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Abstract

In this paper, we modify Halpern and Mann’s iterations for finding a fixed point of an
infinite family of quasi-¢-asymptotically nonexpansive mappings in the intermediate
sense in Banach spaces. We prove a strong convergence theorem of the iterative
sequence generated by the proposed iterative algorithm in a uniformly smooth and
strictly convex Banach space which also enjoys the Kadec-Klee property. The results
presented in this paper improve and extend some recent corresponding results.
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1 Introduction

Let E be a real Banach space with the dual space E* and let C be a nonempty closed convex
subset of E. We denote by R* and R the set of all nonnegative real numbers and the set of
all real numbers, respectively. Also, we denote by J the normalized duality mapping from
E to 2F defined by

Jx = {x* €E*: (x,x*) = ||x|1? = ”x* ||2}, Vx € E, (1.1)

where (-,-) denotes the generalized duality pairing. Recall that if E is smooth, then J is
single-valued and norm-to-weak* continuous, and that if E is uniformly smooth, then J is
uniformly norm-to-norm continuous on bounded subsets of E. We shall denote by J the
single-valued duality mapping.

A Banach space E is said to be strictly convex if @ <lforallx,ye U={z€E:|z| =1}
with x # y. E is said to be uniformly convex if, for each ¢ € (0,2], there exists § > 0 such
that w <1-$forallx,y € U with ||x — y|| > ¢. E is said to be smooth if the limit

. x+ty|| —|[x
el

t—0 t
exists for all x,y € U. E is said to be uniformly smooth if the above limit exists uniformly
inx,yel.
© 2013 Ma et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.journalofinequalitiesandapplications.com/content/2013/1/306
mailto:WL64mail@yahoo.com.cn
http://creativecommons.org/licenses/by/2.0

Ma et al. Journal of Inequalities and Applications 2013, 2013:306 Page2of 13
http://www.journalofinequalitiesandapplications.com/content/2013/1/306

Remark 1.1 The following basic properties of a Banach space E can be found in [1]:

(i) If E is a uniformly smooth Banach space, then J is uniformly continuous on each
bounded subset of E.

(ii) If E is a reflective and strictly convex Banach space, then /™! is norm-to-weak*
continuous.

(ili) If E is a smooth, reflective and strictly convex Banach space, then the normalized
duality mapping J : E — 2F" is single-valued, one-to-one and surjective.

(iv) A Banach space E is uniformly smooth if and only if E* is uniformly convex. If E is
uniformly smooth, then it is smooth and reflective.

(v) Each uniformly convex Banach space E has the Kadec-Klee property, that is, for any
sequence {x,} C E, if x, =~ x € E and ||x,|| — ||«||, then x,, = «x. See [1, 2] for more
details.

(vi) If E is a strictly convex and reflective Banach space with a strictly convex dual E*
and J*: E* — E is the normalized duality mapping in E*, then J ™t = J*, JJ* = Iz« and
JJ =Ig.

Next, we assume that E is a smooth, reflective and strictly convex Banach space. Con-
sider the functional defined as in [3, 4] by

o(x,9) = x> = 2(x,Jy) + IylI>,  Vx,y €E. 1.2)

It is clear that in a Hilbert space H, (1.2) reduces to ¢(x,y) = ||x — y||?, Vx,y € H.
It is obvious from the definition of ¢ that

(el = lIyll)* < d(x9) < (llsll + y1))°, Y,y €E, 1.3)
and

G (My + (L-2Jz)) < 2p(x,y) + (1 - Md(x,2), Vx,y€eE. (1.4)
Following Alber [3], the generalized projection I1¢ : E — C is defined by

Ic(x) = arginf ¢(y,x), VxeE. (1.5)
yeC
That is, I[Tcx = x, where x is the unique solution to the minimization problem ¢(x,x) =
infycc ¢, x).

The existence and uniqueness of the operator Il¢ follows from the properties of the
functional ¢(x,y) and strict monotonicity of the mapping J (see, e.g., [1-5]). In a Hilbert
space H, [1¢ = Pc.

Let H be a real Hilbert space, let D be a nonempty subset of H, and let T : D — D
be a nonlinear mapping. The symbol F(T) stands for the fixed point set of T. Recall the
following. T is said to be nonexpansive if

I1Tx - Tyl < llx—=yll, Vx,y€D. (1.6)
T is said to be quasi-nonexpansive if F(T) # ¥ and

lp-Tyll <llp-yll, VYpeF(T),VyeD. (L.7)
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T is said to be asymptotically nonexpansive if there exists a sequence {1} C [0, 00) with
i, — 0 as n — oo such that

|T7% - T"y|| < @+ w)llx=yl, Vx,y€eD,¥n>1 (1.8)

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[6]. Since 1972, a host of authors have studied the convergence of iterative algorithms for
such a class of mappings.

T is said to be asymptotically quasi-nonexpansive if F(T) # ¢ and there exists a sequence
{m,} C [0, 00) with i, — 0 as n — oo such that

lp-T"y| <@+ w)lp-yll, VpeF(T),¥YyeD,Vn>1. (1.9)

Let C be a nonempty closed convex subset of E, and let T be a mapping from C into itself.
A point p € C is called an asymptotically fixed point of T [7] if there exists a sequence
{x,} C C such that x, — p and ||x,, — Tx,|| — 0. The set of asymptotical fixed points of T
will be denoted by F(T). A point p € C is said to be a strong asymptotic fixed point of T, if
there exists a sequence {x,} C C such that x, — p and ||x,, — Tx,|| — 0. The set of strong
asymptotical fixed points of T will be denoted by F(T).

A mapping T : C — C is said to be relatively nonexpansive [8-10] if F(T) # @, F(T) =
f(T) and ¢(p, Tx) < ¢p(p,x),Vx € C, p € F(T).

A mapping T : C — C is said to be relatively asymptotically nonexpansive if

F(T)#9,  F(T)=E(T) and

(1.10)
¢(l7: Tnx) <@+ Mn)¢(P’ x), Vxe Cpe F(T),

where {1, } C [0,00) is a sequence such that i, — 0 as n — oo.

A mapping T : C — C is said to be quasi-¢-nonexpansive if F(T) # ¢ and ¢(p, Tx) <
o(p,x),Vx € C,p e F(T).

A mapping T : C — C is said to be quasi-¢-asymptotically nonexpansive if F(T) # ¢},

and there exists a real sequence {u,} C [0, 00) with u,, — 0 as n — oo such that
d)(p, T”x) <A+ undp,x), VYn>1lxeC,peF(T). (1.11)

Remark 1.2 From the definition, it is easy to know that
(i) Each relatively nonexpansive mapping is closed;
(i) The class of quasi-¢-asymptotically nonexpansive mappings contains properly the
class of quasi-¢-nonexpansive mappings as a subclass, but the converse is not true;
(iii) The class of quasi-¢-nonexpansive mappings contains properly the class of
relatively nonexpansive mappings as a subclass, but the converse may be not true.
(See [11-15] for more details.)

Asymptotically (quasi-)nonexpansive mappings in the intermediate sense were first con-
sidered by Bruck et al. [16]. Very recently Qin and Wang [17] introduced the concept of

the asymptotically (quasi-)¢-nonexpansive mappings in the intermediate sense as follows:
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(1) T is said to be asymptotically nonexpansive in the intermediate sense if it is contin-
uous and the following inequality holds:

limsup sup (| 7% - T"y| - lx - yIl) < 0. (1.12)

n—>oo xyeC

It is worth mentioning that the class of asymptotically nonexpansive in the intermediate
sense mappings may not be Lipschitzian continuous; see [16, 18, 19].

(2) T is said to be asymptotically quasi-nonexpansive in the intermediate sense if F(T') #
@ and the following inequality holds:

limsup sup (|p-T"y| -llp-»l) <o. (1.13)
n—o0 peF(T),yeC

(3) T is said to be an asymptotically ¢-nonexpansive mapping in the intermediate sense
if and only if

limsup sup (¢(7"x, T"y) — ¢(x,y)) <O. (1.14)

n—-oo xyeC

(4) T : C — C is said to be quasi-¢-asymptotically nonexpansive mapping in the inter-
mediate sense if and only if F(T) # ¥ and

limsup sup (¢(p, T"x) — p(p,x)) <O. (1.15)
n—>o0 peF(T)xeC

Remark 1.3 The asymptotically (quasi-)¢-nonexpansive mapping in the intermediate
sense is a generalization of the asymptotically (quasi-)nonexpansive mapping in the in-
termediate sense in the framework of Banach spaces.

Definition 1.4 An infinite family of mappings {T;}{2, : C — C is said to be uniformly
quasi-¢-asymptotically nonexpansive in the intermediate sense if (>, F(T;) # ¥ for each
i>1and

limsup sup (¢(p, Tl"x) - ¢>(p,x)) <0. (1.16)
n—>o0  peF(T;)xeC

If we define

£, = max{O, sup  (¢(p, T/'x) — 9(p,%)) },

PEF(T;)xeC

then &, — 0 as n — o0. It follows that (1.16) is reduced to
o (p, T'x) < Pp(p,x) + &1 Vp e F(T),Vx e C,Vn>1. (1.17)
Many problems in nonlinear analysis can be reformulated as a problem of finding a fixed
point of a nonexpansive mapping. In 1953, Mann [20] introduced the iteration as follows:

a sequence {x,} defined by

Xnil = OpXy + (1 - Oln) Txy, (118)
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where the initial guess x; € C is arbitrary and {a,,} is a real sequence in [0, 1]. It is known
that under appropriate settings the sequence {x,} converges weakly to a fixed point of T
However, for nonexpansive mappings, even in a Hilbert space, the Mann iteration may fail
to converge strongly; for example, see [21].

Some attempts to construct the iteration method guaranteeing the strong convergence
have been made. For example, Halpern [22] proposed the following so-called Halpern
iteration:

Ke1 = At + (1 — o) Ty, (1.19)

where u € C is fixed, 1 € C is arbitrarily chosen and {a,} is a real sequence in [0,1].

Recently, Nilsrakoo and Saejung [23] modified Halpern and Mann’s iterations intro-
duced the following iteration to find a fixed point of the relatively nonexpansive mappings
in the Banach space:

a1 = TS (o + (1= o) (B + (1= B)] ). (1.20)

They proved that {x,} converges strongly to Ilg¢u, where {«,}, {8,} are sequences in
(0,1), Mg (r) is the generalized projection from E onto F(T).

Iteration methods for approximating fixed points of asymptotically nonexpansive map-
pings, quasi-¢-nonexpansive mapping, quasi-¢-asymptotically nonexpansive mapping
have been further studied by authors (see, e.g., [6, 24—29]).

Quite recently, Qin and Wang [17] introduced the following iterative scheme to find
a fixed point of the quasi-¢-asymptotically nonexpansive mappings in the intermediate
sense in a reflective, strictly convex and smooth Banach space such that both E and E*
have the Kadec-Klee property:

x0 € E  chosen arbitrarily,

Cay =6,
Ci=Niea Cai
X1 = Hcle’

Cinsti) = {1 € Clniy 2 9 Ti) < 2000 — 4, 0y = JT]%) + Euiy}s
C;’1+1 = ﬂieA C(n+1,i)’

Xntl = HC,,ﬂxO; Vn > 01

where

i =max[0, sup  (#(p, V%) - plp) |-

peF(T;)xeC

They proved that the sequence {x,} converges strongly to x = [ _, r(r;)%o-

Inspired and motivated by the recent work of Bruck [16], Qin and Wang [17], Nilsrakoo
and Saejung [23], Chang et al. [24], efc., in this paper, we modify Halpern and Mann’s
iterations for finding a fixed point of an infinite family of quasi-¢-asymptotically nonex-
pansive mappings in the intermediate sense in Banach spaces. We prove a strong conver-
gence theorem of the iterative sequence generated by the proposed iterative algorithm in
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a uniformly smooth and strictly convex Banach space with the Kadec-Klee property. The
results presented in this paper improve and extend some recent corresponding results.

2 Preliminaries

Throughout this paper, let E be a real Banach space with the dual space E* and let C be
a nonempty closed convex subset of E. We denote the strong convergence, weak conver-
gence of a sequence {x,} to a point x € E by x,, — x, x, — x, respectively, and F(T) is the
fixed point set of a mapping 7.

Lemma 2.1 [30] Let E be a real uniformly smooth and strictly convex Banach space with
the Kadec-Klee property, and let C be a nonempty closed convex subset of E. Let {x,} and
{yu} be two sequences in C such that x, — p and ¢(x,,y,) — 0, where ¢ is the functional
defined by (1.2), then y,, — p.

Lemma 2.2 [3] Let E be a smooth, strictly convex and reflective Banach space and let C be
a nonempty closed convex subset of E. Then the following conclusions hold:

(a) ¢(x’ HCy) + ¢(Hcyr)’) = ¢(x:)’)’ vxeC, ye E;

(b) fxeEandze C,thenz=ex iff (z—y,Jx—Jz) > 0,Vy € C;

(c) Forx,y € E, ¢(x,y) =0 ifand only if x = y.

Lemma 2.3 [31] Let E be a uniformly convex Banach space, r be a positive number and
B,(0) be a closed ball of E. Then, for any sequence {x;};>, C B,(0) and for any sequence
{1335 of positive numbers with Y| A, = 1, there exists a continuous, strictly increasing
and convex function g : [0,2r] — [0, 00), g(0) = O such that for any positive integer i #1, the

following holds:
o0 2 o0
D hta| =D Mallal® = Aanig (Il — i) (21)
n=1 n=1

3 Main results
Theorem 3.1 Let C be a nonempty, closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. Let {T;}0, : C — C be an
infinite family of closed and uniformly quasi-¢-asymptotically nonexpansive mappings in
the intermediate sense and for each i > 1, let T; be uniformly L;-Lipschitzian continuous.
{x,} is defined by

xo0 € C  chosen arbitrarily, Co=C,
I =T atuxo + (1= ay)Jz,),
Zy = ]71 (:Bn,ijn + Z?:l ﬂn,i]Tl'nxn)x (31)

Cu1={veCy: ¢(vvyn) < a,0(v,%0) + (1 — ) p(v, %) + &},

Xp+l = HC,,Hle) n>0,

where &, = max{0, sup,cne r(1)xec(@®: T'%) = d(p, 0)}, Ic,,, is the generalized projection
of E onto Cys1, {Buo> Bui} and {a,} are sequences in [0, 1] satisfying the following conditions:
(1) foreachn >0, Buo+ Y ooy Bui=1
(2) liminf,_ o BuoPui >0 foranyi>1;
(3) 0 <a, <a<lforsomeac(0,1).
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If N2 E(T;) is a nonempty and bounded subset of C, then the sequence {x,} converges
strongly to p € (i F(T;), where p = Tl p(r,)%o-

Proof We shall divide the proof into six steps.

Step 1. We show that ﬂffl F(T;) and C,, are closed and convex for each n > 0.

Using the similar methods given in the proof of Theorem 3.1 by Qin and Wang [17], the
conclusion that F(T;) is closed and convex subset of C for each i > 1 can be easily obtained.
Therefore (5, F(T;) is closed and convex in C.

Again, by the assumption, Cy = C is closed and convex. Suppose that C, is closed and

convex for some n > 1. Since for any z € C,,, we know

O(2,9n) < aup(z,%0) + (1 — y)P(2,%4) + &4
& 20,(z,Jx0) + 21 — an) (2, J%n) — 2(2, Jyn) (3.2)

2
[

2 2
<aullxoll® + A =) l%ull” = llyull” + &n.

Hence the set C,,1 = {z € C,, : 2a,{z, Jxo) + 2(1 — ) {2, Jxn) — 2(2,Jyn) < ot ]lxo]|? + (1 -
o) 1% l1? = |ynll* + &} is closed and convex. Therefore ¢, xo and I (%o are well
defined.

Step 2. We show that (5, F(T;) C C, forall n > 0.

It is obvious that (), F(T;) C Cy = C. Suppose that (-, F(T;) C C, for some n > 1.
Since E is uniformly smooth, E* is uniformly convex. For any given g € (.5, F(T:) C C,,

we observe that

(@ yn) = ¢(@.] " (etnfxo + A - an)zs))
= llgll? = 2{q, anfro + (1 = ct)za) + |l etalo + (1 = )z
< llgll* = 20x(q, J0) — 2(1 — &) (G, Jzn) + ctullxo 1> + (1 = ct) 12 ||

= 0!n¢(4»xo) +(1- an)¢(qr Zn). (3.3)

On the other hand, it follows from Lemma 2.3 that for any positive integer / > 1 and for
any q € (i, F(T;), we have

&(q,z0) = & (61:]1 (,Bn,ojxn + Z ﬂn,i]Tinxn>>

i=1
2

o)
IBn,OIxn + Z lsn,i]T[nxn

i=1

00
= ||Q||2 - 2<61, :Bn,ijn + Zlgn,i]Tinxn> +

i=1

< 1gl” = 2Bn0(q, ) =2 Buil@ T T} %) + Buo 1%l

i=1

00
+ Z ﬁn,i || Tl‘nxn || 2 - ,Bn,Oﬂn,lg( ”]xn - ]T[nxn ”)

i=1

= ﬁn,0¢(q' xn) + Z ﬁn,id’ (CI: Tlnxn) - ﬂn,O,Bn,lg(H]xn _]T[nxn ”)

i=1
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< Buod(qxn) + Zﬁn,i{¢(qrxn) + gn} - ,Bn,O,Bn,lg(”]xn _]T[nxn ”)

i=1

< (g, xn) + En - ﬁn,Oﬂn,lg(H]xn _]T[nxn ”) (3.4)

Substituting (3.4) into (3.3), we get

&G, yn) < onp(q,x0) + (1 — ) p(q, 21)
< aup(gq,x0) + (1~ an)[¢(qrxn) +&; — ,Bn,O,BM,lg(”]xn —]T[nxn ||)]
< o, p(g, %0) + (1 — ) (q,%4) + &, (3.5)
This shows that ¢ € C,,;. Further this implies that (5, F(T;) C C,,1 and hence
N E(T:) € C, for all n > 0. Since (;5, F(T;) is nonempty, C, is a nonempty closed con-
vex subset of E and hence I1¢, exists for all # > 0. This implies that the sequence {x,} is
well defined.

Step 3. We show that {x,} is bounded and {¢(x,,x0)} is a convergent sequence.
It follows from (3.1) and Lemma 2.2 that

¢(xmx0) = ¢(ncnx0)x0)
< (P, x0) — ¢(p, %u)
< ¢(P,xo), VP € C,H_l,VI’l = 0. (36)

From the definition of C,,; that x,, = Il¢,xo and x,,,1 = I1¢,,, %0, we have
O X, %0) < P(Xpa1,%0), Y >0, (3.7)

Therefore, {¢(x,,%0)} is nondecreasing and bounded. So, {¢(x,,x0)} is a convergent se-
quence, without loss of generality, we can assume that lim,,_, o ¢ (x,,%0) = d > 0. In partic-
ular, by (1.3), the sequence {(||x, || — |l%o )2} is bounded. This implies {x,} is also bounded.
Step 4. We prove that {x,} converges strongly to some point p € C.
Since {x,} is bounded and E is reflective, there exists a subsequence {x,,} C {x,} such
that x,,, = p (some point in C). Since C,, is closed and convex and C,,; C C,, this implies
that C, is weakly closed and p € C,, for each n > 0. From x,,, = chixo, we have

(% %0) < (P, x0),  Vm; = 0. (3.8)
Since the norm || - || is weakly lower semi-continuous, we have

liminf ¢ (x,,,%0) = liminf{[loc,, 1> = 2, o) + llx0]1*}
n;j—00 nj— 00

> |IplI* = 2(p, Jxo) + %o 1

= ¢(p%0), (3.9)

and so

¢ (p,%0) =< liminfp(xy;, x0) < imsup ¢ (xs;, x0) =< (P, x0). (3.10)

n;— 00
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This implies that lim,,_, o ¢ (%5, %0) = ¢(p,%0), and so ||x,]| = ||p|. Since x,,, — p, in view
of the Kadec-Klee property of E, it follows that

lim x,, = p. (3.11)
n;—> 00
Since {¢(x4,x0)} is convergent, this together with lim,,_, o ¢(x,;,x0) = @(p,%0), we have
limy,—, o0 (x4, %0) = P(p,x0). If there exists a subsequence {%4;} C {x4} such that x,, — ¢,
then from Lemma 2.2(a), we have that

¢(Pv61)= lim d’(xnirxn]-)

11— 00

= lim ¢(x,,i,1_[cn],x0)

n,',njaoo
< lim_(¢(xn,%0) - ¢(Ic, %o,%0))
1, 1j—> 00
= hm (¢(xn,~:x0)_¢(xni»x0))
11— 00
= ¢(p7x0) - d)(p! xO)
- 0. (3.12)

This implies that p = g and
lim x, = p. (3.13)
Hn—0oQ

Step 5. We show that p € ("5, F(T)).
Since x,,,1 € Cy,1, it follows from (3.1) and (3.13) that

¢(xn+1;yn) =< O5;4(25(‘7Cr1+1;x0) + (1 - an)d)(xwrl:xn) + 5}’1 -0 (as n— OO) (314‘)
Since x,, — p, by Lemma 2.1
lim y, = p. (3.15)

By (3.3) and (3.4), for any g € (-, F(T;), we have

(G, yn) < @nd(q,%0) + (1 — ) P(q, %) + & — (1= an)lgn,oﬁn,lg(”]xn _]Tlnxn ”) (3.16)
So,as n— oo,

(1- an)ﬂn,oﬁn,lg”]xn —JT]'%y, “ < aup(q,%0) + (1 = o) p(q, %) + &1 — (G, y)
— 0. (3.17)

Therefore,

nll>nc}o(1 - an),Bn,O,Bn,lgH]xn _]T[nxn H =0. (318)
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In view of the property of g, we have

||]x,, —JT}'x, || — 0 (asn— 00). (3.19)
Since Jx,, — Jp, this implies that lim,,_, o JT}'%, = Jp. Remark 1.1(ii) yields

T'x, —~p (asn— 00). (3.20)
Again, since

| 77l = llpll = [7(T7%a) | = Wl < ) (Z7%) = | = 0 (as n— o0),
this together with (3.20) and the Kadec-Klee property of E shows that

lim T}'x, = p. (3.21)

n—00

By the assumption that 7} is uniformly L;-Lipschitz continuous, we have

1774, = T | < | T 50 = T | + | 77 01 = 2 |
191 = Hall + 200 = TP |

= (Ll + 1)||xn+l _xn” + || Tln+1xn+l — Xn+l || + Hxn - Tlnxn H

This together with (3.21) and x, — p shows that lim,_, || Tl”*lx,, - T/x4|l = 0 and
lim,,_, 5 Tl”*lx,, = p, that is, lim,_.o, T;T}'x, = p. In view of the closeness of T}, it follows
that Tjp = p, that is, p € F(T}). By the arbitrariness of / > 1, we have p € (5, F(T).

Step 6. We prove that x, — p = IInx p(r,%o-

Let g = I F(z;)%0. From x, = ¢, %o and g € (5, F(T;) C C,,, we have

O X, x0) < Pg,%0), VYn=>0. (3.22)
This implies that
o, x0) = nlirglo¢(xn,xo) < ¢(q,%0). (3.23)

By the definition of p = IT, p(1,)%0, we have p = g. Therefore, x, — p =TI p(1,)%0. This
completes the proof. d

In Theorem 3.1, as T; = T for each i € N, we can obtain the following corollary.
Corollary 3.2 Let C be a nonempty, closed and convex subset of a uniformly smooth and

strictly convex Banach space E with the Kadec-Klee property. Let T : C — C be a closed

uniformly L-Lipschitzian continuous and uniformly quasi-$-asymptotically nonexpansive
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mapping in the intermediate sense such that F(T) is a nonempty and bounded subset of C.

Let {x,} be a sequence generated by

x0 € C chosen arbitrarily, Co=C,
Yn = jil(an]xo + (1 - an)]Zn);
2n =] (Buxn + (1= B T" %), (3.24)

Cn+1 = {v € Cn : d)(vryn) < an¢(vxx0) + (1 - an)¢(vxxn) + gn}r

x40 =g, %0, n>0,

where &, = max{0, Sup,cr(r)xec(@ (B, T"%) — d(p, %))}, Ic,,, is the generalized projection of
E onto Cyy1, {0y} is a sequence in [0,a], {B,} C (0,1) satisfies that liminf,_, o B,(1-B,) > 0,
then the sequence {x,} converges strongly to p € F(T), where p = Igryxo.

Corollary 3.3 Let C be a nonempty, closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. Let {T;}5, : C — C be an
infinite family of closed and uniformly quasi-¢-asymptotically nonexpansive mappings in
the intermediate sense and for each i > 1, T; is uniformly L;-Lipschitzian continuous. {x,}
is defined by

xo0 € C  chosen arbitrarily, Co=C,
Zy = ]_1 (Buofxn + Z,O:ol ,Bn,i]Tinxn))
Conn={veCy:d(v,yn) <PV, x,) + &4},

Xntl = HCH+1x01 n=> 0;

(3.25)

where &, = max{0, sup,cne p(r)xec(@®: T'%) = d(p, x))}, Tc,,, is the generalized projection
of E onto Cy1, {Buo» Bui} and {a,} are sequences in [0, 1] satisfying the following conditions:
(1) foreachn>0 Buo+ Y oo Bui =1;
(2) liminf,_ o BuoPui> 0 foranyi>1;
(3) 0 <w, <a<lforsomea € (0,1).
If N2 E(Ty) is a nonempty and bounded subset of C, then the sequence {x,} converges
strongly to p € (io, E(T;), where p = I per%o-

Proof Setting a,, = 0 in Theorem 3.1, then we get that y, = z,,. Thus, from the method of
the proof of Theorem 3.1, we obtain Corollary 3.3 immediately. O

In the Hilbert space, the following corollary can be directly obtained from Theorem 3.1.

Corollary 3.4 Let C be a nonempty, closed and convex subset of a Hilbert space E. Let
(T}, : C — C be an infinite family of closed and uniformly L;-Lipschitzian continuous
and uniformly asymptotically quasi-nonexpansive mappings in the intermediate sense such

that (5, F(T;) is a nonempty and bounded subset of C. Let {x,} be the sequence generated
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x9 € C chosen arbitrarily, Co=C,

Yn = o + (1 - a,)zy,

Zn = ﬁn,Oxn + Z?:Ol ﬁn,iTinxm (326)
12

Crnn = (v € Gyt v =yull® < tullv —xol® + A = an)llv =201 + &},

%Xn1 = Pc, %0, n>0,

where &, = max{0, SUPpe, Fryxecllp— T'x||> - lp—x|1*)}, Pc,,, is the metric projection of

E onto Cyi1, {Buo» Bui} and {w,} are sequences in [0,1] satisfying the following conditions:
(1) foreachn>0 Buo+ > 1) Bui=1;
(2) liminf,_ o ByoBui >0 foranyi>1;
(3) 0 <a, <ac<lforsomea < (0,1).

Then the sequence {x,} converges strongly to p € ( ;o) F(T;), where p = M2 p(ry%o-
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