Some properties of the sequence space $\widehat{B V_{\theta}}(M, p, q, s)$

Mahmut Işik ${ }^{1}$, Yavuz Altin ${ }^{2 *}$ and Mikail Et ${ }^{2}$

"Correspondence:
yaltin23@yahoo.com
${ }^{2}$ Department of Mathematics, Firat University, Elazığ, 23119, Turkey Full list of author information is available at the end of the article

Abstract

In this paper we define the sequence space $\widehat{B V}_{\theta}(M, p, q, s)$ on a seminormed complex linear space by using an Orlicz function. We give various properties and some inclusion relations on this space. MSC: 40A05; 40C05; 40D05 Keywords: Orlicz function; sequence spaces; seminorm

1 Introduction

Let ℓ_{∞} and c denote the Banach spaces of real bounded and convergent sequences $x=\left(x_{n}\right)$ normed by $\|x\|=\sup _{n}\left|x_{n}\right|$, respectively.
Let σ be a one-to-one mapping of the set of positive integers into itself such that $\sigma^{k}(n)=$ $\sigma\left(\sigma^{k-1}(n)\right), k=1,2, \ldots$. A continuous linear functional φ on ℓ_{∞} is said to be an invariant mean or a σ-mean if and only if
(i) $\varphi(x) \geq 0$ when the sequence $x=\left(x_{n}\right)$ has $x_{n} \geq 0$ for all n,
(ii) $\varphi(e)=1$, where $e=(1,1,1, \ldots)$ and
(iii) $\varphi\left(\left\{x_{\sigma(n)}\right\}\right)=\varphi\left(\left\{x_{n}\right\}\right)$ for all $x \in \ell_{\infty}$.

If σ is the translation mapping $n \rightarrow n+1$, a σ-mean is often called a Banach limit [1], and V_{σ}, the set of σ-convergent sequences, that is, the set of bounded sequences all of whose invariant means are equal, is the set \hat{f} of almost convergent sequences [2].

If $x=\left(x_{n}\right)$, set $T x=\left(T x_{n}\right)=\left(x_{\sigma(n)}\right)$. It can be shown (see Schaefer [3]) that

$$
\begin{equation*}
V_{\sigma}=\left\{x=\left(x_{n}\right): \lim _{k} t_{k n}(x)=L e \text { uniformly in } n, L=\sigma-\lim x\right\}, \tag{1.1}
\end{equation*}
$$

where

$$
t_{k n}(x)=\frac{1}{k+1} \sum_{j=0}^{k} T^{j} x_{n} .
$$

The special case of (1.1), in which $\sigma(n)=n+1$, was given by Lorentz [2].
Subsequently invariant means were studied by Ahmad and Mursaleen [4], Mursaleen [5], Raimi [6] and many others.

[^0]We may remark here that the concept $\widehat{B V}$ of almost bounded variation was introduced and investigated by Nanda and Nayak [7] as follows:

$$
\widehat{B V}=\left\{x: \sum_{m}\left|t_{m n}(x)\right| \text { converges uniformly in } n\right\},
$$

where

$$
t_{m n}(x)=\frac{1}{m(m+1)} \sum_{v=1}^{m} v\left(x_{n+v}-x_{n+v-1}\right)
$$

By a lacunary sequence $\theta=\left(k_{r}\right)_{r=0,1,2, \ldots,}^{\infty}$, where $k_{0}=0$, we shall mean an increasing sequence of non-negative integers with $k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$, and we let $h_{r}=k_{r}-k_{r-1}$. The ratio $\frac{k_{r}}{k_{r-1}}$ will usually be denoted by q_{r} (see [8]).
Karakaya and Savaş [9] defined the sequence spaces $\widehat{B V}_{\theta}(p)$ and $\widehat{B V_{\theta}}(p)$ as follows:

$$
\begin{aligned}
& \widehat{B V_{\theta}}(p)=\left\{x: \sum_{r=1}^{\infty}\left|\varphi_{r n}(x)\right|^{p_{r}} \text { converges uniformly in } n\right\}, \\
& \widehat{\widehat{B V}}{ }_{\theta}(p)=\left\{x: \sup _{n} \sum_{r=1}^{\infty}\left|\varphi_{r n}(x)\right|^{p_{r}}<\infty\right\},
\end{aligned}
$$

where

$$
\varphi_{r, n}(x)=\frac{1}{h_{r}+1} \sum_{j=k_{r-1}+1} x_{j+n}-\frac{1}{h_{r}} \sum_{j=k_{r-1}+1}^{k_{r}} x_{j+n}, \quad r>1 .
$$

Straightforward calculation shows that

$$
\varphi_{r, n}(x)=\frac{1}{h_{r}\left(h_{r}+1\right)} \sum_{u=1}^{h_{r}} u\left(x_{k_{r-1}+u+1+n}-x_{k_{r-1}+u+n}\right)
$$

and

$$
\varphi_{r-1, n}(x)=\frac{1}{h_{r}\left(h_{r}-1\right)} \sum_{u=1}^{h_{r}-1}\left(x_{k_{r-1}+u+1+n}-x_{k_{r-1}+u+n}\right) .
$$

Note that for any sequences x, y and scalar λ, we have

$$
\varphi_{r, n}(x+y)=\varphi_{r, n}(x)+\varphi_{r, n}(y) \quad \text { and } \quad \varphi_{r, n}(\lambda x)=\lambda \varphi_{r, n}(x) .
$$

An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$, which is continuous, nondecreasing and convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. (For details, see Krasnoselskii and Rutickii [10].)

It is well known that if M is a convex function and $M(0)=0$, then $M(\lambda x) \leq \lambda M(x)$ for all λ with $0<\lambda<1$.

Lindenstrauss and Tzafriri [11] used the idea of Orlicz function to construct the sequence space

$$
\ell_{M}=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty \text { for some } \rho>0\right\} .
$$

The space ℓ_{M} is a Banach space with the norm

$$
\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

and this space is called an Orlicz sequence space. For $M(t)=t^{p}, 1 \leq p<\infty$, the space ℓ_{M} coincides with the classical sequence space ℓ_{p}.

Definition 1.1 Any two Orlicz functions M_{1} and M_{2} are said to be equivalent if there are positive constants α and β, and x_{0} such that $M_{1}(\alpha x) \leq M_{2}(x) \leq M_{1}(\beta x)$ for all x with $0 \leq x \leq x_{0}$ (see Kamthan and Gupta [12]).

Later on, different types of sequence spaces were introduced by using an Orlicz function by Mursaleen et al. [13], Choudhary and Parashar [14], Tripathy and Mahanta [15], Altinok et al. [16], Bhardwaj and Singh [17], Et et al. [18] and many others.
A sequence space E is said to be solid (or normal) if $\left(\alpha_{k} x_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ for all sequences $\left(\alpha_{k}\right)$ of scalars with $\left|\alpha_{k}\right| \leq 1$.
It is well known that a sequence space E is normal implies that E is monotone.

Definition 1.2 Let q_{1}, q_{2} be seminorms on a vector space X. Then q_{1} is said to be stronger than q_{2} if whenever $\left(x_{n}\right)$ is a sequence such that $q_{1}\left(x_{n}\right) \rightarrow 0$, then also $q_{2}\left(x_{n}\right) \rightarrow 0$. If each is stronger than the others, q_{1} and q_{2} are said to be equivalent (one may refer to Wilansky [19]).

Lemma 1.3 Let q_{1} and q_{2} be seminorms on a linear space X. Then q_{1} is stronger than q_{2} if and only if there exists a constant T such that $q_{2}(x) \leq T q_{1}(x)$ for all $x \in X$ (see, for instance, Wilansky [19]).

Let $p=\left(p_{r}\right)$ be a sequence of strictly positive real numbers, X be a seminormed space over the field \mathbb{C} of complex numbers with the seminorm q, M be an Orlicz function and $s \geq 0$ be a fixed real number. Then we define the sequence space $\widehat{B V_{\theta}}(M, p, q, s)$ as follows:

$$
\begin{aligned}
\widehat{B V_{\theta}}(M, p, q, s)= & \left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}}<\infty\right. \\
& \text { for some } \rho>0 \text { uniformly in } n\} .
\end{aligned}
$$

It is clear that $q\left(\frac{\varphi_{r n}(x)}{\rho}\right)=\frac{q\left(\varphi_{r n}(x)\right)}{\rho}$ for any seminorm q and any $\rho>0$.
We get the following sequence spaces from $B V_{\theta}(M, p, q, s)$ by choosing some of the special p, M and s :

For $M(x)=x$ we get

$$
\widehat{B V_{\theta}}(p, q, s)=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty} r^{-s}\left[\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}<\infty \text { uniformly in } n\right\}
$$

for $p_{k}=1$, for all $r \in \mathbb{N}$, we get

$$
\begin{aligned}
& \widehat{B V}_{\theta}(M, q, s) \\
& \quad=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]<\infty \text { for some } \rho>0 \text { uniformly in } n\right\}
\end{aligned}
$$

for $s=0$ we get

$$
\begin{aligned}
& \widehat{B V}_{\theta}(M, p, q) \\
& \quad=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}}<\infty \text { for some } \rho>0 \text { uniformly in } n\right\}
\end{aligned}
$$

for $M(x)=x$ and $s=0$ we get

$$
\widehat{B V}_{\theta}(p, q)=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty}\left[\left(q\left(\varphi_{r n}(x)\right)\right)\right]^{p_{r}}<\infty \text { uniformly in } n\right\}
$$

for $p_{r}=1$, for all $r \in \mathbb{N}$, and $s=0$ we get

$$
\begin{aligned}
& \widehat{B V}_{\theta}(M, q) \\
& \quad=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]<\infty \text { for some } \rho>0 \text { uniformly in } n\right\}
\end{aligned}
$$

for $M(x)=x, p_{r}=1$, for all $r \in \mathbb{N}$, and $s=0$ we have

$$
B V_{\theta}(q)=\left\{x=\left(x_{k}\right) \in X: \sum_{r=1}^{\infty} q\left(\varphi_{r n}(x)\right)<\infty, \text { uniformly in } n\right\} .
$$

The following inequalities will be used throughout the paper. Let $p=\left(p_{r}\right)$ be a bounded sequence of strictly positive real numbers with $0<p_{r} \leq \sup p_{r}=H, D=\max \left(1,2^{H-1}\right)$, then

$$
\begin{equation*}
\left|a_{r}+b_{r}\right|^{p_{r}} \leq D\left\{\left|a_{r}\right|^{p_{r}}+\left|b_{r}\right|^{p_{r}}\right\}, \tag{1.2}
\end{equation*}
$$

where $a_{r}, b_{r} \in \mathbb{C}$.

2 Main results

In this section we prove the general results of this paper on the sequence space $\widehat{B V_{\theta}}(M, p$, $q, s)$, those characterize the structure of this space.

Theorem 2.1 The sequence space $\widehat{B V_{\theta}}(M, p, q, s)$ is a linear space over the field \mathbb{C} of complex numbers.

Proof Omitted.

Theorem 2.2 For any Orlicz function M and a bounded sequence $p=\left(p_{r}\right)$ of strictly positive real numbers, $\widehat{B V}_{\theta}(M, p, q, s)$ is a paranormed space (not necessarily totally paranormed), paranormed by

$$
\begin{gathered}
g(x)=\inf \left\{\rho^{p_{r} / H}:\left(\sum_{r=1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1,\right. \\
\quad r=1,2,3, \ldots, n=1,2,3, \ldots\},
\end{gathered}
$$

where $H=\max \left(1, \sup p_{r}\right)$.
Proof Clearly $g(x)=g(-x)$. By using Theorem 2.1 and then using Minkowski's inequality, we get $g(x+y) \leq g(x)+g(y)$.

Since $q(\bar{\theta})=0$ and $M(0)=0$, we get $\inf \left\{\rho^{p_{r} / H}\right\}=0$ for $x=\Theta$, where $\bar{\Theta}$ is the zero sequence of X.

Finally, we prove that scalar multiplication is continuous. Let λ be any numbers. By definition,

$$
\begin{gathered}
g(\lambda x)=\inf \left\{\rho^{p_{r} / H}:\left(\sum_{r} r^{-s}\left[M\left(q\left(\frac{\lambda \varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}}\right)^{\frac{1}{H}} \leq 1,\right. \\
\quad r=1,2,3, \ldots, n=1,2,3, \ldots\} .
\end{gathered}
$$

Then

$$
\begin{aligned}
g(\lambda x)= & \inf \left\{(\lambda r)^{p_{r} / H}:\left(\sum_{r=1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{r}\right)\right)\right]^{p_{r}}\right)^{\frac{1}{H}} \leq 1,\right. \\
& r=1,2,3, \ldots, n=1,2,3, \ldots\},
\end{aligned}
$$

where $r=\frac{\rho}{|\lambda|}$. Since $|\lambda|^{p_{r}} \leq \max \left(1,|\lambda|^{H}\right)$, it follows that $|\lambda|^{p_{r} / H} \leq\left(\max \left(1,|\lambda|^{H}\right)\right)^{\frac{1}{H}}$.
Hence

$$
\begin{aligned}
g(\lambda x)= & \left(\max \left(1,|\lambda|^{H}\right)\right)^{\frac{1}{H}} \inf \left\{r^{p_{r} / H}:\left(\sum_{r=1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{r}\right)\right)\right]^{p_{r}}\right)^{\frac{1}{H}} \leq 1,\right. \\
& r=1,2,3, \ldots, n=1,2,3, \ldots\},
\end{aligned}
$$

which converges to zero as $g(x)$ converges to zero in $\widehat{B V_{\theta}}(M, p, q, s)$. Now suppose that $\lambda_{n} \rightarrow 0$ and x is in $B V_{\sigma}(M, p, q, s)$. For arbitrary $\varepsilon>0$, let N be a positive integer such that

$$
\sum_{r=N+1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}}<\frac{\varepsilon}{2}
$$

for some $\rho>0$, all n. This implies that

$$
\left(\sum_{r=N+1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}}\right)^{\frac{1}{H}} \leq \frac{\varepsilon}{2}
$$

for some $\rho>0, r>N$ and all n.
Let $0<|\lambda|<1$, using convexity of M and all n, we get

$$
\sum_{r=N+1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\lambda \varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}}<\sum_{r=N+1}^{\infty} r^{-s}\left[|\lambda| M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}}<\left(\frac{\varepsilon}{2}\right)^{H} .
$$

Since M is continuous everywhere in $[0, \infty)$, then

$$
f(t)=\sum_{r=1}^{N} r^{-s}\left[M\left(q\left(\frac{t \varphi_{r n}(x)}{\rho}\right)\right)\right]
$$

is continuous at 0 . So there is $1>\delta>0$ such that $|f(t)|<\frac{\varepsilon}{2}$ for $0<t<\delta$. Let K be such that $\left|\lambda_{i}\right|<\delta$ for $i>K$, then for $i>K$, all n,

$$
\left(\sum_{r=1}^{N} r^{-s}\left[M\left(q\left(\frac{\lambda_{i} \varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}}\right)^{\frac{1}{H}}<\frac{\varepsilon}{2} .
$$

Thus

$$
\left(\sum_{r=1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\lambda_{i} \varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}}\right)^{\frac{1}{H}}<\varepsilon
$$

for $i>K$ and n, so that $g(\lambda x) \rightarrow 0(\lambda \rightarrow 0)$.
Theorem 2.3 Let M, M_{1}, M_{2} be Orlicz functions q, q_{1}, q_{2} seminorms and $, s_{1}, s_{2} \geq 0$. Then
(i) $\hat{B V}_{\theta}\left(M_{1}, p, q, s\right) \cap \hat{B V}_{\theta}\left(M_{2}, p, q, s\right) \subseteq \hat{B V}_{\theta}\left(M_{1}+M_{2}, p, q, s\right)$,
(ii) If $s_{1} \leq s_{2}$ then $\hat{B V}_{\theta}\left(M, p, q, s_{1}\right) \subseteq \widehat{B V}_{\theta}\left(M, p, q, s_{2}\right)$,
(iii) $\widehat{B V}_{\theta}\left(M, p, q_{1}, s\right) \cap \widehat{B V}_{\theta}\left(M, p, q_{2}, s\right) \subseteq \widehat{B V}_{\theta}\left(M, p, q_{1}+q_{2}, s\right)$,
(iv) If q_{1} is stronger than q_{2}, then $\widehat{B V_{\theta}}\left(M, p, q_{1}, s\right) \subseteq \widehat{B V}_{\theta}\left(M, p, q_{2}, s\right)$.

Proof Omitted

Corollary 2.4 Let M be an Orlicz function, then we have
(i) If $q_{1} \cong\left(\right.$ equivalent to) q_{2}, then $\widehat{B V}_{\theta}\left(M, p, q_{1}, s\right)=\widehat{B V_{\theta}}\left(M, p, q_{2}, s\right)$,
(ii) $\hat{B V}_{\theta}(M, p, q) \subseteq \hat{B V}_{\theta}(M, p, q, s)$,
(iii) $\hat{B V}_{\theta}(M, q) \subseteq \widehat{B V}_{\theta}(M, q, s)$.

Theorem 2.5 Suppose that $0<m_{k} \leq t_{k}<\infty$ for each $k \in \mathbb{N}$. Then $\widehat{B V_{\theta}}(M, m, q) \subseteq$ $\widehat{B V}_{\theta}(M, t, q)$.

Proof Let $x \in \hat{B V}_{\theta}(M, m, q)$. Then there exists some $\rho>0$ such that

$$
\sum_{r=1}^{\infty}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{m_{k}}<\infty \quad \text { uniformly in } n .
$$

This implies that $M\left(q\left(\frac{\varphi_{r q}(x)}{\rho}\right)\right) \leq 1$ for sufficiently large values of k, say $k \geq k_{0}$ for some fixed $k_{0} \in \mathbb{N}$. Since $m_{k} \leq t_{k}$, for each $k \in \mathbb{N}$ we get

$$
\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{t_{k}} \leq\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{m_{k}}
$$

for all $k \geq k_{0}$, and therefore

$$
\sum_{r=1}^{\infty}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{t_{r}} \leq \sum_{r=1}^{\infty}\left[M\left(q\left(\frac{\varphi_{m}(x)}{\rho}\right)\right)\right]^{m_{k}} .
$$

Hence we have

$$
\sum_{r=1}^{\infty}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{t_{r}}<\infty,
$$

so $x \in \hat{B V}_{\theta}(M, t, q)$. This completes the proof.
The following result is a consequence of the above result.

Corollary 2.6

(i) If $0<p_{r} \leq 1$ for each r, then $\hat{B V}_{\theta}(M, p, q) \subseteq \widehat{B V}_{\theta}(M, q)$,
(ii) If $p_{r} \geq 1$ for all r, then $\widehat{B V}_{\theta}(M, q) \subseteq \widehat{B V}_{\theta}(M, p, q)$.

Theorem 2.7 Let M_{1} and M_{2} be any two of Orlicz functions. If M_{1} and M_{2} are equivalent, then $\widehat{B V}_{\theta}\left(M_{1}, p, q, s\right)=\widehat{B V}_{\theta}\left(M_{2}, p, q, s\right)$.

Proof Proof follows from Definition 1.1.

Theorem 2.8 The sequence space $\hat{B V}_{\theta}(M, p, q, s)$ is solid.
Proof Let $x \in \widehat{B V}_{\theta}(M, p, q, s)$, i.e.,

$$
\sum_{r=1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}}<\infty .
$$

Let $\left(\alpha_{r}\right)$ be sequence of scalars such that $\left|\alpha_{r}\right| \leq 1$ for all $r \in \mathbb{N}$. Then the result follows from the following inequality:

$$
\sum_{r=1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\alpha_{r} \varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}} \leq \sum_{r=1}^{\infty} r^{-s}\left[M\left(q\left(\frac{\varphi_{r n}(x)}{\rho}\right)\right)\right]^{p_{r}} .
$$

Corollary 2.9 The sequence space $\widehat{B V}_{\theta}(M, p, q, s)$ is monotone.

Competing interests

The authors declare that they have no competing interest.

Authors' contributions

MI, YA and ME have contributed to all parts of the article. All authors read and approved the final manuscript

Author details

${ }^{1}$ Department of Statistics, Firat University, Elazığ, 23119, Turkey. ${ }^{2}$ Department of Mathematics, Firat University, Elazığ, 23119, Turkey.

Received: 10 April 2013 Accepted: 16 June 2013 Published: 2 July 2013

References

1. Banach, S: Theorie des Operations Linearies, Subwncji Funduszu Narodowej, Warszawa (1932)
2. Lorentz, GG: A contribution the theory of divergent series. Acta Math. 80, 167-190 (1948)
3. Schaefer, P: Infinite matrices and invariant means. Proc. Am. Math. Soc. 36, 104-110 (1972)
4. Ahmad, ZU, Mursaleen, M: An application of Banach limits. Proc. Am. Math. Soc. 103, 244-246 (1988)
5. Mursaleen, M: Matrix transformations between some new sequence spaces. Houst. J. Math. 9, 505-509 (1983)
6. Raimi, RA: Invariant means and invariant matrix method of summability. Duke Math. J. 30, 81-94 (1963)
7. Nanda, S, Nayak, KC: Some new sequence spaces. Indian J. Pure Appl. Math. 9(8), 836-846 (1978)
8. Freedman, AR, Sember, JJ, Raphael, M: Some Cesàro-type summability spaces. Proc. Lond. Math. Soc. 37(3), 508-520 (1978)
9. Karakaya, V, Savaş, E: On almost p-bounded variation of lacunary sequences. Comput. Math. Appl. 61(6), 1502-1506 (2011)
10. Krasnoselskii, MA, Rutickii, YB: Convex Functions and Orlicz Spaces. Noordhoff, Groningen (1961)
11. Lindenstrauss, J, Tzafriri, L: On Orlicz sequence spaces. Isr. J. Math. 10, 379-390 (1971)
12. Kamthan, PK, Gupta, M: Sequence Spaces and Series. Lecture Notes in Pure and Applied Mathematics, vol. 65. Dekker, New York (1981)
13. Mursaleen, M, Khan, QA, Chishti, TA: Some new convergent sequences defined by Orlicz functions and statistical convergence. Ital. J. Pure Appl. Math. 9, 25-32 (2001)
14. Choudhary, B, Parashar, SD: A sequence space defined by Orlicz functions. J. Approx. Theory Appl. 18(4), 70-75 (2002)
15. Tripathy, $B C$, Mahanta, S : On a class of sequences related to the ℓ^{p} spaces defined by Orlicz function. Soochow J. Math. 29(4), 379-391 (2003)
16. Altinok, H, Altin, Y, Işik, M : The sequence space $B V_{\sigma}(M, p, q, s)$ on seminormed spaces. Indian J. Pure Appl. Math. 39(1), 49-58 (2008)
17. Bhardwaj, VK, Singh, N : On some new spaces of lacunary strongly σ-convergent sequences defined by Orlicz functions. Indian J. Pure Appl. Math. 31(11), 1515-1526 (2000)
18. Et, M, Altin, Y, Choudhary, B, Tripathy, BC: On some classes of sequences defined by sequences of Orlicz functions. Math. Inequal. Appl. 9(2), 335-342 (2006)
19. Wilansky, A: Functional Analysis. Blaisdell Publishing Company, New York (1964)

doi:10.1186/1029-242X-2013-305

Cite this article as: Işik et al.: Some properties of the sequence space $\widehat{B V}_{\theta}(M, p, q, s)$. Journal of Inequalities and Applications 2013 2013:305.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```


[^0]: © 2013 Işik et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

