; +2n;
For p = g =1, (1.7) reduces at once to (see [11, Equation (3.2)])
F2!1;1;1;.‘.;1 (ﬂ : 1,...,1), (Ol . 1, 1, 0,...,0) :
1:1;1;0;...;0 . .
b:1,...,1):
(m1:1); (u2:1); (u3:1); .5 (1) . x
(@:1);  (a:1); 5o ;T
_ i (@an(111)n(2)n x_z”zpl Pt 2m a+2m | 1.8)
= (Do), n b+2m;

Finally, if we use Kummer’s second summation theorem (see, for example, [12, p.11,
Equation 2.4(2)]; see also [13, Equation (1.4)])

[ o, B; 1} P35+ +1)]
2F1

La+p+1) 2] TR+)ITEB+1)] s
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in (1.8) when
1 1
x:5 and bzi(ﬂ+ﬂl+"'+ﬂr+1),

Jaimini et al. [11, Equation (3.6)] established the following interesting reduction formula
for the generalized Lauricella function:

211 (@:1,...,1),(x:1,1,0,...,0):
L1050 (G@a+pr+-+pup+1):1,...,1):

(n1:1); (u2:1); (us:1); oo (me:l) 101
(:1); (@:1); —5 .5 —— 27772
F(DT[5@+pa+- -+ +1)]
T3+ + pr + DIT[5(a +1)]

a .
5’ Ml, /JLZ;

[ 1
31 2
, 2(/’1‘1 :u‘l 1)’

1]. (1.10)

Here, in this paper, we aim mainly at showing how one can obtain several interesting
reduction formulae for Lauricella functions from a multiple hypergeometric series iden-
tity (1.8). For this, we recall the following generalization of Kummer’s second summation
theorem (1.9) obtained earlier by Lavoie et al. [14]:

F[ a, b; 1]

. %(a+b+£+1); 2
1 b J4 1 b 4 1
CTEIPG+53+5+3)0(G-5-3+3)

a b 1£] 1
FrG-3+37+3)

( Ag . By )
L5+ %)F(é + % + % - [%]) F(%)F(% + % - [%])

(€ =0,41,+2,43, 44, £5), (1.11)

where, and in what follows, [x] denotes (as usual) the greatest integer less than or equal
to x. The coefficients A, and B, are tabulated below.

It is remarked in passing that Equation (1.9) was incorrectly attributed to Gauss by Bailey
[12, p.11, Equation 2.4(2)] (see, for details, [13, p.853]).

2 Main reduction formulae
The eleven reduction formulae in the form of a single result to be established are given in

the following theorem.

Theorem 2 The following reduction formula holds true:

P21 (a:1,...,1),(x:1,1,0,...,0):

1:1;1;0;...;0 1

G@+m+-+pu,+€+1):1,...,1)):
(n1:1); (u2:1); (us:1); oo (me:l); 1
(¢:1); (x:1); —— ...; — 2

ooy

N =
| |
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Table 1 The coefficients Ay and B,

£ A By

5 -(b+a+6P+1(b-a+6?+1b-a+6)b+a+ (b+a+6?-1b-a+6+3(b-a+6)b+a+6)-
6)+11(b+a+6)- 2(b-a+6)-20 17(b+a+6)-(b-a+6)+62

4 l+a+N)b+a-3)-1b-a+3)b-a-3) -2(b+a-1)

3 -IBa+b-2) $Bb+a-2)

2 Lb+a- 2

1A 1

0 1 0

-1 1

-2 b+a-1) 2

-3 1Ba+b-2) 13b+a-2)

-4 lb+a+Nb+a-3)-Lb-a+3)b-a-3) 2b+a-1)

-5 (b+a-4?-1b-a-4>-1b+a-4b-a-4+ (b+a-4>-1b-a-4>+3b+a-4b-a-4)+
4b+a-4-5b-a-4) 8b+a-4)-1b-a-4+12

CTETG@+ i+ 4+ DD G4+ ) =5 =5 +5)
O

TG+ + ) —5+5 +3)

. > ($)n(% + Dn(p1)n(p2)n
n2=0: (00)n

@+ py+ -+ + £+ 1))g,n!

Ay
[F(%(Ml toot e A DDE+ 5+ 2 - [SEDG(a+ - + e + 1))
. 1 N By
E+i+d (9D, TG+ +u)TE+5-[5])

1
G (& - [gm}’

(2.1)

where £ = 0,£1,£2,43,+4,+5 and, here, the coefficients Ay, and B, can be obtained in
replacing a and b in Table1 by pu1 + - - - + Wy + 21 and a + 2n, respectively.

Proof The proof is quite straightforward. In fact, if we set x = % and b = %(a UL+t
wr+ £ +1) in Equation (1.8), we have the following form:

. (@:1,...,1),(«:1,1,0,...,0):
(F@+p+- o+ +€+1):1,...,1):
(1:1); (u2:1); (us:1); oo (me:l); 1 1
(@:1);  (o:1); Lo 2777
_ i (a)Zn(Ml)n(/'LZ)n
L (@u(G@+ py+ - 4y + € +1))5,22 0!

wma+2m 1
~2F1|: Wi+ + Uy +20,a+2n :| 22)

Ha+p+-+p+0+1+4n); 2|

Now, we observe that the ,F; appearing on the right-hand side of (2.2) can be evaluated
with the help of generalized Kummer’s second summation theorem (1.11) in replacing a

and b by p; +--- + i, + 2n and a + 2n, respectively. And, after a little simplification, we
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easily arrive at the right-hand side of our main formula (2.1). The completes the proof of
Theorem 2. O

3 Special cases

It is easy to see that the special case of (2.1) when ¢ = 0 leads to Equation (1.10) due to
Jaimini ez al. [11]. Here we consider two interesting special cases of our main formula
(2.1). Setting £ = -1 and £ =1 in (2.1), we find Equations (3.1) and (3.2), respectively:

P21 (@:1,...,1),(¢:1,1,0,...,0):
1:1,1;05...;0 (%(ﬂ Pt Hr) . 1,”"1)) .

(n1:1); (u2:1); (us:1); oo (me:l) 101
(@:1);  (a:l); —— .5 — 27772

-r(3)r(5¢ )

=TS r(@rms- v u
. 1 JF, 5+ %;MI,MZ;
CETGur+-+me+1) 7| a3y + -+ e +1);

b1 B 2 LMz (31)
FE+I0G+ )™ o5+ + )

and

il (@:1,...,1),(«:1,1,0,...,0):
1:1,1;0;...;0 1
(i(a+u,1 +eeet uy+2):1,...,1)):

(1:1); (u2:1); (us:1); oo (ue:l); 1 1
(:1); (a:1); —3 .5 — 277
CP(DTGla+ i+ -+, +2))

M+ —a

1 §+%;M1;M2;
’ a , 1 1 13 1 1
LG +3)TGw+- + 1) o 5 (1 + -+ 1)

& 1, U2
— 3By | 2 b2 . (3.2)
TGO+ )+ D) [ b+ + ) + 1

Clearly Equations (3.1) and (3.2) are closely related to Equation (1.10). The other special

cases of (2.1) can also be obtained.
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