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Abstract
For a polynomial p(z) of degree n, having all zeros in |z| ≤ k, where k ≤ 1, Dewan et al.
(Southeast Asian Bull. Math. 34:69-77, 2010) proved that for every α ∈C with |α| ≥ k
and for each r > 0,

n(|α| – k)
{∫ 2π

0

∣∣p(eiθ )∣∣r dθ} 1
r ≤

{∫ 2π

0

∣∣1 + keiθ
∣∣r dθ} 1

r
max
|z|=1

∣∣Dαp(z)
∣∣.

In this paper we improve and extend the above inequality. Our result generalizes
certain well-known polynomial inequalities.
MSC: Primary 30A10; secondary 30C10; 30D15
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1 Introduction and statement of results
Let p(z) be a polynomial of degree n. Then according to Bernstein’s inequality [] on the
derivative of a polynomial, we have

max
|z|=

∣∣p′(z)
∣∣ ≤ nmax

|z|=
∣∣p(z)∣∣. (.)

This result is best possible and equality holds for a polynomial that has all zeros at the
origin.
If we restrict to the class of polynomials which have all zeros in |z| ≤ , then it has been

proved by Turán [] that

max
|z|=

∣∣p′(z)
∣∣ ≥ n


max
|z|=

∣∣p(z)∣∣. (.)

The inequality (.) is sharp and equality holds for a polynomial that has all zeros on |z| = .
As an extension to (.), Malik [] proved that if p(z) has all zeros in |z| ≤ k, where k ≤ ,

then

max
|z|=

∣∣p′(z)
∣∣ ≥ n

 + k
max
|z|=

∣∣p(z)∣∣. (.)

This result is best possible and equality holds for p(z) = (z – k)n.
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On the other hand,Malik [] obtained a generalization of (.) in the sense that the right-
hand side of (.) is replaced by a factor involving the integral mean of p(z) on |z| = . In
fact he proved that if p(z) has all its zeros in |z| ≤ , then for each r > ,

n
[∫ π



∣∣p(eiθ )∣∣r dθ

] 
r
≤

[∫ π



∣∣ + eiθ
∣∣r dθ

] 
r
max
|z|=

∣∣p′(z)
∣∣. (.)

As an extension of (.), Aziz [] proved that if p(z) has all its zeros in |z| ≤ k ≤ , then
for each r > ,

n
[∫ π



∣∣p(eiθ )∣∣r dθ

] 
r
≤

[∫ π



∣∣ + keiθ
∣∣r dθ

] 
r
max
|z|=

∣∣p′(z)
∣∣. (.)

As a generalization of (.), Aziz and Shah [] proved that if p(z) = anzn +
∑n

ν=μ an–νzn–ν ,
 ≤ μ ≤ n, is a polynomial of degree n, having all its zeros in |z| ≤ k ≤ , then for each r > ,

n
[∫ π



∣∣p(eiθ )∣∣r dθ

] 
r
≤

[∫ π



∣∣ + kμeiθ
∣∣r dθ

] 
r
max
|z|=

∣∣p′(z)
∣∣. (.)

Let Dαp(z) denote the polar derivative of the polynomial p(z) of degree n with respect
to α ∈ C. Then Dαp(z) = np(z) + (α – z)p′(z). The polynomial Dαp(z) is of degree at most
n –  and it generalizes the ordinary derivative in the sense that

lim
α→∞

[
Dαp(z)

α

]
= p′(z).

Shah [] extended (.) to the polar derivative of p(z) and proved that if all zeros of the
polynomial p(z) lie in |z| ≤ , then for every α with |α| ≥ , we have

max
|z|=

∣∣Dαp(z)
∣∣ ≥ n


(|α| – 

)
max
|z|=

∣∣p(z)∣∣. (.)

This result is best possible and equality holds for p(z) = (z – )n with α ≥ .
Aziz and Rather [] extended the inequality (.) to the polar derivative of a polynomial.

In fact, they proved that if all zeros of p(z) lie in |z| ≤ k, k ≤ , then for every α with |α| ≥ k,
we get

max
|z|=

∣∣Dαp(z)
∣∣ ≥ n

 + k
(|α| – k

)
max
|z|=

∣∣p(z)∣∣. (.)

This result is best possible and equality holds for p(z) = (z – k)n with α ≥ k.
Recently Dewan et al. [] generalized the inequalities (.) and (.). They proved that if

p(z) has all its zeros in |z| ≤ k ≤ , then for every α ∈C with |α| ≥ k and for each r > ,

n
(|α| – k

){∫ π



∣∣p(eiθ )∣∣r dθ

} 
r
≤

{∫ π



∣∣ + keiθ
∣∣r dθ

} 
r
max
|z|=

∣∣Dαp(z)
∣∣. (.)

In the limiting case, when r → ∞, the above inequality is sharp and equality holds for the
polynomial p(z) = (z – k)n with α ≥ k.
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The following result which we prove is a generalization as well as a refinement of in-
equalities (.) and (.). In a precise set up, we have the following.

Theorem . If p(z) = anzn +
∑n

ν=μ an–νzn–ν ,  ≤ μ ≤ n, is a polynomial of degree n, having
all its zeros in |z| ≤ k ≤  andm =min|z|=k |p(z)|, then for λ,α ∈ Cwith |λ| ≤ , |α| ≥ sμ and
r > , d > , q > , with 

d +

q = , we have

n
(|α| – sμ

)[∫ π



∣∣p(eiθ ) + λm
∣∣r dθ

] 
r

≤
[∫ π



∣∣ + sμeiθ
∣∣dr dθ

] 
dr

[∫ π



∣∣Dαp
(
eiθ

)∣∣qr dθ

] 
qr
, (.)

where sμ = n|an|kμ+μ|an–μ|kμ–

n|an|kμ–+μ|an–μ| . In the limiting case, when r → ∞, the above inequality is
sharp and equality holds for the polynomial p(z) = (z – k)n with α ≥ k.

Letting q → ∞ (so that d → ) in (.), we have the following.

Corollary . If p(z) = anzn+
∑n

ν=μ an–νzn–ν ,  ≤ μ ≤ n, is a polynomial of degree n, having
all its zeros in |z| ≤ k ≤  andm =min|z|=k |p(z)|, then for λ,α ∈ Cwith |λ| ≤ , |α| ≥ sμ and
r > ,

n
(|α| – sμ

)[∫ π



∣∣p(eiθ ) + λm
∣∣r dθ

] 
r
≤

[∫ π



∣∣ + sμeiθ
∣∣r dθ

] 
r
max
|z|=

∣∣Dαp(z)
∣∣, (.)

where sμ is defined as in Theorem ..

Remark . Since by Lemma ., sμ ≤ k, the inequality (.) provides a refinement and
generalization of the inequality (.).

If we divide both sides of the inequality (.) by |α| and make |α| → ∞, we obtain the
following refinement and generalization of the inequality (.).

Corollary . If p(z) = anzn+
∑n

ν=μ an–νzn–ν ,  ≤ μ ≤ n, is a polynomial of degree n, having
all its zeros in |z| ≤ k ≤  andm =min|z|=k |p(z)|, then for every λ ∈Cwith |λ| ≤  and r > ,

n
[∫ π



∣∣p(eiθ ) + λm
∣∣r dθ

] 
r
≤

[∫ π



∣∣ + sμeiθ
∣∣r dθ

] 
r
max
|z|=

∣∣p′(z)
∣∣, (.)

where sμ is defined as in Theorem ..

Letting r → ∞ in (.) and choosing the argument of λ suitably with |λ| = , we have
the following result.

Corollary . If p(z) = anzn+
∑n

ν=μ an–νzn–ν ,  ≤ μ ≤ n, is a polynomial of degree n, having
all its zeros in |z| ≤ k ≤ , then for every α ∈C with |α| ≥ sμ,

n(|α| – sμ)
 + sμ

[
max
|z|=

∣∣p(z)∣∣ +min
|z|=k

∣∣p(z)∣∣] ≤ max
|z|=

∣∣Dαp(z)
∣∣, (.)

where sμ is defined as in Theorem ..
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2 Lemmas
For the proof of the theorem, the following lemmas are needed. The first lemma is due to
Laguerre [].

Lemma . If all the zeros of an nth degree polynomial p(z) lie in a circular region C and
w is any zero of Dαp(z), then at most one of the points w and α may lie outside C.

Lemma . If p(z) = anzn +
∑n

ν=μ an–νzn–ν ;  ≤ μ ≤ n, is a polynomial of degree n having
all its zeros in |z| ≤ k ≤  and q(z) = znp( z ), then on |z| = 

∣∣q′(z)
∣∣ ≤ sμ

∣∣p′(z)
∣∣ (.)

and

μ

n

∣∣∣∣an–μ

an

∣∣∣∣ ≤ kμ, (.)

where sμ = n|an|kμ+μ|an–μ|kμ–

n|an|kμ–+μ|an–μ| .

The above lemma is due to Aziz and Rather [].

Lemma . If p(z) = anzn +
∑n

ν=μ an–νzn–ν ,  ≤ μ ≤ n, has all its zeros in |z| ≤ k, k ≤ ,
then

sμ ≤ kμ, (.)

where sμ is same as above.

Proof By using Lemma ., we have

μ

n

∣∣∣∣an–μ

an

∣∣∣∣ ≤ kμ, (.)

or

μ|an–μ| ≤ n|an|kμ,

or equivalently,

μ|an–μ| – n|an|kμ ≤ .

Since k ≤  and μ ≥ , the above inequality implies

(
kμ– – kμ

)(
μ|an–μ| – n|an|kμ

) ≤ ,

that is,

μ|an–μ|kμ– – n|an|kμkμ– –μ|an–μ|kμ + n|an|kμ ≤ ,
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which is equivalent to

μ|an–μ|kμ– + n|an|kμ ≤ (
n|an|kμ– +μ|an–μ|)kμ,

which implies

sμ =
n|an|kμ +μ|an–μ|kμ–

n|an|kμ– +μ|an–μ| ≤ kμ.

�

Lemma . If p(z) = anzn +
∑n

ν=μ an–νzn–ν ,  ≤ μ ≤ n, is a polynomial of degree n, having
all zeros in the closed disk |z| ≤ k, k ≤ , then for every real or complex number α with
|α| ≥ sμ and |z| = , we have that

∣∣Dαp(z)
∣∣ ≥ (|α| – sμ

)∣∣p′(z)
∣∣, (.)

where sμ is same as above.

Proof Let q(z) = znp(/z), then |q′(z)| = |np(z) – zp′(z)| on |z| = . Thus on |z| = , we get

∣∣Dαp(z)
∣∣ = ∣∣np(z) + (α – z)p′(z)

∣∣ = ∣∣αp′(z) + np(z) – zp′(z)
∣∣

≥ ∣∣αp′(z)
∣∣ – ∣∣np(z) – zp′(z)

∣∣,
which implies

∣∣Dαp(z)
∣∣ ≥ |α|∣∣p′(z)

∣∣ – ∣∣q′(z)
∣∣. (.)

By combining (.) and (.), we obtain

∣∣Dαp(z)
∣∣ ≥ (|α| – sμ

)∣∣p′(z)
∣∣. �

3 Proof of the theorem

Proof of Theorem . If k = , then p(z) has all its zeros at the origin, therefore p(z) = anzn.
In this case m = , sμ =  and DαP(z) = nαanzn–, therefore on the left-hand side of (.),
we have

n
(|α| – sμ

)[∫ π



∣∣p(eiθ ) + λm
∣∣r dθ

] 
r
= n|α||an|(π ) r ,

and on the right-hand side of (.) we have

[∫ π



∣∣ + sμeiθ
∣∣dr dθ

] 
dr

[∫ π



∣∣Dαp
(
eiθ

)∣∣qr dθ

] 
qr

= (π )

dr n|α||an|(π )


qr = n|α||an|(π )


r (


d +


q ) = n|α||an|(π ) r .
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Therefore, in the case k = , Theorem . is true. So, we suppose that k > , which implies
sμ > . Let q(z) = znp( z ), then on |z| = , we have

∣∣p′(z)
∣∣ = ∣∣nq(z) – zq′(z)

∣∣. (.)

Let m = min|z|=k |p(z)|. Now m ≤ |p(z)| for |z| = k, therefore, if λ is any real or complex
number such that |λ| < , then

|λm| < ∣∣p(z)∣∣ for |z| = k.

Since all the zeros of p(z) lie in |z| ≤ k, it follows by Rouche’s theorem that all the zeros of

F(z) = p(z) – λm

also lie in |z| ≤ k. If G(z) = znF( z ) = q(z) + λmzn, then by applying Lemma . to F(z), we
have

∣∣G′(z)
∣∣ ≤ sμ

∣∣F ′(z)
∣∣ for |z| = , (.)

that is,

∣∣q′(z) + λnmzn–
∣∣ ≤ sμ

∣∣p′(z)
∣∣.

Now using (.) in the above inequality, we get

∣∣q′(z) + λnmzn–
∣∣ ≤ sμ

∣∣nq(z) – zq′(z)
∣∣. (.)

Since p(z) has all its zeros in |z| ≤ k ≤ , by the Gauss-Lucas theorem all the zeros of p′(z)
also lie in |z| ≤ k ≤ . This implies that the polynomial

zn–p′
(

z

)
= nq(z) – zq′(z) (.)

has all its zeros in |z| ≥ 
k ≥ .

Therefore, it follows from (.) and (.) that the function

w(z) =
z(q′(z) + λnmzn–)
sμ(nq(z) – zq′(z))

(.)

is analytic for |z| ≤ , and |w(z)| ≤  for |z| ≤ . Furthermore, w() = . Thus the function

 + sμw(z)

is subordinate to the function

 + sμz

for |z| ≤ .
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Hence by a well-known property of subordination [], we have for each r >  and  ≤
θ ≤ π ,

∫ π



∣∣ + sμw
(
eiθ

)∣∣r dθ ≤
∫ π



∣∣ + sμeiθ
∣∣r dθ . (.)

Also from (.), we have

 + sμw(z) =
n(q(z) + λmzn)
nq(z) – zq′(z)

.

Therefore

n
∣∣q(z) + λmzn

∣∣ = ∣∣ + sμw(z)
∣∣∣∣nq(z) – zq′(z)

∣∣. (.)

Since |q(z) + λmzn| = |p(z) + λm| for |z| = , we get from (.) and (.)

n
∣∣p(z) + λm

∣∣ = ∣∣ + sμw(z)
∣∣∣∣p′(z)

∣∣ for |z| = . (.)

From (.) and (.), we have

n
(|α| – sμ

)∣∣p(z) + λm
∣∣ ≤ ∣∣ + sμw(z)

∣∣∣∣Dαp(z)
∣∣ for |z| = . (.)

By combining (.) and (.), for each r > , we get

(
n
(|α| – sμ

))r ∫ π



∣∣p(eiθ ) + λm
∣∣r dθ

≤
∫ π



∣∣ + sμeiθ
∣∣r∣∣Dαp

(
eiθ

)∣∣r dθ . (.)

Now applying Holder’s inequality for d > , q > , with 
d + 

q =  to (.), we get

n
(|α| – sμ

)[∫ π



∣∣p(eiθ ) + λm
∣∣r dθ

] 
r

≤
[∫ π



∣∣ + sμeiθ
∣∣dr dθ

] 
dr

[∫ π



∣∣Dαp
(
eiθ

)∣∣qr dθ

] 
qr
, (.)

which is the desired result. �
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