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1 Introduction
First, let us recall that the weighted Lebesgue space Lr(w), with r ≥  and w a weight func-
tion on (,∞), is defined as a set of all functions f = f (x) such that

∫ ∞



∣∣f (x)∣∣rw(x) dx < ∞.

We will investigate the Hardy-type inequality

(∫ ∞



∣∣∣∣
∫ x


k(x, t)f (t) dt

∣∣∣∣
q

u(x) dx
) 

q
≤ C

(∫ ∞



∣∣f (x)∣∣pv(x) dx) 
p

(.)

with  < p,q < ∞ and u, v weight functions on (,∞).
This inequality was investigated bymany authors. For k(x, t)≡ , we obtain the ‘classical’

Hardy inequality

(∫ ∞



∣∣∣∣
∫ x


f (t) dt

∣∣∣∣
q

u(x) dx
) 

q
≤ C

(∫ ∞



∣∣f (x)∣∣pv(x) dx) 
p
, (.)

the case k(x, t) = a(x)b(t) can be easily reduced to the classical case with modified weights
U(x) = |a(x)|qu(x) and V (x) = |b(x)|–pv(x) instead of u and v, respectively. Stepanov [] has
investigated ‘convolutionary’ kernels like (x– t)α , and probably the most general approach
is connected with the name of Oinarov who investigated positive kernels k such that

k(x, t)≈ k(x, z) + k(z, t), t < z < x
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(see []) and also several more general kernels (see [, ]). Also, inequalities withmodified
or generalized kernels have been investigated; let us mention the recent book [] where
multiple Hardy-type inequalities with the so-called product kernels are considered. See
also [] and [] for further details.
Here we consider kernels k(x, t) of the type

k(x, t) =
m∑
i=

ai(x)bi(t) (.)

and we want to find conditions on the weight functions u, v and on the functions ai, bi,
for which the integral operator

(kf )(x) :=
∫ x


k(x, t)f (t) dt (.)

maps the space Lp(v) continuously into Lq(u).

Remark . The case of kernel (.) with special functions bi(t) = ti– was investigated
by Rychkov [] for p = q = . Such kernels appear for general p, q by the investigation of
higher-order Hardy inequalities; see [].

Now, let us denote, for given ai, bi, u and v,

Ai(x) = ai(x)u/q(x), Bi(t) = bi(t)v–/p(t). (.)

Then we can rewrite inequality (.) [for functions f ] as the unweighted inequality

(∫ ∞



∣∣∣∣
∫ x


K(x, t)g(t) dt

∣∣∣∣
q

dx
) 

q
≤ C

(∫ ∞



∣∣g(x)∣∣p dx) 
p

(.)

[for functions g(x) = f (x)v/p(x)] with

K(x, t) =
m∑
i=

Ai(x)Bi(t). (.)

Remark . Ifm = , we have K(x, t) = A(x)B(t), and we can rewrite (.) as

(∫ ∞



∣∣∣∣
∫ x


B(t)g(t) dt

∣∣∣∣
q∣∣A(x)∣∣q dx) 

q
≤ C

(∫ ∞



∣∣g(x)∣∣p dx) 
p
,

which is in fact the classical (weighted) Hardy inequality

(∫ ∞



∣∣∣∣
∫ x


h(t) dt

∣∣∣∣
q∣∣A(x)∣∣q dx) 

q
≤ C

(∫ ∞



∣∣h(x)∣∣p∣∣B(x)∣∣–p dx) 
p

(.)

[for the function h(x) = g(x)B(x)] with the weight functions |A(x)|q and |B(x)|–p.
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It is well known (see, e.g., [] or []) that for the case  < p ≤ q < ∞, inequality (.) holds
for all functions h≥  if and only if the so-called Muckenhoupt-Bradley condition

sup
z>

AM(z) <∞

is satisfied, where

AM(z) =
(∫ ∞

z

∣∣A(x)∣∣q dx)/q(∫ z



[∣∣B(x)∣∣–p]–p′
dx

)/p′

=
(∫ ∞

z

∣∣A(x)∣∣q dx)/q(∫ z



∣∣B(x)∣∣p′
dx

)/p′

(.)

with p′ = p/(p – ).
It follows from (.) that we need the integrability of |A(x)|q on (z,∞) and of |B(x)|p′ on

(, z) for all z > , i.e.,

A ∈ Lq(z,∞) and B ∈ Lp
′
(, z)

[where we denote by Lr(α,β) the classical Lebesgue spaces of functions defined on (α,β)].

In accordance with this remark, we suppose throughout the paper that the functions Ai,
Bi from (.) satisfy

Ai ∈ Lq(z,∞) and Bi ∈ Lp
′
(, z) (.)

for all z >  and i = , , . . . ,m.

2 Sufficient conditions
For p >  and u, v weight functions on (,∞), let us define

AM(x;u, v) = AM(x) :=
(∫ ∞

x
u(t) dt

) 
q
(∫ x


v–p

′
(t) dt

) 
p′
. (.)

Remark . Let us recall that the condition

sup
x>

AM(x) <∞

is necessary and sufficient for the validity of the classical Hardy inequality (.) for p ≤ q.

It is easy to find a sufficient condition for (.) to hold, if we consider the ‘partial’ opera-
tors

(kif )(x) :=
∫ x


ai(x)bi(t)f (t) dt (.)

as operators from Lp(v) into Lq(u).
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Theorem . Let  < p≤ q < ∞. For AM(x) defined by (.), denote

AM,i(x) := AM
(
x;u|ai|q, v|bi|–p

)
, i = , , . . . ,m, (.)

where ai, bi are the functions in (.).Then theHardy-type inequality (.)with kernel k(x, t)
from (.) holds if the weight functions u, v satisfy for i = , , . . . ,m the conditions

sup
x>

AM,i(x) < ∞. (.)

Proof Conditions (.) guarantee the validity of the Hardy inequality

(∫ ∞



∣∣∣∣
∫ x


g(t) dt

∣∣∣∣
q

u(x)
∣∣ai(x)∣∣q dx

) 
q

≤ C,i

(∫ ∞



∣∣g(t)∣∣pv(t)∣∣bi(t)∣∣–p dt
) 

p

for functions g ; if we take g(t) = f (t)bi(t), we can rewrite the foregoing Hardy inequality as

(∫ ∞



∣∣∣∣
∫ x


ai(x)bi(t)f (t) dt

∣∣∣∣
q

u(x) dx
) 

q
≤ C,i

(∫ ∞



∣∣f (t)∣∣pv(t) dt) 
p
.

Now, using (.), the Minkowski and the last inequality, we obtain

(∫ ∞



∣∣∣∣
∫ x


k(x, t)f (t) dt

∣∣∣∣
q

u(x) dx
) 

q
=

(∫ ∞



∣∣∣∣∣
m∑
i=

∫ x


ai(x)bi(t)f (t) dt

∣∣∣∣∣
q

u(x) dx

) 
q

≤
m∑
i=

(∫ ∞



∣∣∣∣
∫ x


ai(x)bi(t)f (t) dt

∣∣∣∣
q

u(x) dx
) 

q

≤
m∑
i=

C,i

(∫ ∞



∣∣f (t)∣∣pv(t) dt) 
p
,

i.e., we have derived inequality (.). �

Remark . Let us mention that the expression AM,i(x) in (.) is nothing else than the
expression AM(x) from (.), where we replace A, B by Ai, Bi, respectively, with Ai, Bi from
(.).

3 Necessary conditions
First let us introduce some auxiliary notions.

Definition . We will say that the system (matrix) {Di,j}mi,j= of real numbers Di,j satisfies
the ellipticity condition if there exists a constant CE >  such that

m∑
i,j=

Di,jξiξj ≥ CE

m∑
i=

Di,iξ

i for all ξ = {ξi}mi= ∈R

m.
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Remark . (i) The ellipticity condition is equivalent to the positive definiteness of the
quadratic form

m∑
i,j=

D̃i,jξiξj with ξ = {ξi}mi= ∈R
m,

where

D̃i,j =

⎧⎨
⎩( – c)Di,i, i = j,

Di,j, i 	= j

with some  < c < .
(ii) A sufficient condition for the ellipticity to be satisfied is

Di,j ≤ ( – c)
√
Di,iDj,j for i 	= j.

Indeed, if we denoteM– = {(i, j) :Di,jξiξj < , ≤ i, j ≤ m}, then
m∑
i,j=

Di,jξiξj ≥
m∑
i=

Di,iξ

i –

∑
(i,j)∈M–

|Di,j||ξi||ξj|

≥
m∑
i=

Di,iξ

i –

∑
(i,j)∈M–

( – c)
√
Di,iDj,j|ξi||ξj|

≥
m∑
i=

Di,iξ

i –

∑
(i,j)∈M–

( – c)


(
Di,iξ


i +Dj,jξ


j
)

≥ c
m∑
i=

Di,iξ

i .

To find necessary conditions for (.) to hold, we consider three cases.
(I) The case p = ,  < q < ∞. Denote for this case

A := sup
z>

(∫ ∞

z

(∫ z


k(x, t)v–(t) dt

) q

u(x) dx

) 
q
.

Theorem . Let p =  and  < q <∞. Then the following condition

A < ∞ (.)

is necessary for inequality (.) to hold.

Proof For z >  and for {Bi}mi= from (.) let {Bik }nk= be an arbitrary maximal linearly inde-
pendent subsystem of {Bi}mi= in L(, z), which, for simplicity, we denote by {Bi}ni=. Using
the Gram-Schmidtmethod of orthogonalization to the system {Bi}ni= in L(, z), we obtain
a system {Bi,z}ni= such that

Bi(t) =
n∑
j=

βi,j(z)Bj,z(t)

http://www.journalofinequalitiesandapplications.com/content/2013/1/310
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for t ∈ (, z) and i = , , . . . ,m. Using this we rewrite the kernel in (.) in the form

K(x, t) =
m∑
i=

Ai(x)Bi(t)

=
m∑
i=

Ai(x)
n∑
j=

βi,j(z)Bj,z(t)

=
n∑
j=

Bj,z(t)
m∑
i=

βi,j(z)Ai(x)

=
n∑
j=

Aj,z(x)Bj,z(t) = Kz(x, t),

for t ∈ (, z), where Aj,z(x) =
∑m

i= βi,j(z)Ai(x).
Let ≤ j ≤ n, then choosing fj,z(t) = χ(,z)(t)Bj,z(t)‖Bj,z‖–L(,z) and using the orthogonality

of the system {Bi,z}ni=, we estimate the left-hand side of (.) as

‖Kfj,z‖Lq =
(∫ ∞



∣∣∣∣
∫ x


K(x, t)fj,z(t) dt

∣∣∣∣
q

dx
) 

q

≥
(∫ ∞

z

∣∣∣∣
∫ z


K(x, t)fj,z(t) dt

∣∣∣∣
q

dx
) 

q

=
(∫ ∞

z

∣∣∣∣
∫ z


Kz(x, t)Bj,z(t) dt

∣∣∣∣
q

dx
) 

q
‖Bj,z‖–L(,z)

=

(∫ ∞

z

∣∣∣∣∣
n∑
i=

Ai,z(x)
∫ z


Bi,z(t)Bj,z(t) dt

∣∣∣∣∣
q

dx

) 
q

‖Bj,z‖–L(,z)

=
(∫ ∞

z

∣∣Aj,z(x)
∣∣q dx) 

q
(∫ z



∣∣Bj,z(t)
∣∣ dt) 


. (.)

This estimate together with (.) implies

nC = C
n∑
j=

‖fj,z‖L ≥
n∑
j=

‖Kfj,z‖Lq

≥
n∑
j=

(∫ ∞

z

∣∣Aj,z(x)
∣∣q dx) 

q
(∫ z



∣∣Bj,z(t)
∣∣ dt) 



:= A∗
(z). (.)

Using the Minkowski inequality, we estimate A∗
(z) in the form

A∗
(z) =

n∑
j=

(∫ ∞

z

[(∫ z



∣∣Aj,z(x)Bj,z(t)
∣∣ dt) 


]q

dx
) 

q

≥
(∫ ∞

z

[ n∑
j=

(∫ z



∣∣Aj,z(x)Bj,z(t)
∣∣ dt) 


]q

dx

) 
q

http://www.journalofinequalitiesandapplications.com/content/2013/1/310
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≥
(∫ ∞

z

(∫ z



∣∣∣∣∣
n∑
j=

Aj,z(x)Bj,z(t)

∣∣∣∣∣


dt

) q


dx

) 
q

=

(∫ ∞

z

(∫ z



∣∣∣∣∣
n∑
j=

m∑
i=

Ai(x)βi,j(z)Bj,z(t)

∣∣∣∣∣


dt

) q


dx

) 
q

=

(∫ ∞

z

(∫ z



∣∣∣∣∣
m∑
i=

n∑
j=

Ai(x)βi,j(z)Bj,z(t)

∣∣∣∣∣


dt

) q


dx

) 
q

=

(∫ ∞

z

(∫ z



∣∣∣∣∣
m∑
i=

Ai(x)Bi(t)

∣∣∣∣∣


dt

) q


dx

) 
q

=
(∫ ∞

z

(∫ z


k(x, t)v–(t) dt

) q

u(x) dx

) 
q
. (.)

Since z >  is arbitrary and inequality (.) (i.e., inequality (.)) holds, we conclude that C
is finite and we get (.). �

Moreover, we can show that condition (.) is also necessary if we add some assump-
tions. For this purpose, denote

Di,j(z) =
∫ z


Bi(t)Bj(t) dt =

∫ z


bi(t)bj(t)v–(t) dt, (.)

where Bi(t) = bi(t)v–/(t).

Definition . We say that the condition E is satisfied if there exists a constant CE such
that for every z >  the system {Di,j(z)}mi,j= satisfies the ellipticity condition.

Theorem . Let p =  and  < q <∞. Suppose that the system {Di,j(z)}mi,j= from (.) sat-
isfies the condition E. Then (sufficient) condition (.) is necessary for (.) to hold.

Proof Using Theorem ., formula (.), the condition E and the Minkowski inequality,
we obtain

n∑
j=

‖Kfj,z‖Lq ≥
(∫ ∞

z

(∫ z


k(x, t)v–(t) dt

) q

u(x) dx

) 
q

=

(∫ ∞

z

(∫ z



m∑
i,j=

ai(x)aj(x)bi(t)bj(t)v–(t) dt

) q


u(x) dx

) 
q

=

(∫ ∞

z

( m∑
i,j=

Di,j(z)Ai(x)Aj(x)

) q


dx

) 
q

≥ √
CE

(∫ ∞

z

( m∑
i=

Di,i(z)Ai(x)
) q



dx

) 
q

=
√
CE

(∫ ∞

z

( m∑
i=

Ai(x)
∫ z


Bi(t) dt

) q


dx

) 
q
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≥ √
CE

(∫ ∞

z

∣∣Ai(x)
∣∣q dx) 

q
(∫ z


Bi(t) dt

) 


=
√
CE

(∫ ∞

z

∣∣ai(x)∣∣qu(x) dx
) 

q
(∫ z


bi (t)v

–(t) dt
) 



=
√
CEAM,i(z) (.)

for arbitrary i :  ≤ i ≤ m. Consequently, from (.) and (.), we get (.). The theorem is
proved. �

(II) The case  < p < ,  < q < ∞. Let us denote

Dj
i,l(z) =

∫ z


B̃j
i(t)B̃

j
l(t) dt,  ≤ i, j, l ≤ m,

where B̃j
i(t) := Bi(t)|Bj(t)| p

′–
 belongs to L(, z) since

∫ z



∣∣B̃j
i(t)

∣∣ dt ≤
(∫ z



∣∣Bi(t)
∣∣p′

dt
) 

p′
(∫ z



∣∣Bj(t)
∣∣p′

dt
) p′–

p′
<∞.

Definition . We will say that the condition Ep is satisfied if there exists a constant
CE >  such that for every z >  the system {Dj

i,l(z)}mi,l= satisfies the ellipticity condition
for j = , , . . . ,m.

Theorem . Let  < p <  and  < q <∞. If the condition Ep holds, then (.) is necessary
for inequality (.) to hold.

Proof Let z >  and let  ≤ j ≤ m. Let {B̃j
ik }nk= be a maximal linearly independent subsys-

temof {B̃j
i}mi= in L(, z), which, for simplicity, we denote by {B̃j

i}ni=. Thus, using themethod
of orthogonalization, we get an orthogonal system {B̃j

i,z}ni= in L(, z) such that

B̃j
i(t) =

n∑
l=

β
j
i,l(z)B̃

j
l,z(t), i = , , . . . ,m. (.)

If we denote g(t) = B̃j
l,z(t)‖B̃j

l,z‖–L(,z), cj = ‖Bj‖
p–
p–

Lp′ (,z) and choose the following test function
in (.) as

f jl,z(t) = χ(,z)(t)cj
∣∣Bj(t)

∣∣ p′– g(t),

then the left- and right-hand sides are estimated in the forms:

∥∥f jl,z∥∥Lp = cj
(∫ z



∣∣Bj(t)
∣∣ (p′–)p

∣∣g(t)∣∣p dt) 
p

≤ cj
(∫ z



∣∣Bj(t)
∣∣p′

dt
) –p

p
(∫ z



∣∣g(t)∣∣ dt) 


= , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/310
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and

∥∥Kf jl,z∥∥Lq =
(∫ ∞



∣∣∣∣
∫ x


K(x, t)f jl,z(t) dt

∣∣∣∣
q

dx
) 

q

≥
(∫ ∞

z

∣∣∣∣
∫ z


K(x, t)f jl,z(t) dt

∣∣∣∣
q

dx
) 

q

= cj
(∫ ∞

z

∣∣∣∣
∫ z


K̃ j(x, t)g(t) dt

∣∣∣∣
q

dx
) 

q
, (.)

where K̃ j(x, t) =
∑m

i=Ai(x)B̃
j
i(t).

Using (.) we rewrite the kernel K̃ j(x, t) in the form

K̃ j(x, t) =
m∑
i=

Ai(x)

[ n∑
l=

β
j
i,l(z)B̃

j
l,z(t)

]

=
n∑
l=

Aj
l,z(x)B̃

j
l,z(t) = K̃ j

z(x, t),

where Aj
l,z(x) =

∑m
i=Ai(x)β

j
i,l(z).

Then we have from (.), (.) and (.) that

cj
(∫ ∞

z

∣∣∣∣
∫ z


K̃ j
z(x, t)g(t) dt

∣∣∣∣
q

dx
) 

q
≤ ∥∥Kf jl,z∥∥Lq ≤ C. (.)

Now, repeating the proofs of the foregoing theorems with respect to (.) with the
kernel K̃ j

z(x, t), we can also get a similar estimate as in (.) in the form

nC ≥
n∑
l=

∥∥Kf jl,z∥∥Lq ≥ cj
n∑
l=

(∫ ∞

z

∣∣Aj
l,z(x)

∣∣q dx) 
q
(∫ z



∣∣B̃j
l,z(t)

∣∣ dt) 

. (.)

Then supposing the condition Ep, we also obtain the following estimate:

n∑
l=

∥∥Kf jl,z∥∥Lq ≥ cj
n∑
l=

(∫ ∞

z

∣∣Aj
l,z(x)

∣∣q dx) 
q
(∫ z



∣∣Bj
l,z(t)

∣∣ dt) 


...

≥ cj

(∫ ∞

z

( m∑
i,l=

Dj
i,l(z)Ai(x)Al(x)

) q


dx

) 
q

≥ cj
√
CE

(∫ ∞

z

( m∑
i=

Dj
i,i(z)Ai(x)

) q


dx

) 
q

≥ cj
√
CE

(∫ ∞

z

∣∣Aj(x)
∣∣q dx) 

q
(∫ z



∣∣Bj(t)
∣∣p′

dt
) 


,

http://www.journalofinequalitiesandapplications.com/content/2013/1/310
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i.e.,

n∑
l=

∥∥Kf jl,z∥∥Lq ≥ cj
√
CE

(∫ ∞

z

∣∣Aj(x)
∣∣q dx) 

q
(∫ z



∣∣Bj(t)
∣∣p′

dt
) 



≥ √
CE

(∫ ∞

z

∣∣aj(x)∣∣qu(x) dx
) 

q
(∫ z



∣∣bj(t)∣∣p′
v–p

′
(t) dt

) 
p′

=
√
CEAM,j(z), (.)

which holds for ≤ j ≤ m and z > .
Using this estimate and (.), we finally get that

√
CE

n
sup
z>

AM,j(z) ≤ C.

The proof is complete. �

(III) The case  < p < ∞,  ≤ q < ∞. Another approach how to investigate inequality (.)
is based on the following lemma (for details, see []).

Lemma . Let  < p,q < ∞. Then inequality (.) holds for all f ∈ Lp if and only if the
conjugate inequality

(∫ ∞



∣∣K∗g(x)
∣∣p′

dx
) 

p′ ≤ C
(∫ ∞



∣∣g(x)∣∣q′
dx

) 
q′

(.)

holds for all g ∈ Lq′ , where

K∗g(x) :=
∫ ∞

x
K(t,x)g(t) dt (.)

and K(t,x) =
∑m

i=Ai(t)Bi(x).

The lemma enables to replace the investigation of inequality (.) by the investigation
of inequality (.).
Denote

Dj
i,l(z) =

∫ ∞

z
Ãj
i(t)Ã

j
l(t) dt,  ≤ i, j, l ≤ m, (.)

where Ãj
l(t) := Al(t)|Aj(t)| q– belongs to L(z,∞) since

∫ ∞

z

∣∣Ãj
i(t)

∣∣ dt ≤
(∫ ∞

z

∣∣Ai(t)
∣∣q dt) 

q
(∫ ∞

z

∣∣Aj(t)
∣∣q dt)

q–
q

<∞.

Definition . We will say that the condition Eq′ is satisfied if there exists a constant
CE >  and for every z >  such that the system {Dj

i,l(z)}mi,l= satisfies the ellipticity condition
for j = , , . . . ,m.

http://www.journalofinequalitiesandapplications.com/content/2013/1/310


Kufner et al. Journal of Inequalities and Applications 2013, 2013:310 Page 11 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/310

Theorem . Let  < p < ∞ and  ≤ q <∞. If the condition Eq′ holds for the system from
(.), then (.) is necessary for inequality (.) to hold.

Proof Let z >  and let  ≤ j ≤ m. Let {Ãj
ik }nk= be a maximal linearly independent sub-

system of {Ãj
i}mi= in L(z,∞), which, for simplicity, we denote by {Ãj

i}ni=. Thus, using the
method of orthogonalization, we get an orthogonal system {Ãj

i,z}ni= in L(z,∞) such that

Ãj
i(t) =

n∑
l=

α
j
i,l(z)Ã

j
l,z(t), i = , , . . . ,m. (.)

If we denote g(t) = Ãj
l,z(t)‖Ãj

l,z‖–L(z,∞), cj = ‖Aj‖
q′–
q′–
Lq(z,∞) and choose the test function in the

form

f jl,z(t) = χ(z,∞)(t)cj
∣∣Aj(t)

∣∣ q– g(t),

then the left- and right-hand sides are similarly estimated in the forms:

∥∥f jl,z∥∥Lq′ ≤ , (.)

and

∥∥K∗f jl,z
∥∥
Lp′ ≥ cj

(∫ z



∣∣∣∣
∫ ∞

z
K̃ j(t,x)g(t) dt

∣∣∣∣
p′

dx
) 

p′
, (.)

where K̃ j(t,x) =
∑m

i= Ã
j
i(t)Bi(x).

Using (.) we can rewrite the kernel K̃ j(t,x) in the form

K̃ j(t,x) =
m∑
i=

Bi(x)

[ n∑
l=

α
j
i,l(z)Ã

j
l,z(t)

]

=
n∑
l=

Ãj
l,z(t)B

j
l,z(x) = K̃ j

z(t,x),

where Bj
l,z(x) =

∑m
i= Bi(x)α

j
i,l(z).

Then we have from (.), (.) and (.) that

cj
(∫ z



∣∣∣∣
∫ ∞

z
K̃ j
z(t,x)g(t) dt

∣∣∣∣
p′

dx
) 

p′ ≤ C. (.)

Now repeating the proof of the foregoing theorem with respect to (.) with the kernel
K̃ j
z(t,x), we can also get a similar estimate as in (.) in the form

nC ≥
n∑
l=

∥∥K∗f jl,z
∥∥
Lp′ ≥ cj

n∑
l=

(∫ z



∣∣Bj
l,z(t)

∣∣p′
dt

) 
p′

(∫ ∞

z

∣∣Ãj
l,z(x)

∣∣ dx) 

. (.)
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Then, supposing that the condition Eq′ is satisfied, we also obtain the following estimate:

n∑
l=

∥∥K∗f jl,z
∥∥
Lp′ ≥ cj

n∑
l=

(∫ z



∣∣Bj
l,z(t)

∣∣p′
dt

) 
p′

(∫ ∞

z

∣∣Ãj
l,z(x)

∣∣ dx) 


...

≥ cj

(∫ ∞

z

( m∑
i,l=

Dj
i,l(z)Bi(x)Bl(x)

) p′


dx

) 
p′

≥ cj
√
CE

(∫ ∞

z

( m∑
i=

Dj
i,i(z)

∣∣Bi(x)
∣∣)

p′


dx

) 
p′

≥ cj
√
CE

(∫ ∞

z

∣∣Bj(x)
∣∣p′

dx
) 

p′
(∫ z



∣∣Aj(t)
∣∣q dt) 


,

i.e.,

n∑
l=

∥∥K∗f jl,z
∥∥
Lp′ ≥ cj

√
CE

(∫ ∞

z

∣∣Aj(x)
∣∣q dx) 

q
(∫ z



∣∣Bj(t)
∣∣p′

dt
) 



≥ √
CE

(∫ ∞

z

∣∣aj(x)∣∣qu(x) dx
) 

q
(∫ z



∣∣bj(t)∣∣p′
v–p

′
(t) dt

) 
p′

=
√
CEAM,j(z), (.)

which holds for all ≤ j ≤ m and z > .
Using this estimate and (.), we finally get that

√
CE

n
sup
z>

AM,j(z) ≤ C.

The proof is complete. �

4 Criteria of compactness
As far as the compactness of the imbedding k : Lp(v) → Lq(u) is concerned, we have the
following.

Theorem. Let  < p≤ q < ∞. Let us suppose that the functions AM,i(x) from (.) satisfy

lim
x→+

AM,i(x) = lim
x→∞AM,i(x) = , i = , , . . .m. (.)

Then the operator k from (.)maps Lp(v) into Lq(u) compactly.

Proof Conditions (.) guarantee that the operators of ki from Lp(v) into Lq(u) are compact
(see, e.g., []). Since k =

∑m
i= ki, the compactness of k follows. �

Theorem . Let  < p≤  and  < q < ∞. Let the condition Ep be satisfied. If the operator
k from (.) is compact from Lp(v) to Lq(u), then conditions (.) and (.) are satisfied.
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Proof Let us suppose that operator (.) is compact. Then it is bounded, and, by using
Theorems . and ., we get (.) and also the compactness of the operator

Kf (x) =
∫ x



m∑
i=

Ai(x)Bi(t)f (t) dt (.)

as an operator from Lp to Lq.
Let z >  and  ≤ j, l ≤ m. Moreover, we choose the function f jl,z(t) as in the proof of

Theorem .. Let h ∈ Lp′ be arbitrary, then using (.) we have

∣∣∣∣
∫ ∞


h(t)f jl,z(t) dt

∣∣∣∣ ≤
(∫ z



∣∣h(t)∣∣p′
dt

) 
p′

(∫ z



∣∣f jl,z(t)∣∣p dt
) 

p

≤
(∫ z



∣∣h(t)∣∣p′
dt

) 
p′
,

from which it follows that∫ ∞


h(t)fj,z(t) dt → 

as z → +, i.e., the class of functions f jl,z weakly converges to zero in Lp as z → +.
This and the compactness of operator (.) imply that the class of images Kf jl,z strongly

converges to zero in Lq as z → +, i.e.,

∥∥Kf jl,z∥∥Lq →  as z → +. (.)

Analogously as in the proof of Theorem ., (.) can also be obtained, i.e.,

n∑
l=

∥∥Kf jl,z∥∥Lq ≥ √
CEAM,j(z), (.)

which with (.) implies that limz→+AM,j(z) =  for all  ≤ j ≤ m.
Now we show that limz→∞ AM,j(z) =  for all  ≤ j ≤ m. The compactness of operator

(.) follows from the compactness of the conjugate operator K∗ (.) from Lq′ to Lp′ .
Let h ∈ Lq′ and choose hz(t) = χ(z,∞)(t)h(t)/‖h‖Lq′ (z,∞). It can be shown as in foregoing

cases that the class of functions {hz, z ∈ (,∞)} weakly converges to zero in Lq′ as z → ∞.
Then the class of images K∗hz strongly converges to zero in Lp′ as z → ∞, i.e.,

∥∥K∗hz
∥∥
Lp′ →  as z → ∞. (.)

Using the dual principle of Lp′ , we have

∥∥K∗hz
∥∥
Lp′ = sup

f∈Lp
‖f ‖Lp≤

∫ ∞


f (t)K∗hz(t) dt

= sup
f∈Lp

‖f ‖Lp≤

∫ ∞


hz(x)

(∫ x


K(x, t)f (t) dt

)
dx. (.)
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Now, choosing f jl,z as in the proof of Theorem . instead of f in (.), we have

∥∥K∗hz
∥∥
Lp′ ≥

∫ ∞

z
hz(x)

∫ x



m∑
i=

Ai(x)B̃
j
i(t)g(t) dt dx

=
∫ ∞

z
hz(x)

∫ z



m∑
i=

Aj
i,z(x)B̃

j
i,z(t)g(t) dt dx

≥ cj
∫ ∞

z
hz(x)A

j
l,z(x) dx

∫ z



∣∣B̃j
l,z(t)

∣∣ dt∥∥B̃j
l,z

∥∥–
L(,z)

≥ cj
∫ ∞

z
hz(x)A

j
l,z(x) dx

(∫ z



∣∣B̃j
l,z(t)

∣∣ dt) 

. (.)

Since the operator K is bounded from Lp to Lq, i.e., (.) is satisfied, from which we
will have that Aj

l,z ∈ Lq(z,∞), z > . Then, choosing the function hjl,z = Aj
l,z|Aj

l,z|q–χ(z,∞),
hjl,z(t) := hz(t) and from (.), we have

∥∥K∗hjl,z
∥∥
Lp′ ≥ cj

(∫ ∞

z

∣∣Aj
l,z(x)

∣∣q dx) 
q
(∫ z



∣∣B̃j
l,z(t)

∣∣ dt) 

.

As in the proof of Theorem ., by estimating the right-hand side, we obtain also that

n∑
l=

∥∥K∗hjl,z
∥∥
Lp′ ≥ √

CEAM,j(z).

Consequently, from this and (.) we have that limz→∞ AM,j(z) =  for all  ≤ j ≤ m.
The theorem is proved. �

Theorem . Let  < p < ∞ and  ≤ q < ∞. Let the condition Eq′ be satisfied. If operator
(.) is compact from Lp(v) to Lq(u), then conditions (.) and (.) are satisfied.

Proof First we show that limz→∞ AM,j(z) = , for which we use the compactness of the
dual operator K∗ and the proof of Theorem .. Then it can be shown that the class of
functions f jl,z also weakly converges to zero in Lq′ as z → ∞ and

∥∥K∗f jl,z
∥∥
Lq →  as z → ∞. (.)

Analogously as in the proof of Theorem ., (.) can be obtained, i.e.,

n∑
l=

∥∥K∗f jl,z
∥∥
Lp′ ≥ √

CEAM,j(z)

which with (.) implies that limz→∞ AM,j(z) =  for all  ≤ j ≤ m.
To prove limz→+AM,j(z) = , we use the duality principle as in the proof of the foregoing

theorem. The formulation of the corresponding proof is left to the reader as an exercise.
�
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Corollary. Let  < p≤  and p≤ q < ∞.Let us suppose that the condition Ep is satisfied.
Then operator (.) from Lp(v) into Lq(u) is bounded and compact if and only if (.) and
(.) are satisfied, respectively.

Corollary . Let  ≤ q < ∞ and  < p ≤ q. Let us suppose that the condition Eq′ is satis-
fied. Then operator (.) from Lp(v) into Lq(u) is bounded and compact if and only if (.)
and (.) are satisfied, respectively.

Corollary . Let  < p ≤ q < ∞. Let us suppose that the conditions Ep and Eq′ are satis-
fied. Then operator (.) from Lp(v) into Lq(u) is bounded and compact if and only if (.)
and (.) are satisfied, respectively.
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