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Abstract
In this paper, we investigate the growth and the zeros of difference of the first and
second derivative of the solutions of the second-order linear differential equations

f ′′ + A0e
a0zf ′ + (A1e

a1z + A2e
a2z)f = 0

and a small function, where Aj(z) ( �≡ 0) (j = 0, 1, 2) are meromorphic functions and
a0 < 0, a1a2 �= 0, a1 �= a2. Our result extended the results of Peng and Chen, Belaïdi and
others.
MSC: 34M10; 30D35
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1 Introduction andmain results
In this paper, we shall assume that the reader is familiar with the fundamental results and
the standard notation of the Nevanlinna value distribution theory of meromorphic func-
tions (see [–]). The term ‘meromorphic function’ will mean meromorphic in the whole
complex plane C. In addition, we will use notations ρ(f ) to denote the order of growth of
a meromorphic function f (z), λ(f ) to denote the exponents of convergence of the zero-
sequence of a meromorphic function f (z), λ(f ) to denote the exponents of convergence of
the sequence of distinct zeros of f (z).
In order to give some estimates of fixed points, we recall the following definitions (see

[, ]).

Definition . Let f and g be two meromorphic functions satisfying ρ(g) < ρ(f ), and let
z, z, . . . (|zj| = rj,  ≤ r ≤ r ≤ · · · ) be the sequence of distinct zeros of the meromorphic
function f – g . Then τ g(f ), the exponent of convergence of the sequence of distinct zeros
of f – g , is defined by

τ g(f ) = inf

{
τ > 

∣∣∣∣
∞∑
j=

|zj|–τ < +∞
}
.

It is evident that

τ g(f ) = lim
r→∞

logN(r, 
f –g )

log r

and τ g(f ) = λ(f – g).
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Clearly, if g(z) = z, then Definition . is equivalent to the definition of the exponent of
convergence of the sequence of distinct fixed points of f (z). We denote τ z(f ) = τ (f ).
For the second-order linear differential equation

f ′′ + e–zf ′ + B(z)f = , (.)

where B(z) is an entire function of finite order, it is well known that each solution f of (.)
is an entire function. If f and f are any two linearly independent solutions of (.), then
at least one of f, f must have infinite order []. Hence, ‘most’ solutions of (.) will have
infinite order.
Thus a natural question is: What condition on B(z) will guarantee that every solution

f �≡  of (.) will have infinite order? Frei, Ozawa, Amemiya and Langley, and Gundersen
studied the question. For the case that B(z) is a transcendental entire function, Gundersen
[] proved that if ρ(B) �= , then for every solution f �≡  of (.) has infinite order.
In , Chen considered the problem and obtained the following result in [].

Theorem A Let a, b be nonzero complex numbers and a �= b, B(z) �≡  be a nonconstant
polynomial or B(z) = h(z)ebz , where h(z) is a nonzero polynomial. Then every solution f
( �≡ ) of the equation

f ′′ + ebzf ′ + B(z)f = 

has infinite order.

Theorem B Suppose that Aj(z) ( �≡ ) (j = , ) are entire functions and ρ(Aj) < , let a, b
be complex numbers and ab �=  and a �= b, then every solution f ( �≡ ) of the equation

f ′′ +Aeazf ′ +Aebzf = 

has infinite order.

Recently in [], Peng and Chen have investigated the order and the hyper-order of so-
lutions of some second-order linear differential equations and have proved the following
result.

Theorem C Suppose that Aj(z) ( �≡ ) (j = , ) are entire functions and ρ(Aj) < , let a,
a be complex numbers such that aa �= , and let a �= a (suppose that |a| ≤ |a|). If
arga �= π or a < –, then every solution f ( �≡ ) of the equation

f ′′ + e–zf ′ +
(
Aeaz +Aeaz

)
f = 

has infinite order and ρ(f ) = .

In this paper, we extend and improve the above result from entire solutions to mero-
morphic solutions.
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Theorem . Suppose that Aj(z) ( �≡ ) (j = , , ) are meromorphic functions and
ρ(Aj) < , and a, a are two complex numbers such that aa �= , a �= a (suppose that
|a| ≤ |a|). Let a be a strictly negative real constant. If arga �= π or a < a, then every
solution f ( �≡ ), whose poles are of uniformly bounded multiplicities, of the equation

f ′′ +Aeazf ′ +
(
Aeaz +Aeaz

)
f =  (.)

has infinite order and ρ(f ) = .

Remark  It has been shown by Bank [] that the growth of a meromorphic solution
of a linear differential equation with meromorphic coefficients cannot be estimated uni-
formly in terms of the growth of the coefficients alone. Bank [] (see also []) stated his
result in terms of an example. Hence, in addition to the growth of the coefficients, some
additional piece of information is needed when estimating the growth of meromorphic
solutions. Bank and Laine [] have shown that the number of zeros of a solution should
also be taken into account in the meromorphic coefficients case. Chiang and Hayman
([], Corollary .) showed that we can estimate the growth of a meromorphic solution,
when δ(∞) > , in terms of the Nevanlinna characteristics of the coefficients. The con-
dition δ(∞) >  is sharp because δ(∞) =  in Bank’s example. In this paper, we give an
additional condition that the solutions whose poles are of uniformly bounded multiplici-
ties can guarantee the growth of the poles of the meromorphic solution less than or equal
to the meromorphic coefficients. We can change the condition that the multiplicity of the
poles is uniformly bounded to δ(∞) >  when we considered the hyper order by using
Lemma ..

Since the beginning of the last four decades, a substantial number of research articles
have been written to describe the fixed points of general transcendental meromorphic
functions (see []). In [], Chen first studied the problems on the fixed points of solutions
of second-order linear differential equations with entire coefficients. Since then, Wang
and Yi [], Laine and Rieppo [], Chen and Shon [], Liu and Zhang [], El Farissi and
Belaïdi [] studied the problems on the fixed points of solutions of second-order linear
differential equations with meromorphic coefficients and their derivatives.
The other main purpose of this paper is to study the exponent of convergence of the

sequence of distinct fixed points of all solutions of equation (.). In fact, inspired by [,
–], we can generalize the fixed-point to the small function.

Theorem . Let Aj(z), aj satisfy the additional hypotheses of Theorem .. If ϕ ( �≡ ) is a
meromorphic function whose order is less than , then every meromorphic solution f �≡ ,
whose poles are of uniformly bounded multiplicities, of equation (.) satisfies

λ(f – ϕ) = λ
(
f ′ – ϕ

)
= λ

(
f ′′ – ϕ

)
= ∞.

Corollary  Let Aj(z), aj satisfy the additional hypotheses of Theorem .. If f �≡  is a
meromorphic solution, whose poles are of uniformly bounded multiplicities, of equation
(.), then f , f ′, f ′′ all have infinitely fixed points and satisfy

τ̄ (f ) = τ̄
(
f ′) = τ̄

(
f ′′) = ∞.
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2 Lemmas
The following lemma, due to Gross [], is important in the factorization and uniqueness
theory of meromorphic functions, playing an important role in this paper as well. We give
a slightly changed form as follows.

Lemma . ([]) Suppose that f(z), f(z), . . . , fn(z) (n≥ ) aremeromorphic functions and
g(z), g(z), . . . , gn(z) are entire functions satisfying the following conditions:

(i)
∑n

j= fj(z)e
gj(z) ≡ fn+.

(ii) If  ≤ j ≤ n + ,  ≤ k ≤ n, the order of fj is less than the order of egk (z). If n≥ ,
 ≤ j ≤ n + ,  ≤ h < k ≤ n, and the order of fj(z) is less than the order of egh–gk .

Then fj(z) ≡  (j = , , . . . ,n + ).

Lemma . ([]) Let f be a transcendental meromorphic function of finite order ρ . Let
ε >  be a constant, and let k and j be integers satisfying k > j ≥ . Then there exists a set
E ⊂ [–π

 ,
π
 ), which has linear measure zero, such that if θ ∈ [–π

 ,
π
 )\E, then there is a

constant R = R(θ ) >  such that for all z satisfying arg z = θ and |z| ≥ R, we have

∣∣∣∣ f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k–j)(ρ–+ε).

Lemma . ([]) Let g(z) be a meromorphic function with ρ(g) = β < ∞. Then, for any
given ε > , there exists a set E ⊂ [–π

 ,
π
 ) that has linear measure zero such that if ψ ∈

[–π
 ,

π
 )\E, then there is a constant R = R(ψ) >  such that, for all z satisfying arg z = ψ

and |z| = r > R, we have

exp
{
–rβ+ε

} ≤ ∣∣g(z)∣∣ ≤ exp
{
rβ+ε

}
.

Lemma . ([]) Consider g(z) = A(z)eaz , where A(z) ( �≡ ) is a meromorphic function
with ρ(A) = α < , a is a complex constant, a = |a|eiϕ (ϕ ∈ [, π )). Set E = {θ ∈ [, π ) :
cos(ϕ + θ ) = }, then E is a finite set. Then, for any given ε ( < ε <  – α), there is a set
E ∈ [, π ) that has linear measure zero, if z = reiθ , θ ∈ [, π )\(E ∪ E), then we have
when r is sufficiently large:

(i) If cos(ϕ + θ ) > , then

exp
{
( – ε)rδ(az, θ )

} ≤ ∣∣g(z)∣∣ ≤ exp
{
( + ε)rδ(az, θ )

}
;

(ii) If cos(ϕ + θ ) < , then

exp
{
( + ε)rδ(az, θ )

} ≤ ∣∣g(z)∣∣ ≤ exp
{
( – ε)rδ(az, θ )

}
;

where δ(az, θ ) = |a| cos(ϕ + θ ).

Lemma . ([]) Suppose that n ≥  is a positive integer. Let Pj(z) = ajnzn + · · · (j = , )
be nonconstant polynomials, where ajq (q = , . . . ,n) are complex numbers and anan �= .
Set z = reiθ , ajn = |ajn|eiθj , θj ∈ [–π

 ,
π
 ), δ(Pj, θ ) = |ajn| cos(θj + nθ ), then there is a set

E ⊂ [– π
n ,

π
n ) that has linear measure zero. If θ �= θ, then there exists a ray arg z = θ ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/304
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θ ∈ [– π
n ,

π
n )\(E ∪ E) such that

δ(P, θ ) > , δ(P, θ ) <  (.)

or

δ(P, θ ) < , δ(P, θ ) > , (.)

where E = {θ ∈ [– π
n ,

π
n ) : δ(Pj, θ ) = } is a finite set, which has linear measure zero.

In Lemma ., if θ ∈ [– π
n ,

π
n )\(E ∪ E) is replaced by θ ∈ [ π

n ,
π
n )\(E ∪ E), then we

can obtain the same result.

Lemma . ([]) Let A,A, . . . ,Ak–, F �≡  be finite order meromorphic functions. If f (z)
is an infinite order meromorphic solution of the equation

f (k) +Ak–f (k–) + · · · +Af ′ +Af = F ,

then f satisfies λ(f ) = λ(f ) = ρ(f ) = ∞.

Lemma . ([]) Let k ≥  and A,A, . . . ,Ak– be meromorphic functions. Let ρ =
max{ρ(Aj), j = , , . . . ,k – } and all poles of f are of uniformly bounded multiplicity. Then
every transcendental meromorphic solution of the differential equation

f (k) +Ak–f (k–) + · · · +Af =  (.)

satisfies ρ(f ) ≤ ρ .

Remark  The condition that the multiplicity of poles of the solution f is uniformly
bounded can be changed by δ(∞, f ) >  for the solution f (see []).

Lemma . (see []) Let f be a transcendental meromorphic function. Let α >  be a
constant, and let k and j be integers satisfying k > j ≥ . Then there exists a set E ⊂ (,∞),
which has finite logarithmic measure, and a constant C >  such that for all z satisfying
|z| /∈ E ∪ [, ], we have (with r = |z|)

∣∣∣∣ f (k)(z)f (j)(z)

∣∣∣∣ ≤ C
[
T(αr, f )

r
(log r)α logT(αr, f )

]k–j

. (.)

Lemma . (see [, ]) Let F(r) and G(r) be nondecreasing real-valued functions on
(,∞) such that F(r) ≤ G(r) for all r outside of a set E ⊂ (,∞) of finite linear measure
or outside of a set H ∪ [, ], where H ∪ [,∞) is of finite logarithmic measure. Then, for
every constant α > , there exists an r >  such that F(r) ≤ G(αr) for all r > r.

Lemma . Let a be a constant satisfying a < . If arga �= π or a < a, then we have
a �= ca ( < c ≤ ).

The proof is trivial, we omit it here.

http://www.journalofinequalitiesandapplications.com/content/2013/1/304
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3 Proof of Theorem 1.1
First of all we prove that equation (.) cannot have a meromorphic solution f �≡  with
ρ(f ) < . Assume a meromorphic solution f �≡  with ρ(f ) = ρ <  satisfies equation (.).
Then ρ(f (j)) = ρ <  (j = , ). Rewrite (.) as

Af ′eaz +Afeaz +Afeaz = –f ′′. (.)

We consider two cases:
() a �= a, note that a �= a, a �= a, ρ(Af ) < , ρ(Af ) < , ρ(Af ′) < , ρ(–f ′′) <  and

by Lemma ., we have f ≡ , which is a contradiction.
() a = a, then (.) can be rewritten into

Afeaz +
(
Af ′ +Af

)
eaz = –f ′′.

Note that a �= a, ρ(Af ) < , ρ(Af ′ +Af ) < , ρ(–f ′′) <  and by Lemma . again,
we have f ≡ , which is a contradiction.

Therefore, ρ(f ) ≥ .
Now assume f is a meromorphic solution of equation (.) with  ≤ ρ(f ) = ρ < ∞. From

equation (.), we know that the poles of f (z) can occur only at the poles of Aj (j = , , ).
Note that the multiplicities of pole points of f are uniformly bounded, and thus we have

N(r, f ) ≤ MN(r, f ) ≤ M

∑
j=

N(r,Aj) ≤ Mmax
{
N(r,Aj) : j = , , 

}
,

where M and M are some suitable positive constants. Then we have λ(/f ) ≤ α =
max{ρ(Aj) : j = , , } < .
Let f = g/d, d be the canonical product formed with the nonzero poles of f (z), with

β = ρ(d) = λ(d) = λ(/f ) ≤ α < , let g be an entire function and  ≤ ρ(g) = ρ(f ) = ρ < ∞.
Substituting f = g/d into (.), we can get

g ′′

g
+

[
Aeaz – 

d′

d

]
g ′

g
+ 

(
d′

d

)

–
d′′

d
–A

d′

d
eaz +Aeaz +Aeaz = . (.)

For any given ε ( < ε < –α), there is a set E ⊂ [–π
 ,

π
 ) that has linearmeasure zero such

that if θ ∈ [–π
 ,

π
 )\E, then there is a constant R = R(θ ) >  such that for all z satisfying

arg z = θ , and |z| = r > R, we have by Lemma .

∣∣A(z)
∣∣ ≤ exp

{
rα+ε

}
. (.)

By Lemma ., for any given ε ( < ε <min{ –α, |a|–|a|
|a|+|a| }), there exists a set E ⊂ [–π

 ,
π
 )

that has linear measure zero such that if θ ∈ [–π
 ,

π
 ) \ E, then there is a constant R =

R(θ ) >  such that for all z satisfying arg z = θ and |z| ≥ R, we have

∣∣∣∣g(j)(z)g(z)

∣∣∣∣ ≤ |z|j(ρ–+ε), j = , , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/304
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and

∣∣∣∣d(j)(z)
d(z)

∣∣∣∣ ≤ |z|j(β–+ε), j = , . (.)

Setting z = reiθ , a = |a|eiθ , a = |a|eiθ , θ, θ ∈ [–π
 ,

π
 ).

Case . arga �= π , which is θ �= π .
Subcase .. Assume that θ �= θ. By Lemma ., for the above ε, there is a ray arg z = θ

such that θ ∈ (–π
 ,

π
 )\(E∪E∪E∪E) (where E and E are defined as in Lemma., E∪

E ∪ E ∪ E is of linear measure zero) satisfying δ(az, θ ) > , δ(az, θ ) <  or δ(az, θ ) < ,
δ(az, θ ) >  for a sufficiently large r.
When δ(az, θ ) > , δ(az, θ ) <  for a sufficiently large r, we have, by Lemma .,

∣∣Aeaz
∣∣ ≥ exp

{
( – ε)δ(az, θ )r

}
, (.)∣∣Aeaz

∣∣ ≤ exp
{
( – ε)δ(az, θ )r

}
< . (.)

By (.) and (.), we have

∣∣Aeaz +Aeaz
∣∣ ≥ ∣∣Aeaz

∣∣ – ∣∣Aeaz
∣∣ ≥ exp

{
( – ε)δ(az, θ )r

}
– 

=
(
 – o()

)
exp

{
( – ε)δ(az, θ )r

}
. (.)

By (.), we get

∣∣Aeaz +Aeaz
∣∣ ≤

∣∣∣∣g ′′

g

∣∣∣∣ +
(∣∣Aeaz

∣∣ + 
∣∣∣∣d′

d

∣∣∣∣
)∣∣∣∣g ′

g

∣∣∣∣
+ 

∣∣∣∣d′

d

∣∣∣∣


+
∣∣∣∣d′′

d

∣∣∣∣ + |A|
∣∣∣∣d′

d

∣∣∣∣∣∣eaz∣∣. (.)

Since θ ∈ (–π
 ,

π
 )\(E ∪E ∪E ∪E), we know that cos θ > , then |eaz| = e–|a|r cos θ < .

Therefore, by (.) we obtain

∣∣A(z)eaz
∣∣ ≤ exp

{
rα+ε

}
. (.)

Substituting (.)-(.), (.) and (.) into (.), we obtain

(
 – o()

)
exp

{
( – ε)δ(az, θ )r

} ≤ Mrk(ρ–+ε) exp
{
rα+ε

}
, (.)

where M >  and k >  are some constants. By δ(az, θ ) >  and α + ε < , we know that
(.) is a contradiction.
When δ(az, θ ) < , δ(az, θ ) > , using a proof similar to the above, we can get a contra-

diction.
Subcase .. Assume that θ = θ. By Lemma ., for the above ε, there is a ray arg z = θ

such that θ ∈ (–π
 ,

π
 )\(E ∪ E ∪ E ∪ E) satisfying δ(az, θ ) > . Since |a| ≤ |a|, a �= a

and θ = θ, then |a| < |a|, thus δ(az, θ ) > δ(az, θ ) > . For a sufficiently large r, we get,

http://www.journalofinequalitiesandapplications.com/content/2013/1/304
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by Lemma .,

∣∣Aeaz
∣∣ ≤ exp

{
( + ε)δ(az, θ )r

}
, (.)∣∣Aeaz

∣∣ ≥ exp
{
( – ε)δ(az, θ )r

}
. (.)

By (.) and (.), we get

∣∣Aeaz +Aeaz
∣∣ ≥ ∣∣Aeaz

∣∣ – ∣∣Aeaz
∣∣

≥ exp
{
( – ε)δ(az, θ )r

}
– exp

{
( + ε)δ(az, θ )r

}
=M exp

{
( + ε)δ(az, θ )r

}
, (.)

whereM = exp{[( – ε)δ(az, θ ) – ( + ε)δ(az, θ )]r} – .
Since  < ε < min{ – α, |a|–|a|

|a|+|a| }, we see that ( – ε)δ(az, θ ) – ( + ε)δ(az, θ ) > , then
exp{[( – ε)δ(az, θ ) – ( + ε)δ(az, θ )]r} > ,M > .
Since θ ∈ (–π

 ,
π
 )\(E ∪E ∪E ∪E), we know that cos θ > , then |eaz| = e–|a|r cos θ < .

Therefore, by (.) we obtain

∣∣A(z)eaz
∣∣ ≤ exp

{
rα+ε

}
. (.)

Substituting (.)-(.) and (.)-(.) into (.), we obtain

M exp
{
( + ε)δ(az, θ )r

} ≤ Mrk(ρ–+ε) exp
{
rα+ε

}
. (.)

By δ(az, θ ) > ,M >  and α + ε < , we know that (.) is a contradiction.
Case . a < a, which is θ = π .
Subcase .. Assume that θ �= θ, then θ �= π . By Lemma., for the above ε, there is a ray

arg z = θ such that θ ∈ (–π
 ,

π
 )\(E ∪ E ∪ E ∪ E) satisfying δ(az, θ ) > . Since cos θ > ,

we have δ(az, θ ) = |a| cos(θ + θ ) = –|a| cos θ < . For a sufficiently large r, we have

∣∣Aeaz
∣∣ ≤ exp

{
( – ε)δ(az, θ )r

}
< , (.)∣∣Aeaz

∣∣ ≥ exp
{
( – ε)δ(az, θ )r

}
. (.)

By (.) and (.), we get

∣∣Aeaz +Aeaz
∣∣ ≥ ∣∣Aeaz

∣∣ – ∣∣Aeaz
∣∣

≥ exp
{
( – ε)δ(az, θ )r

}
– . (.)

Using the same reasoning as in Subcase ., we can get a contradiction.
Subcase .. Assume that θ = θ, then θ = θ = π . By Lemma ., for the above ε,

there is a ray arg z = θ such that θ ∈ (π
 ,

π
 )\(E ∪ E ∪ E ∪ E), then cos θ < , δ(az, θ ) =

|a| cos(θ + θ ) = –|a| cos θ > , δ(az, θ ) = |a| cos(θ + θ ) = –|a| cos θ > . Since |a| ≤
|a|, a �= a and θ = θ, then |a| < |a|, thus δ(az, θ ) > δ(az, θ ) > . For a sufficiently
large r, we get (.), (.) and (.) hold.
Using the same reasoning as in Subcase ., we can get a contradiction.

http://www.journalofinequalitiesandapplications.com/content/2013/1/304
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Concluding the above proof, we obtain ρ(f ) = ρ(g) = +∞.
In the following, we prove that if all poles of f are of uniformly bounded multiplicity,

then ρ(f ) = .
By Lemma . and max{ρ(Aeaz),ρ(Aeaz +Aeaz)} = , then ρ(f ) ≤ .
By Lemma ., we know that there exists a set E ⊂ (, +∞) with finite logarithmic mea-

sure and a constant C >  such that for all z satisfying |z| = r /∈ [, ]∪ E, we get

∣∣∣∣ f (j)(z)f (z)

∣∣∣∣ ≤ C
[
T(r, f ) logT(r, f )

]j ≤ C
[
T(r, f )

]j+, j = , . (.)

For Subcases . and ., we have proved that there exists a ray arg z = θ satisfying θ ∈
(–π

 ,
π
 )\(E ∪ E ∪ E ∪ E), for a sufficiently large r, we get that (.) or (.) hold, that

is,

∣∣Aeaz +Aeaz
∣∣ ≥ exp{hr}, (.)

where h >  is a constant.
By (.), we have

f ′′

f
+Aeaz

f ′

f
= –

(
Aeaz +Aeaz

)
. (.)

Since θ ∈ (–π
 ,

π
 )\(E ∪ E ∪ E ∪ E), then cos θ > , e–|a|r cos θ < . By (.), (.) and

(.), we obtain

exp{hr} ≤ C
[
T(r, f )

] + exp
{
rα+ε

}
e–|a|r cos θC

[
T(r, f )

]
≤ C exp

{
rα+ε

}[
T(r, f )

]. (.)

By h > , α+ε < , (.) and Lemma ., we know that for the constant α = , there exists
r. When r > r, we have ρ(f ) ≥ , then ρ(f ) = .
For Subcases . and ., we have proved that there exists a ray arg z = θ such that θ ∈

(π
 ,

π
 )\(E ∪ E ∪ E ∪ E). For a sufficiently large r, we get that (.) holds, and we also

get cos θ < , δ(az, θ ) > –|a| cos θ > .
By (.), (.) and (.), we obtain

M exp
{
( + ε)δ(az, θ )r

} ≤ C
[
T(r, f )

] + exp
{
rα+ε

}
e–|a|r cos θC

[
T(r, f )

]
≤ Ce–|a|r cos θ exp

{
rα+ε

}[
T(r, f )

]. (.)

By δ(az, θ ) > –|a| cos θ > , M > , α + ε <  and (.) and Lemma ., we know that
for the constant α = , there exists r, when r > r, we have ρ(f ) ≥ , then ρ(f ) = .
The proof of Theorem . is complete.

4 Proof of Theorem 1.2
Assume that f ( �≡ ) is a meromorphic solution of (.); then ρ(f ) = ∞ by Theorem ..
Set g(z) = f (z) – ϕ(z), g(z) is a meromorphic function and ρ(g) = ρ(f ) = ∞. Substituting
f = g + ϕ into (.), we have

g ′′
 + h,g ′

 + h,g = h, (.)
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where h, = Aeaz , h, = Aeaz+Aeaz and h = –(ϕ′′+h,ϕ′+h,ϕ). Obviously, h �≡ .
In fact, if h ≡ , then

ϕ′′ + h,ϕ′ + h,ϕ = .

By Theorem ., we have ρ(ϕ) = ∞, it is a contradiction. Hence h �≡ . Note that the
functions h,, h, and h are of finite order, by Lemma . and (.), we have λ(g) =
λ(f – ϕ) = ∞.
Now we prove that λ(f ′ – ϕ) = ∞. Let g(z) = f ′(z) – ϕ(z), then ρ(g) = ρ(f ′) = ρ(f ) = ∞

and λ(g) = λ(f ′ – ϕ).
Differentiating both sides of (.), we have

f ′′′ + h,f ′′ +
[
h′
, + h,

]
f ′ + h′

,f = . (.)

By (.), we have

f = –


h,

(
f ′′ + h,f ′). (.)

Substituting (.) into (.), we have

f ′′′ +
(
h, –

h′
,

h,

)
f ′′ +

[
h′
, + h, –

h′
,

h,
h,

]
f ′ = . (.)

Combining f ′ = g + ϕ, f ′′ = g ′
 + ϕ′, f ′′′ = g ′′

 + ϕ′′ into (.), we have

g ′′
 + h,g ′

 + h,g = h, (.)

where

h, = h, –
h′
,

h,
,

h, = h′
, + h, –

h′
,

h,
h,,

–h = ϕ′′ +
(
h, –

h′
,

h,

)
ϕ′ +

[
h′
, + h, –

h′
,

h,
h,

]
ϕ.

Now we prove h �≡ . In fact, if h ≡ , then

[(
ϕ′

ϕ
A +A′

 + aA – aA

)
A –AA′



]
e(a+a)z

+
[(

ϕ′

ϕ
A +A′

 + aA – aA

)
A –AA′



]
e(a+a)z

+
[(

ϕ′′

ϕ
– a

ϕ′

ϕ

)
A –

ϕ′

ϕ
A′


]
eaz +

[(
ϕ′′

ϕ
– a

ϕ′

ϕ

)
A –

ϕ′

ϕ
A′


]
eaz

+ AAe(a+a)z +A
e

az +A
e

az ≡ . (.)
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We can rewrite (.) in the form

fe(a+a)z + fe(a+a)z + feaz + feaz + fe(a+a)z + feaz + feaz ≡ . (.)

Since ρ = ρ(ϕ) < , ρ(Ak) <  (k = , , ), then ρ(fj) <  (j = , . . . , ). Note that a �= a and
Lemma ., then a �= a,a + a,a + a, a. In order to apply Lemma ., we need to
consider three cases:

(i) If a �= a + a,a. By Lemma ., we get f ≡ , that is, A ≡ , a contradiction.
(ii) If a = a + a, then by Lemma ., a �= a, a,a + a,a + a,a + a,a. By

Lemma ., we get f ≡ , that is, A ≡ , a contradiction.
(iii) If a = a, then by Lemma ., a �= a, a,a + a,a + a,a + a,a. By

Lemma ., we get f ≡ , that is, A ≡ , a contradiction.
Hence h �≡ .
For equation (.), since h �≡  and ρ(g) = ∞, by Lemma ., we have

λ(g) = λ
(
f ′ – ϕ

)
= ρ(g) = ρ(f ) = ∞.

Using a similar way to above, we can easily prove that h, �≡ . We omit it here.
In the following, we prove λ(f ′′ – ϕ) = ∞.
Let g(z) = f ′′ – ϕ, then ρ(g) = ρ(f ′′) = ρ(f ) = ∞ and λ(g) = λ(f ′′ – ϕ).
Differentiating the two sides of (.), we get

f () + h,f ′′′ +
[
h′

, + h,
]
f ′′ +

[
h′′
, + h′

,
]
f ′ + h′′

,f = . (.)

By (.), we have

f ′ =
–
h,

[
f ′′′ + h,f ′′]. (.)

From (.), (.) and (.), we obtain

f () + h,f ′′′ + h,f ′′ = , (.)

where

h, = h, –
ϕ

h,
, (.)

h, = h′
, + h, –

h′′
,

h,
–

ϕ

h,

[
h, –

h′
,

h,

]
, (.)

where

ϕ = h′′
, + h′

, – h,
h′′
,

h,
. (.)

Substituting f ′′ = g + ϕ, f ′′′ = g ′
 + ϕ′, f () = g ′′

 + ϕ′′ into (.), we have

g ′′
 + h,g ′

 + h,g = h,
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where

h = –
(
ϕ′′ + h,ϕ′ + h,ϕ

)
. (.)

Similarly, if one can prove h �≡ , then by Lemma ., we can get λ(g) = ρ(g) = ∞.
Hence λ(f ′′ – ϕ) = ∞.
Now we prove h �≡ . Note that

h, =
H

h,h,
, (.)

h, =
H

h,h,
, (.)

where

H = h,h,h′
, + h,h, – h′

,h

, – h,h′′

, – h,h′
, + h,h′′

,,

H = h′
,h, + h,h, – h,h,h′

, + h, – h,h′
,h, – h′

,h
′′
,

– h′′
,h, – h,h′′

,h, + h′
, + h′

,h
′′
, + h,h

′′
,.

Obviously,H,H aremeromorphic functions and ρ(Hj) <  (j = , ). From (.), (.)-
(.), we know

h
ϕ

= –


h,h,

[
ϕ′′

ϕ
h,h, +

ϕ′

ϕ
H +H

]
.

Let H = ϕ′′
ϕ
h,h, + ϕ′

ϕ
H +H. We only need to prove H �≡ .

Note that ρ( ϕ′′
ϕ
) < , ρ( ϕ′

ϕ
) <  and h,h, = h′

,h, +h, –h,h′
,. From this and (.)-

(.), we can write H into the following form:

H = fe(a+a)z + fe(a+a)z + feaz + feaz + fe(a+a)z

+ fe(a+a)z + fe(a+a)z + fe(a+a)z + fe(a+a)z + fe(a+a)z

+ fe(a+a)z + fe(a+a+a)z + feaz + feaz.

It is easy to see f = A
 , f = A

, which come from the term h, in H.
We can prove that ρ(fi) <  ( ≤ i≤ ). Set = {a+a +a,a+a, a, a,a +a, a +

a,a + a, a + a, a + a, a + a, a + a,a + a, a, a}. Note that a �= a and
Lemma ., then a �= a + a,a + a, a, a + a, a + a, a,a + a and a �=
a, a, a +a,a + a. Using the same way as above, we need to consider seven cases:

(i) If a �= a + a,a + a,a + a, a + a,a + a + a, a. By Lemma ., we get
f ≡ , that is, A ≡ , a contradiction.

(ii) If a = a + a, then we can conclude that a �=  – {a}. Hence, by Lemma .,
we get f ≡ , that is, A ≡ , a contradiction.

(iii) If a = a + a, then we can conclude that a �= – {a}. Hence, by Lemma .,
we get f ≡ , that is, A ≡ , a contradiction.

(iv) If a = a + a, then we can conclude that a �=  – {a}. Hence, by Lemma .,
we get f ≡ , that is, A ≡ , a contradiction.
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(v) If a = a + a, then we can conclude that a �= – {a}. Hence, by Lemma .,
we get f ≡ , that is, A ≡ , a contradiction.

(vi) If a = a + a + a, then we can conclude that a �=  – {a}. Hence, by
Lemma ., we get f ≡ , that is, A ≡ , a contradiction.

(vii) If a = a, then we conclude that a �=  – {a}. Hence, by Lemma ., we get
f ≡ , that is, A ≡ , a contradiction.

Hence, we prove H �≡  and h �≡ .
This proved the theorem.
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