Kufner et al. Journal of Inequalities and Applications 2013, 2013:310 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2013/1/310 a SpringerOpen Journal

RESEARCH Open Access

Some criteria for boundedness and
compactness of the Hardy operator with
some special kernels

Alois Kufner, Komil Kuliev and Ryskul Oinarov’

“Correspondence: o_ryskul@mail.ru
Astana, Republic of Kazakhstan

@ Springer

Abstract

We present necessary and sufficient conditions for boundedness and compactness of
Hardy operator (1.4) with kernel (1.3) for 1 < p < g < o0.
MSC: Primary 26D10; 26D15; secondary 47B07; 47B34; 47B38

Keywords: inequalities; Hardy-type inequalities; weights; Hardy operator; compact
operator

1 Introduction
First, let us recall that the weighted Lebesgue space L"(w), with r > 1 and w a weight func-
tion on (0, 00), is defined as a set of all functions f = f(x) such that

/oo If ()] w(x) d < o0o.
0

We will investigate the Hardy-type inequality

U

with 1 < p, g < oo and u, v weight functions on (0, 00).

q % [e'e) %
u(x)dx) §C( / Lf(x)|”v(x)dx) (1.1)
0

/ "k O (0 de
0

This inequality was investigated by many authors. For k(x, ) = 1, we obtain the ‘classical’

Hardy inequality

([

the case k(x, £) = a(x)b(t) can be easily reduced to the classical case with modified weights

q % [e'9) }7
u(x) dx) < C(/ Lf(x) |pv(x) dx) , (1.2)
0

U(x) = |a(x)|7u(x) and V(x) = |b(x)| Pv(x) instead of u and v, respectively. Stepanov [1] has
investigated ‘convolutionary’ kernels like (x — £)*, and probably the most general approach

is connected with the name of Oinarov who investigated positive kernels k such that

k(x,t) ~ k(x,2) + k(z,t), t<z<x
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(see [2]) and also several more general kernels (see [3, 4]). Also, inequalities with modified
or generalized kernels have been investigated; let us mention the recent book [5] where
multiple Hardy-type inequalities with the so-called product kernels are considered. See
also [6] and [7] for further details.

Here we consider kernels k(x, £) of the type

m

k(x,0) =Y ai(®)bi(t) (1.3)

i=1

and we want to find conditions on the weight functions u, v and on the functions a;, b;,

for which the integral operator

(k) (x) := /0 k(x, O)f (£) dt (L4)

maps the space L?(v) continuously into L7(u).
Remark 1.1 The case of kernel (1.3) with special functions b;(t) = ¢! was investigated
by Rychkov [8] for p = g = 2. Such kernels appear for general p, g by the investigation of
higher-order Hardy inequalities; see [9].

Now, let us denote, for given a;, b;, u and v,

Aix) = a®)u(x),  Bi(®) = bie)v P (). (1.5)

Then we can rewrite inequality (1.1) [for functions f] as the unweighted inequality

00 q : 00 »
(/ dx) < C(/ \g(x) \p dx) (1.6)
0 0

[for functions g(x) = f(x)v'/?(x)] with

/ " K, gt de
0

K(x,t) =Y Ai®)Bi(0). (17)

i=1

Remark 1.2 If m = 1, we have K(x, t) = A(x)B(t), and we can rewrite (1.6) as

(/oo‘/xB(t)g(t) dt q|A(x)|qu)q < C(/Oo|g(x)|p dx)i,
0 0 0

which is in fact the classical (weighted) Hardy inequality

(/000 /Oxh(t)dt

[for the function /(x) = g(x)B(x)] with the weight functions |A(x)|7 and |B(x)| 7.

q|A(x)|qu> "< c( f " )| BG) [ dx)p (1.8)
0
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It is well known (see, e.g., [6] or [7]) that for the case 1 < p < g < 00, inequality (1.8) holds

for all functions /2 > 0 if and only if the so-called Muckenhoupt-Bradley condition

supAy(z) <00
z>0

is satisfied, where

00 1/q z , 1/p/
Au(z) = ( / |A(x)|qu) ( fo [|B@)| 7?1 dx)
00 1/q z , 1y
= ( / |A(x)|qu) ( / |B(x)[” dx) (1.9)
z 0

with p' = p/(p - 1).
It follows from (1.9) that we need the integrability of |A(x)|7 on (z, 00) and of |B(x)|” on
(0,2z) forallz> 0, i.e,

Ae€li(z,00) and Be L”/(O,z)
[where we denote by L"(«, 8) the classical Lebesgue spaces of functions defined on (e, 8)].

In accordance with this remark, we suppose throughout the paper that the functions A;,
B; from (1.7) satisfy

A;eLli(z,00) and B;el”(0,2) (1.10)
forallz>0andi=1,2,...,m.

2 Sufficient conditions

For p >1 and u, v weight functions on (0, 00), let us define

Ap(ocs 1, v) = Apg(x) := ( / ” u(t) dt) ! ( / ’ V(1) clt)‘7 . (2.1)
X 0

Remark 2.1 Let us recall that the condition

sup Ayr(x) < oo
x>0

is necessary and sufficient for the validity of the classical Hardy inequality (1.2) for p <g¢.

It is easy to find a sufficient condition for (1.1) to hold, if we consider the ‘partial’ opera-
tors

(ki) (x) = /0 aWbi(0)f (0 dt 2.2)

as operators from L?(v) into L9 (u).

Page 3 of 15
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Theorem 2.2 Let 1< p < g < 0o. For Ay (x) defined by (2.1), denote
Api(x) = AM(x; u|ai|q,v|bi|_p), i=1,2,...,m, (2.3)

where a;, b; are the functions in (1.3). Then the Hardy-type inequality (1.1) with kernel k(x, t)
from (1.3) holds if the weight functions u, v satisfy for i = 1,2,..., m the conditions

sup Apg,i(x) < oo. (2.4)

x>0

Proof Conditions (2.4) guarantee the validity of the Hardy inequality

([f s

for functions g; if we take g(£) = f(£)b;(¢), we can rewrite the foregoing Hardy inequality as

( /000 ‘17 < Cl,i( fo w[f(t)!"v(t) dt)’l’.

Now, using (1.3), the Minkowski and the last inequality, we obtain

q i o ’
u(x)‘ai(x)’qu) SCl,z‘(/O |g(t)|p"(t)|bi(t)’pdt>

q
u(x) dx)

/0 " a@bif () dt

1

00| px q % co| m x q q
k(x, d d = {(x)b; d d
(/0 /(; (%, 0)f (t) dt| u(x) x) (/0 ;/(; a;(x)b;()f () dt| u(x) x)
< 2( /0 w‘ /0 xai(x)bi(t)f(t) dt qu(x) dx) !
3 Cri SO d )p,
521: L (/0 (&) v(e) de
i.e., we have derived inequality (1.1). O

Remark 2.3 Let us mention that the expression A,y ;(x) in (2.3) is nothing else than the
expression A,(x) from (1.9), where we replace A, B by A;, B;, respectively, with A;, B; from
(1.5).

3 Necessary conditions

First let us introduce some auxiliary notions.

Definition 3.1 We will say that the system (matrix) {Di.j}Z}ﬂ of real numbers D;; satisfies

the ellipticity condition if there exists a constant Cg > 0 such that

ZDz’,iézfj > Cg ZDt,zfiz forall§ = {§}7, e R™.
i=1

ij=1
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Remark 3.2 (i) The ellipticity condition is equivalent to the positive definiteness of the
quadratic form

Zbi,j‘i:igj with & = {§}7, e R",
ij=1
where

~ (1 - C)Dl',,‘, i :j;

= ..
Di,j; l#}

with some 0 < c < 1.
(ii) A sufficient condition for the ellipticity to be satisfied is

Djj < (1-c)\/DyiDy; fori#j.

Indeed, if we denote M~ = {(,/) : D;;£;§; < 0,1 <i,j < m}, then

Y Dyg& =Y Dl - Y IDylI&lIE]
i-1

ij=1 (ij)eM~

> Dyt?— Y (1-0)y/DiiDl4l1&]

i=1 (i)eM-
- iDég_ Z (1—0) (sz +D3,:2)
g o (ij)eM- 2 o "
m
> CZDi,i§52~
i=1

To find necessary conditions for (1.1) to hold, we consider three cases.
(I) The case p = 2,1 < g < 00. Denote for this case

. (% -1 s i
Ay = szl;l([))</z </0 k“(x, t)v (t)dt> u(x)d.x) .

Theorem 3.3 Let p =2 and 1 < g < 0o. Then the following condition
Ay <0 (3.1)
is necessary for inequality (1.1) to hold.

Proof For z > 0 and for {B;}?”; from (1.5) let {B;, };_, be an arbitrary maximal linearly inde-
pendent subsystem of {B;}?", in L*(0, z), which, for simplicity, we denote by {B;},. Using
the Gram-Schmidt method of orthogonalization to the system {B;}”, in L*(0, z), we obtain
a system {B;;}”, such that

Bi(t)=)_ Bij(2)B;(t)

j-1
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fort € (0,z) and i = 1,2,..., m. Using this we rewrite the kernel in (1.6) in the form

K(x,t) = ZAi(x)Bi(t)
i=1
= ZAZ(X) Z ,Bi,j(Z)Bj,z(t)
i-1 j=1
=Y Bia(t) Y Bij@Alx
j=1 i=1

ZA,Z(x (1) = K, (x,2),

for t € (0,z), where A;,(x) = >_", Bi(2)Ai(x).
Let1 <j < n, then choosing f;.(£) = x(0,2) (L‘)B,Z(t)||B,Z||L2 02) and using the orthogonality
of the system {B; .}, we estimate the left-hand side of (1.6) as

ool px ¢ \}
IKfzlla = < /O fo K(x, t)f;.(¢) dt dx)
oo| pz ¢ \}
> < /Z /0 K(x, t)fj.(t)dt dx)
0 z q
_ < / fo K, )Bo(8) dt dx) 1Bicl
00 q 1
= (/ ZAlz(x)/ B,.(t)B;(t) dt dx) 1Bjzll 3 0.0

- < / |A,»,Z(x)|qu)q< /0 |B,»,z(t)|2dt)2. (3.2)

This estimate together with (1.6) implies

nC=CY Ifillz = Y IKfcllia

j=1 j=1
n ooAlZ qd )6( ZBlz 2d)7
zZ(/ awlfas) ' ( [[Bu0f a
= A3(2). (3.3)

Using the Minkowski inequality, we estimate A}(z) in the form

n 00 z % q %
Ai(z) = Z( f [( /0 }A,,Z(x)B,»,z(t)th) } dx)

j=1

“Is ([ 177\
([ mmora) T

Page 6 of 15
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2 i :
dt) dx)
2
dt)
2\ 4
dt)
1

m 2 % q
/ / > " Aix)Bi() dt) dx)
z 0 i-1
_ ( / - ( / * e v () dt)zu(x)dx)q. (3.4)
z 0

Since z > 0 is arbitrary and inequality (1.1) (i.e., inequality (1.6)) holds, we conclude that C
is finite and we get (3.1). a

. / * | ) ijII:A;,z(x)Bj,z(t)

/Z i ( /OZ i iAi(x),Bi,/(z)Bj,z(t)

[SSY
Q=

dx)
1
q
dx)

j=1 i=1

/: Z ZAi(x)ﬂi,j(Z)Bj,z(t)

i=1 j=1

Moreover, we can show that condition (2.4) is also necessary if we add some assump-
tions. For this purpose, denote

Dyjlz) = /0 BB () dt - /0 BB 0 de, (3.5)

where B;(£) = b;(£)v12(¢).

Definition 3.4 We say that the condition Ej is satisfied if there exists a constant Cg such
that for every z > 0 the system {Di,j(z)}z}:l satisfies the ellipticity condition.

Theorem 3.5 Let p =2 and 1< q < 00. Suppose that the system {D;;(2)}/;_, from (3.5) sat-
isfies the condition E,. Then (sufficient) condition (2.4) is necessary for (1.1) to hold.

Proof Using Theorem 3.3, formula (3.4), the condition E; and the Minkowski inequality,
we obtain

Z 1Kfizllza > OZ K2 (x, £)vL(2) dt) 7I,t(x) dx) !

a

(L (
</ oo(/ > a@a @b (’f)V'l(t)dt)zu(x)dx)é
(3 1

ij=1
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> /Ck h Ai(x)| T dx ! ZBi(t)Z a)’
z 0

= CE</OO|ai(x)|qu(x) dx) ! (/be(t)v‘l(t) dt>7
z 0

= VCrAumi(2) (3.6)

for arbitrary i: 1 < i < m. Consequently, from (3.3) and (3.6), we get (2.4). The theorem is
proved. d

(II) The case 1 < p < 2,1 < g < 0o. Let us denote

D)(2) = / ZB”;(t)B’;(t)dt, 1<ij,l<m,
0

where éﬁ(t) := B;(¢) |B,4(t)|pT_2 belongs to L2(0, z) since

zZ z ‘ p' 1% z . p’ %
/O\B’i(t)] dtg(/o |Bi(t)| dt) </0 |B;(2)] dt) < 00.

Definition 3.6 We will say that the condition E, is satisfied if there exists a constant
Cr > 0 such that for every z > 0 the system {Di.‘l(z)}l’,”;:1 satisfies the ellipticity condition
forj=1,2,...,m.

Theorem 3.7 Let1<p<2and]l<q<oo.Ifthe condition E, holds, then (2.4) is necessary
for inequality (1.1) to hold.

Proof Letz>0andlet1l <j<m. Let {Eik}l?=1 be a maximal linearly independent subsys-
tem of {Bé}im: 1in L*(0, z), which, for simplicity, we denote by {B’;};’zl. Thus, using the method
of orthogonalization, we get an orthogonal system {B’i,z};’zl in L*(0, z) such that

n
Bi()=) B @B (&), i=12,...,m. (3.7)
I=1
iy . p=2
If we denote g(t) = B/l’z(t) ||B§yz ||Z§ 026G = IB; ||L2§f( 20,2) and choose the following test function

in (1.6) as

-2

7L = x00®)q|B0)] 7 g(t),

then the left- and right-hand sides are estimated in the forms:
j z (P’EZ)P P }7
Wl = o [ 180" el )

gc,(/o |B,(t)|"'dt> v (/0 |g(t)|2dt)2

=1, (3.8)


http://www.journalofinequalitiesandapplications.com/content/2013/1/310

Kufner et al. Journal of Inequalities and Applications 2013, 2013:310 Page 9 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/310

and

. 0o X . q %
I, = ([ ][ kwooad @)

. ( / m‘ /0 Ko 0)f] () de quy
- c,»(/zoo‘/ozfd(x,t)g(t)dt

where Ki(x, ) = Y7, A;(x)B(2).
Using (3.7) we rewrite the kernel K/(x,¢t) in the form

'\
dx) , (3.9)

B(x,t) =y Ayx) [Z ﬁf,l(Z)B’),z(t)}
i=1 I=1

=Y Al (®)B),(t) = Ki(x,1),
I=1

where Aﬁyz(x) = ZZIAi(x),B{J(Z).
Then we have from (3.8), (3.9) and (1.6) that

| rz q 1 4
cj(/ ’/0 K (x,)g(2) dt’ dx)q <Kl <C. (3.10)

Now, repeating the proofs of the foregoing theorems with respect to (3.10) with the

kernel Id(x, t), we can also get a similar estimate as in (3.2) in the form

ne= VIl zo X ([ awle) ([ B0 a) s
=1 =1 z 0

Then supposing the condition E,, we also obtain the following estimate:

q
2

Sz o ([l as) ([0 )
=1 =1 z 0
> ¢ ( / (sz;,l(zmi(x)Al(x))

1
q
dx
il=1

- o [ (Lobenr) a)
z i=1

> ¢y/Cr ( / 00|Aj(x)|qu> ! < /0 1B dt) '
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Sl = @ [awiras)( [Isora)
-1 z 0

> /Ck ( / oo|a;(x)|qu(x) dx> ! ( f Z|bj(t) P (1) dr)”
z 0

= /CeAw,j(2), (312)

=

which holds for1 <j <m and z > 0.
Using this estimate and (3.11), we finally get that

JC
£ supAyi(z) < C.

n o z0

The proof is complete. d

(III) The case 1 < p < 00, 2 < g < 00. Another approach how to investigate inequality (1.1)
is based on the following lemma (for details, see [7]).

Lemma 3.8 Let 1< p,q < oo. Then inequality (1.6) holds for all f € L? if and only if the
conjugate inequality

1

( / "Ik g dx)’7 < c( / T lew]” dx) ! (3.13)
0 0

holds for all g € LY, where

N

K*g(x):= /OoK(t,x)g(t) de (3.14)

and K(t,x) =y 1) Ai(t)B;(x).

The lemma enables to replace the investigation of inequality (1.6) by the investigation

of inequality (3.13).
Denote
. o] - -
D= [ Awdnd, 1<ijl<m (315)
z

where A}l'(t) =A(1)|A;(2)] o belongs to L(z, 00) since
q-2

/OO|A§(t)|2dt < (/00|Ai(t)|th>q </00|Aj(t)|th)2q < 0.

Definition 3.9 We will say that the condition E is satisfied if there exists a constant
Cr > 0 and for every z > 0 such that the system {Dﬁ) /(2)}])_, satisfies the ellipticity condition
forj=1,2,...,m.
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Theorem 3.10 Let1 < p < 00 and 2 < q < oo. Ifthe condition Ey holds for the system from
(3.15), then (2.4) is necessary for inequality (1.6) to hold.

Proof Let z>0 and let 1 <j < m. Let {Aék}zzl be a maximal linearly independent sub-
system of {A’;}f’il in L*(z, 00), which, for simplicity, we denote by {A’L .- Thus, using the

method of orthogonalization, we get an orthogonal system {Aé,z}?:1 in L?(z, 00) such that

n
At)=Y o @A), i=12,...,m. (3.16)
I=1
~ ~ q -2
If we denote g(¢) = AILZ(t)”A}l,Z”ZZ(zoo , 6 = |4 ||L2§ 2200 and choose the test function in the

form
700 = xemo D5 14,0)| T g(0)

then the left- and right-hand sides are similarly estimated in the forms:

1Al <1, (317)

and

v L
dx> " (3.18)

Il =[] Renewa

where Ki(t,x) = Y7, AJ(£)B(x).
Using (3.7) we can rewrite the kernel K/(t, x) in the form

K, x)—ZB(x)|:Z L (2)A) (t):|

=Y A (0B),(x) = Ki(t,),
[=1

where B’é'z(x) =3 Bi(x)afyl(z).
Then we have from (3.17), (3.18) and (3.13) that

Al

Now repeating the proof of the foregoing theorem with respect to (3.19) with the kernel

v v
dx) <cC. (3.19)

/ ” KI(t,%)g(t)dt

I~(£(t, x), we can also get a similar estimate as in (3.11) in the form

( f OO|A’,’,Z(x)]2 dx) g (3.20)

N =

nCzZ”K*ﬁ{Z”M, ZC,Z</ () |P dt)
=1 =1

Page 11 of 15
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Then, supposing that the condition E is satisfied, we also obtain the following estimate:
n ) n z , [% . 2 %
Sz o ([ 1o o) ([ 1a0f w)
=1 =1 z

P/

ZC,( f (Zlfg,,(z)s,»(x)&(x)> dx)

il=1

/ 1
/

ZC,JFE(/ (ZU (2)|Bi(x)| >%dx),,

> C,Ja(/oojsj(x);”’ dx)”' (/0 yA,-(t)]th) y

S Al = ool [ laeoftar) ([0l o)
-1 z 0

CE( / oo|a;(x)|qu(x) dx> ! < / 50| v (0) dt)

= VCeAu,(2), (3.21)

=

which holds for all 1 <j <m and z > 0.
Using this estimate and (3.20), we finally get that

VC
£ supAu,i(z) < C.
n

z>0

The proof is complete. O

4 Criteria of compactness
As far as the compactness of the imbedding k : L#(v) — L%(u) is concerned, we have the
following.

Theorem 4.1 Let1 < p < g < 00. Let us suppose that the functions Ay ;(x) from (2.4) satisfy
lim Aypi(x) = lim Ap;(x) =0, i=1,2,...m. (4.1)
x—0+ xX—>00

Then the operator k from (1.4) maps LP(v) into L1 (u) compactly.

Proof Conditions (4.1) guarantee that the operators of k; from L?(v) into L?(u) are compact
(see, e.g, [7]). Since k = )", k;, the compactness of k follows. (]

Theorem 4.2 Let1<p <2 and 1< q < oo. Let the condition E, be satisfied. If the operator
k from (1.4) is compact from LP (v) to L1(u), then conditions (2.4) and (4.1) are satisfied.
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Proof Let us suppose that operator (1.4) is compact. Then it is bounded, and, by using
Theorems 3.3 and 3.7, we get (2.4) and also the compactness of the operator

Kf(x) = fo S A@Bf (1) dt (4.2)
i=1

as an operator from L? to L9.
Let z > 0 and 1 < j,/ < m. Moreover, we choose the functionflfz(t) as in the proof of
Theorem 3.7. Let & € L¥ be arbitrary, then using (3.8) we have

* j < ‘ 4 7 ([ J (P ;
‘/0 h(t)fl’z(t)dt‘_(/o |h(?)] dt) (fo 1) dt)

< (/Z]h(t)|p,dt)p/,
0

from which it follows that
oo
/ h(@t)f,.(t)dt — 0
0

as z — 0+, i.e., the class of functions fl} , weakly converges to zero in L” as z — O+,
This and the compactness of operator (4.2) imply that the class of images I(f/ , strongly
converges to zero in L? as z — 0+, i.e,,

”Kfl{Z”Lq — 0 asz— 0+. (4.3)

Analogously as in the proof of Theorem 3.7, (3.12) can also be obtained, i.e.,

DKL o = v/ CeAn(2), (4.4)
=1

which with (4.3) implies that lim,_, ¢, Ax(z) =0 forall1 <j < m.
Now we show that lim,_, . Ap(z) = 0 for all 1 < j < m. The compactness of operator
(4.2) follows from the compactness of the conjugate operator K* (3.14) from L7 to L¥.
Let & € L7 and choose h,(¢) = X(Z»OO)(t)h(t)/”h”Lq,(z,oo)‘ It can be shown as in foregoing
cases that the class of functions {/,,z € (0, 00)} weakly converges to zero in L7 as z — oco.
Then the class of images K*}, strongly converges to zero in L as z — 00, i.e.,

”K*hZHuﬂ’ —0 asz— oo. (4.5)

Using the dual principle of L¥, we have

o0
|K*he |, = sup / FOK*h,(t)de
fel? JO

Ifllzp <1

= sup /Ooohz(x)(/oxl((x, Df () dt> dx. (4.6)

fel?
Ifllzp <1
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Now, choosing fl’ , as in the proof of Theorem 3.7 instead of f in (4.6), we have
|K*he|| = / h, (%) / ZA (x)B)(0)g(t) dt dx
z
= / he(x) / ZA’ (%)B],(t)g(t) dt dx

z Cf/ hZ(x)All,z(x) dxA |B§,z(t)’2 dt” ||L2 0,2)
z

> [ o [0 a) (@7)

Since the operator K is bounded from L? to L7, i.e., (3.10) is satisfied, from which we
Will have that A’l’z € L1(z,00), z > 0. Then, choosing the function h’ A’ |A’LZ|”1’2 X(2,00)»
h]l,z(t) := h1,(¢) and from (4.7), we have

, 0 i/ (. 3
Iy = o [ laiore) ([0 )

As in the proof of Theorem 3.7, by estimating the right-hand side, we obtain also that

n
S IK | = VCeAwM,(@)
=1

Consequently, from this and (4.5) we have that lim,_, ., Asj(z) =0 forall 1 <j < m.
The theorem is proved. d

Theorem 4.3 Let1 < p <00 and 2 < q < oo. Let the condition Ey be satisfied. If operator
(1.4) is compact from L?(v) to L1(u), then conditions (2.4) and (4.1) are satisfied.

Proof First we show that lim,_.., A,j(z) = 0, for which we use the compactness of the

dual operator K* and the proof of Theorem 3.10. Then it can be shown that the class of

functions f/z also weakly converges to zero in L7 as z — oo and
|K el o =0 asz— co. (4.8)

Analogously as in the proof of Theorem 3.10, (3.21) can be obtained, i.e.,

2NNy = VCrAw@)
=1

which with (4.8) implies that lim,_, oo Ay7(z) =0 forall 1 <j < m.
To prove lim,_, o, Ap,j(2) = 0, we use the duality principle as in the proof of the foregoing

theorem. The formulation of the corresponding proof is left to the reader as an exercise.
O
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Corollary4.4 Letl <p <2andp < q < 00. Let us suppose that the condition E,, is satisfied.
Then operator (1.4) from L (v) into L1(u) is bounded and compact if and only if (2.4) and
(4.1) are satisfied, respectively.

Corollary 4.5 Let2 < g < oo and 1< p < q. Let us suppose that the condition Ey is satis-
fied. Then operator (1.4) from L?(v) into L4(u) is bounded and compact if and only if (2.4)
and (4.1) are satisfied, respectively.

Corollary 4.6 Let 1< p < g < oo. Let us suppose that the conditions E, and Ey are satis-
fied. Then operator (1.4) from L? (v) into L1(u) is bounded and compact if and only if (2.4)
and (4.1) are satisfied, respectively.
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