Integral mean estimates for the polar derivative of polynomials whose zeros are within a circle

Ahmad Zireh*, Elahe Khojastehnezhad and S Reza Musawi

Correspondence:
azireh@shahroodut.ac.ir Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

Abstract

For a polynomial $p(z)$ of degree n, having all zeros in $|z| \leq k$, where $k \leq 1$, Dewan et al. (Southeast Asian Bull. Math. 34:69-77, 2010) proved that for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$ and for each $r>0$,

$$
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+k e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|D_{\alpha} p(z)\right| .
$$

In this paper we improve and extend the above inequality. Our result generalizes certain well-known polynomial inequalities.
MSC: Primary 30A10; secondary 30C10; 30D15
Keywords: polar derivative; polynomial; inequality; maximum modulus; restricted zeros

1 Introduction and statement of results

Let $p(z)$ be a polynomial of degree n. Then according to Bernstein's inequality [1] on the derivative of a polynomial, we have

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| . \tag{1.1}
\end{equation*}
$$

This result is best possible and equality holds for a polynomial that has all zeros at the origin.
If we restrict to the class of polynomials which have all zeros in $|z| \leq 1$, then it has been proved by Turán [2] that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|p(z)| . \tag{1.2}
\end{equation*}
$$

The inequality (1.2) is sharp and equality holds for a polynomial that has all zeros on $|z|=1$.
As an extension to (1.2), Malik [3] proved that if $p(z)$ has all zeros in $|z| \leq k$, where $k \leq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{1+k} \max _{|z|=1}|p(z)| . \tag{1.3}
\end{equation*}
$$

This result is best possible and equality holds for $p(z)=(z-k)^{n}$.

[^0]On the other hand, Malik [4] obtained a generalization of (1.2) in the sense that the righthand side of (1.2) is replaced by a factor involving the integral mean of $p(z)$ on $|z|=1$. In fact he proved that if $p(z)$ has all its zeros in $|z| \leq 1$, then for each $r>0$,

$$
\begin{equation*}
\left.n\left[\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right]^{\frac{1}{r}} \leq\left[\int_{0}^{2 \pi}\left|1+e^{i \theta}\right|^{r} d \theta\right]_{|z|=1}^{\frac{1}{r}} \max _{\mid p^{\prime}}(z) \right\rvert\, \tag{1.4}
\end{equation*}
$$

As an extension of (1.4), Aziz [5] proved that if $p(z)$ has all its zeros in $|z| \leq k \leq 1$, then for each $r>0$,

$$
\begin{equation*}
n\left[\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right]^{\frac{1}{r}} \leq\left[\int_{0}^{2 \pi}\left|1+k e^{i \theta}\right|^{r} d \theta\right]^{\frac{1}{r}} \max _{|z|=1}\left|p^{\prime}(z)\right| . \tag{1.5}
\end{equation*}
$$

As a generalization of (1.5), Aziz and Shah [6] proved that if $p(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-\nu} z^{n-\nu}$, $1 \leq \mu \leq n$, is a polynomial of degree n, having all its zeros in $|z| \leq k \leq 1$, then for each $r>0$,

$$
\begin{equation*}
n\left[\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right]^{\frac{1}{r}} \leq\left[\int_{0}^{2 \pi}\left|1+k^{\mu} e^{i \theta}\right|^{r} d \theta\right]^{\frac{1}{r}} \max _{|z|=1}\left|p^{\prime}(z)\right| \tag{1.6}
\end{equation*}
$$

Let $D_{\alpha} p(z)$ denote the polar derivative of the polynomial $p(z)$ of degree n with respect to $\alpha \in \mathbb{C}$. Then $D_{\alpha} p(z)=n p(z)+(\alpha-z) p^{\prime}(z)$. The polynomial $D_{\alpha} p(z)$ is of degree at most $n-1$ and it generalizes the ordinary derivative in the sense that

$$
\lim _{\alpha \rightarrow \infty}\left[\frac{D_{\alpha} p(z)}{\alpha}\right]=p^{\prime}(z)
$$

Shah [7] extended (1.2) to the polar derivative of $p(z)$ and proved that if all zeros of the polynomial $p(z)$ lie in $|z| \leq 1$, then for every α with $|\alpha| \geq 1$, we have

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{2}(|\alpha|-1) \max _{|z|=1}|p(z)| . \tag{1.7}
\end{equation*}
$$

This result is best possible and equality holds for $p(z)=(z-1)^{n}$ with $\alpha \geq 1$.
Aziz and Rather [8] extended the inequality (1.3) to the polar derivative of a polynomial. In fact, they proved that if all zeros of $p(z)$ lie in $|z| \leq k, k \leq 1$, then for every α with $|\alpha| \geq k$, we get

$$
\begin{equation*}
\max _{|z|=1}\left|D_{\alpha} p(z)\right| \geq \frac{n}{1+k}(|\alpha|-k) \max _{|z|=1}|p(z)| . \tag{1.8}
\end{equation*}
$$

This result is best possible and equality holds for $p(z)=(z-k)^{n}$ with $\alpha \geq k$.
Recently Dewan et al. [9] generalized the inequalities (1.5) and (1.8). They proved that if $p(z)$ has all its zeros in $|z| \leq k \leq 1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq k$ and for each $r>0$,

$$
\begin{equation*}
n(|\alpha|-k)\left\{\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{r} d \theta\right\}^{\frac{1}{r}} \leq\left\{\int_{0}^{2 \pi}\left|1+k e^{i \theta}\right|^{r} d \theta\right\}^{\frac{1}{r}} \max _{|z|=1}\left|D_{\alpha} p(z)\right| . \tag{1.9}
\end{equation*}
$$

In the limiting case, when $r \rightarrow \infty$, the above inequality is sharp and equality holds for the polynomial $p(z)=(z-k)^{n}$ with $\alpha \geq k$.

The following result which we prove is a generalization as well as a refinement of inequalities (1.9) and (1.8). In a precise set up, we have the following.

Theorem 1.1 If $p(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n, having all its zeros in $|z| \leq k \leq 1$ and $m=\min _{|z|=k}|p(z)|$, then for $\lambda, \alpha \in \mathbb{C}$ with $|\lambda| \leq 1,|\alpha| \geq s_{\mu}$ and $r>0, d>1, q>1$, with $\frac{1}{d}+\frac{1}{q}=1$, we have

$$
\begin{align*}
& n\left(|\alpha|-s_{\mu}\right)\left[\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\lambda m\right|^{r} d \theta\right]^{\frac{1}{r}} \\
& \quad \leq\left[\int_{0}^{2 \pi}\left|1+s_{\mu} e^{i \theta}\right|^{d r} d \theta\right]^{\frac{1}{d r}}\left[\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)\right|^{q r} d \theta\right]^{\frac{1}{q r}}, \tag{1.10}
\end{align*}
$$

where $s_{\mu}=\frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|}$. In the limiting case, when $r \rightarrow \infty$, the above inequality is sharp and equality holds for the polynomial $p(z)=(z-k)^{n}$ with $\alpha \geq k$.

Letting $q \rightarrow \infty$ (so that $d \rightarrow 1$) in (1.10), we have the following.

Corollary 1.2 If $p(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, is a polynomial of degree n, having all its zeros in $|z| \leq k \leq 1$ and $m=\min _{|z|=k}|p(z)|$, then for $\lambda, \alpha \in \mathbb{C}$ with $|\lambda| \leq 1,|\alpha| \geq s_{\mu}$ and $r>0$,

$$
\begin{equation*}
n\left(|\alpha|-s_{\mu}\right)\left[\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\lambda m\right|^{r} d \theta\right]^{\frac{1}{r}} \leq\left[\int_{0}^{2 \pi}\left|1+s_{\mu} e^{i \theta}\right|^{r} d \theta\right]^{\frac{1}{r}} \max _{|z|=1}\left|D_{\alpha} p(z)\right|, \tag{1.11}
\end{equation*}
$$

where s_{μ} is defined as in Theorem 1.1.

Remark 1.3 Since by Lemma 2.3, $s_{\mu} \leq k$, the inequality (1.11) provides a refinement and generalization of the inequality (1.9).

If we divide both sides of the inequality (1.11) by $|\alpha|$ and make $|\alpha| \rightarrow \infty$, we obtain the following refinement and generalization of the inequality (1.6).

Corollary 1.4 If $p(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-\nu} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n, having all its zeros in $|z| \leq k \leq 1$ and $m=\min _{|z|=k}|p(z)|$, then for every $\lambda \in \mathbb{C}$ with $|\lambda| \leq 1$ and $r>0$,

$$
\begin{equation*}
n\left[\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\lambda m\right|^{r} d \theta\right]^{\frac{1}{r}} \leq\left[\int_{0}^{2 \pi}\left|1+s_{\mu} e^{i \theta}\right|^{r} d \theta\right]^{\frac{1}{r}} \max _{|z|=1}\left|p^{\prime}(z)\right|, \tag{1.12}
\end{equation*}
$$

where s_{μ} is defined as in Theorem 1.1.

Letting $r \rightarrow \infty$ in (1.10) and choosing the argument of λ suitably with $|\lambda|=1$, we have the following result.

Corollary 1.5 If $p(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-\nu} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n, having all its zeros in $|z| \leq k \leq 1$, then for every $\alpha \in \mathbb{C}$ with $|\alpha| \geq s_{\mu}$,

$$
\begin{equation*}
\frac{n\left(|\alpha|-s_{\mu}\right)}{1+s_{\mu}}\left[\max _{|z|=1}|p(z)|+\min _{|z|=k}|p(z)|\right] \leq \max _{|z|=1}\left|D_{\alpha} p(z)\right|, \tag{1.13}
\end{equation*}
$$

where s_{μ} is defined as in Theorem 1.1.

2 Lemmas

For the proof of the theorem, the following lemmas are needed. The first lemma is due to Laguerre [10].

Lemma 2.1 If all the zeros of an nth degree polynomial $p(z)$ lie in a circular region C and w is any zero of $D_{\alpha} p(z)$, then at most one of the points w and α may lie outside C.

Lemma 2.2 If $p(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-\nu} z^{n-\nu} ; 1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros in $|z| \leq k \leq 1$ and $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$, then on $|z|=1$

$$
\begin{equation*}
\left|q^{\prime}(z)\right| \leq s_{\mu}\left|p^{\prime}(z)\right| \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mu}{n}\left|\frac{a_{n-\mu}}{a_{n}}\right| \leq k^{\mu}, \tag{2.2}
\end{equation*}
$$

where $s_{\mu}=\frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|}$.
The above lemma is due to Aziz and Rather [8].

Lemma 2.3 If $p(z)=a_{n} z^{n}+\sum_{\nu=\mu}^{n} a_{n-\nu} z^{n-\nu}, 1 \leq \mu \leq n$, has all its zeros in $|z| \leq k, k \leq 1$, then

$$
\begin{equation*}
s_{\mu} \leq k^{\mu} \tag{2.3}
\end{equation*}
$$

where s_{μ} is same as above.

Proof By using Lemma 2.2, we have

$$
\begin{equation*}
\frac{\mu}{n}\left|\frac{a_{n-\mu}}{a_{n}}\right| \leq k^{\mu} \tag{2.4}
\end{equation*}
$$

or

$$
\mu\left|a_{n-\mu}\right| \leq n\left|a_{n}\right| k^{\mu},
$$

or equivalently,

$$
\mu\left|a_{n-\mu}\right|-n\left|a_{n}\right| k^{\mu} \leq 0
$$

Since $k \leq 1$ and $\mu \geq 1$, the above inequality implies

$$
\left(k^{\mu-1}-k^{\mu}\right)\left(\mu\left|a_{n-\mu}\right|-n\left|a_{n}\right| k^{\mu}\right) \leq 0,
$$

that is,

$$
\mu\left|a_{n-\mu}\right| k^{\mu-1}-n\left|a_{n}\right| k^{\mu} k^{\mu-1}-\mu\left|a_{n-\mu}\right| k^{\mu}+n\left|a_{n}\right| k^{2 \mu} \leq 0
$$

which is equivalent to

$$
\mu\left|a_{n-\mu}\right| k^{\mu-1}+n\left|a_{n}\right| k^{2 \mu} \leq\left(n\left|a_{n}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|\right) k^{\mu},
$$

which implies

$$
s_{\mu}=\frac{n\left|a_{n}\right| k^{2 \mu}+\mu\left|a_{n-\mu}\right| k^{\mu-1}}{n\left|a_{n}\right| k^{\mu-1}+\mu\left|a_{n-\mu}\right|} \leq k^{\mu} .
$$

Lemma 2.4 If $p(z)=a_{n} z^{n}+\sum_{v=\mu}^{n} a_{n-v} z^{n-v}, 1 \leq \mu \leq n$, is a polynomial of degree n, having all zeros in the closed disk $|z| \leq k, k \leq 1$, then for every real or complex number α with $|\alpha| \geq s_{\mu}$ and $|z|=1$, we have that

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right| \geq\left(|\alpha|-s_{\mu}\right)\left|p^{\prime}(z)\right| \tag{2.5}
\end{equation*}
$$

where s_{μ} is same as above.

Proof Let $q(z)=z^{n} \overline{p(1 / \bar{z})}$, then $\left|q^{\prime}(z)\right|=\left|n p(z)-z p^{\prime}(z)\right|$ on $|z|=1$. Thus on $|z|=1$, we get

$$
\begin{aligned}
\left|D_{\alpha} p(z)\right| & =\left|n p(z)+(\alpha-z) p^{\prime}(z)\right|=\left|\alpha p^{\prime}(z)+n p(z)-z p^{\prime}(z)\right| \\
& \geq\left|\alpha p^{\prime}(z)\right|-\left|n p(z)-z p^{\prime}(z)\right|,
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left|D_{\alpha} p(z)\right| \geq|\alpha|\left|p^{\prime}(z)\right|-\left|q^{\prime}(z)\right| . \tag{2.6}
\end{equation*}
$$

By combining (2.1) and (2.6), we obtain

$$
\left|D_{\alpha} p(z)\right| \geq\left(|\alpha|-s_{\mu}\right)\left|p^{\prime}(z)\right| .
$$

3 Proof of the theorem

Proof of Theorem 1.1 If $k=0$, then $p(z)$ has all its zeros at the origin, therefore $p(z)=a_{n} z^{n}$. In this case $m=0, s_{\mu}=0$ and $D_{\alpha} P(z)=n \alpha a_{n} z^{n-1}$, therefore on the left-hand side of (1.10), we have

$$
n\left(|\alpha|-s_{\mu}\right)\left[\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\lambda m\right|^{r} d \theta\right]^{\frac{1}{r}}=n|\alpha|\left|a_{n}\right|(2 \pi)^{\frac{1}{r}}
$$

and on the right-hand side of (1.10) we have

$$
\begin{aligned}
& {\left[\int_{0}^{2 \pi}\left|1+s_{\mu} e^{i \theta}\right|^{d r} d \theta\right]^{\frac{1}{d r}}\left[\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)\right|^{q r} d \theta\right]^{\frac{1}{q r}}} \\
& \quad=(2 \pi)^{\frac{1}{d r}} n|\alpha|\left|a_{n}\right|(2 \pi)^{\frac{1}{q r}}=n|\alpha|\left|a_{n}\right|(2 \pi)^{\frac{1}{r}\left(\frac{1}{d}+\frac{1}{q}\right)}=n|\alpha|\left|a_{n}\right|(2 \pi)^{\frac{1}{r}} .
\end{aligned}
$$

Therefore, in the case $k=0$, Theorem 1.1 is true. So, we suppose that $k>0$, which implies $s_{\mu}>0$. Let $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$, then on $|z|=1$, we have

$$
\begin{equation*}
\left|p^{\prime}(z)\right|=\left|n q(z)-z q^{\prime}(z)\right| . \tag{3.1}
\end{equation*}
$$

Let $m=\min _{|z|=k}|p(z)|$. Now $m \leq|p(z)|$ for $|z|=k$, therefore, if λ is any real or complex number such that $|\lambda|<1$, then

$$
|\lambda m|<|p(z)| \quad \text { for }|z|=k .
$$

Since all the zeros of $p(z)$ lie in $|z| \leq k$, it follows by Rouche's theorem that all the zeros of

$$
F(z)=p(z)-\lambda m
$$

also lie in $|z| \leq k$. If $G(z)=z^{n} \overline{F\left(\frac{1}{\bar{z}}\right)}=q(z)+\bar{\lambda} m z^{n}$, then by applying Lemma 2.2 to $F(z)$, we have

$$
\begin{equation*}
\left|G^{\prime}(z)\right| \leq s_{\mu}\left|F^{\prime}(z)\right| \quad \text { for }|z|=1, \tag{3.2}
\end{equation*}
$$

that is,

$$
\left|q^{\prime}(z)+\bar{\lambda} n m z^{n-1}\right| \leq s_{\mu}\left|p^{\prime}(z)\right| .
$$

Now using (3.1) in the above inequality, we get

$$
\begin{equation*}
\left|q^{\prime}(z)+\bar{\lambda} n m z^{n-1}\right| \leq s_{\mu}\left|n q(z)-z q^{\prime}(z)\right| . \tag{3.3}
\end{equation*}
$$

Since $p(z)$ has all its zeros in $|z| \leq k \leq 1$, by the Gauss-Lucas theorem all the zeros of $p^{\prime}(z)$ also lie in $|z| \leq k \leq 1$. This implies that the polynomial

$$
\begin{equation*}
z^{n-1} \overline{p^{\prime}\left(\frac{1}{\bar{z}}\right)}=n q(z)-z q^{\prime}(z) \tag{3.4}
\end{equation*}
$$

has all its zeros in $|z| \geq \frac{1}{k} \geq 1$.
Therefore, it follows from (3.3) and (3.4) that the function

$$
\begin{equation*}
w(z)=\frac{z\left(q^{\prime}(z)+\bar{\lambda} n m z^{n-1}\right)}{s_{\mu}\left(n q(z)-z q^{\prime}(z)\right)} \tag{3.5}
\end{equation*}
$$

is analytic for $|z| \leq 1$, and $|w(z)| \leq 1$ for $|z| \leq 1$. Furthermore, $w(0)=0$. Thus the function

$$
1+s_{\mu} w(z)
$$

is subordinate to the function

$$
1+s_{\mu} z
$$

for $|z| \leq 1$.

Hence by a well-known property of subordination [11], we have for each $r>0$ and $0 \leq$ $\theta \leq 2 \pi$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+s_{\mu} w\left(e^{i \theta}\right)\right|^{r} d \theta \leq \int_{0}^{2 \pi}\left|1+s_{\mu} e^{i \theta}\right|^{r} d \theta \tag{3.6}
\end{equation*}
$$

Also from (3.5), we have

$$
1+s_{\mu} w(z)=\frac{n\left(q(z)+\bar{\lambda} m z^{n}\right)}{n q(z)-z q^{\prime}(z)} .
$$

Therefore

$$
\begin{equation*}
n\left|q(z)+\bar{\lambda} m z^{n}\right|=\left|1+s_{\mu} w(z)\right|\left|n q(z)-z q^{\prime}(z)\right| \tag{3.7}
\end{equation*}
$$

Since $\left|q(z)+\bar{\lambda} m z^{n}\right|=|p(z)+\lambda m|$ for $|z|=1$, we get from (3.7) and (3.1)

$$
\begin{equation*}
n|p(z)+\lambda m|=\left|1+s_{\mu} w(z)\right|\left|p^{\prime}(z)\right| \quad \text { for }|z|=1 . \tag{3.8}
\end{equation*}
$$

From (2.5) and (3.8), we have

$$
\begin{equation*}
n\left(|\alpha|-s_{\mu}\right)|p(z)+\lambda m| \leq\left|1+s_{\mu} w(z)\right|\left|D_{\alpha} p(z)\right| \quad \text { for }|z|=1 . \tag{3.9}
\end{equation*}
$$

By combining (3.6) and (3.9), for each $r>0$, we get

$$
\begin{align*}
& \left(n\left(|\alpha|-s_{\mu}\right)\right)^{r} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\lambda m\right|^{r} d \theta \\
& \quad \leq \int_{0}^{2 \pi}\left|1+s_{\mu} e^{i \theta}\right|^{r}\left|D_{\alpha} p\left(e^{i \theta}\right)\right|^{r} d \theta \tag{3.10}
\end{align*}
$$

Now applying Holder's inequality for $d>1, q>1$, with $\frac{1}{d}+\frac{1}{q}=1$ to (3.10), we get

$$
\begin{align*}
& n\left(|\alpha|-s_{\mu}\right)\left[\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)+\lambda m\right|^{r} d \theta\right]^{\frac{1}{r}} \\
& \quad \leq\left[\int_{0}^{2 \pi}\left|1+s_{\mu} e^{i \theta}\right|^{d r} d \theta\right]^{\frac{1}{d r}}\left[\int_{0}^{2 \pi}\left|D_{\alpha} p\left(e^{i \theta}\right)\right|^{q r} d \theta\right]^{\frac{1}{q r}}, \tag{3.11}
\end{align*}
$$

which is the desired result.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors declare that they have no competing interests. All authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to the referees for the careful reading of the paper and for the helpful suggestions and comments.

References

1. Bernstein, $S:$ Leons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle. Gauthier-Villars, Paris (1926)
2. Turán, P: Über die ableitung von Polynomen. Compos. Math. 7, 89-95 (1939)
3. Malik, MA: On the derivative of a polynomial. J. Lond. Math. Soc. 1, 57-60 (1969)
4. Malik, MA: An integral mean estimate for polynomials. Proc. Am. Math. Soc. 91, 281-284 (1984)
5. Aziz, A: Integral mean estimate for polynomials with restricted zeros. J. Approx. Theory 55, 232-239 (1988)
6. Aziz, A, Shah, WM: An integral mean estimate for polynomials. Indian J. Pure Appl. Math. 28, 1413-1419 (1997)
7. Shah, WM: A generalization of a theorem of Paul Turán. J. Ramanujan Math. Soc. 1, 67-72 (1996)
8. Aziz, A, Rather, NA: A refinement of a theorem of Paul Turán, concerning polynomials. Math. Inequal. Appl. 1, 231-238 (1998)
9. Dewan, KK, Singh, N, Mir, A, Bhat, A: Some inequalities for the polar derivative of a polynomial. Southeast Asian Bull. Math. 34, 69-77 (2010)
10. Laguerre, E: Oeuvres de Laquerre, vol. 1, 2nd edn, pp. 48-66. Chelsea, New York (1898)
11. Hille, E: Analytic Function Theory, II. Ginn and Company, New York, Toronto (1962)

doi:10.1186/1029-242X-2013-307

Cite this article as: Zireh et al.: Integral mean estimates for the polar derivative of polynomials whose zeros are within a circle. Journal of Inequalities and Applications 2013 2013:307.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance

Open access: articles freely available online
High visibility within the field
Retaining the copyright to your article

```
Submit your next manuscript at $ springeropen.com
```


[^0]: © 2013 Zireh et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

