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Abstract
In the present paper, we generalize a theorem of Lal and Singh (Indian J. Pure Appl.
Math. 33(9):1443-1449, 2002) on the degree of approximation of a function belonging
to the weightedW(Lp,ξ (t)) (p ≥ 1)-class using product (C, 1)(E, 1) means of its Fourier
series. We have used here the modified definition of the weightedW(Lp,ξ (t))
(p ≥ 1)-class of functions in view of Khan (Commun. Fac. Sci. Univ. Ank. Ser. A1 Math.
Stat. 31:123-127, 1982) and rectified some errors appearing in the paper of Lal and
Singh (Indian J. Pure Appl. Math. 33(9):1443-1449, 2002). A few applications of
approximation of functions will also be highlighted.
MSC: 40C99; 40G99; 41A10; 42B05; 42B08
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1 Introduction
Approximation by trigonometric polynomials is at the heart of approximation theory.
The most important trigonometric polynomials used in the approximation theory are ob-
tained by linear summation methods of Fourier series of π-periodic functions on the
real line (i.e. Cesàro means, Nörlund means, Euler means and Product Cesàro-Nörlund
means, Cesàro-Euler means etc.). Much of the advance in the theory of trigonometric
approximation is due to the periodicity of the functions. Various investigators such as
Khan [–], Qureshi [], Chandra [], Leindler [], Mittal et al. [], Mittal, Rhoades and
Mishra [], Mishra [], Rhoades et al. [] have determined the degree of approxima-
tion of π-periodic functions belonging to different classes Lipα, Lip(α,p), Lip(ξ (t),p)
and W (Lp, ξ (t)) of functions through trigonometric Fourier approximation (TFA) using
different summability matrices. Recently, Mittal et al. [] have obtained the degree of ap-
proximation of functions belonging to the Lip(α,p)-class by a general summability matrix,
which generalizes the results of Chandra []. In this paper, we determine the degree of ap-
proximation of functions belonging to the W (Lp, ξ (t)) (p ≥ )-class by using (C, )(E, )
means of its Fourier series, which in turn generalizes the result of Lal and Singh []. We
also note some errors appearing in the paper of Lal and Singh [] and rectify them in the
light of observations of Khan [].
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Let f (x) be a π-periodic and Lebesgue integrable function. The Fourier series of f (x) is
given by

f (x)∼ a


+
∞∑
n=

(an cosnx + bn sinnx) ≡
∞∑
n=

un(x) (.)

with nth partial sum sn(f ;x) called trigonometric polynomial of degree (order) n of the
first n +  terms of the Fourier series of f .
A function f (x) ∈ Lipα if

f (x + t) – f (x) =O
(∣∣tα∣∣) for  < α ≤ , t > .

A function f (x) ∈ Lipα if

f (x + t) – f (x) =O
(∣∣tα∣∣) for  < α ≤ , t > .

f (x) ∈ Lip(α,p), for a ≤ x≤ b, if

(∫ b

a

∣∣f (x + t) – f (x)
∣∣p dx)/p

≤ A
(|t|α)

,  < α ≤ ,p≥ , t > .

A function f (x) ∈ Lip(α,p) for a ≤ x≤ b if

(∫ b

a

∣∣f (x + t) – f (x)
∣∣p dx)/p

≤ A
(|t|α)

(Definition . of Mc Fadden []). Given a positive increasing function ξ (t) and an in-
teger p≥ , f (x) ∈ Lip(ξ (t),p) if

(∫ π



∣∣f (x + t) – f (x)
∣∣p dx)/p

=O
(
ξ (t)

)
, t > .

A function f ∈W (Lp, ξ (t)) [] if

(∫ π



∣∣f (x + t) – f (x)
∣∣p sinβp(x/)dx

)/p

=O
(
ξ (t)

)
, β ≥ ,p≥ , t > . (.)

We note that if β = , then the weighted class W (Lp, ξ (t)) coincides with the class
Lip(ξ (t),p) and if ξ (t) = tα , then the Lip(ξ (t),p) class coincides with the class Lip(α,p).
The class Lip(α, r)→ Lipα for r → ∞.
Also, we observe that

Lipα ⊆ Lip(α,p)⊆ Lip
(
ξ (t),p

) ⊆ W
(
Lp, ξ (t)

)
for  < α ≤ ,p ≥ .

The Lp-norm of a function is defined by

‖f ‖p =
(∫ π



∣∣f (x)∣∣p dx)/p

, p≥ .
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The L∞-norm of a function f : R→ R is defined by

‖f ‖∞ = sup
{∣∣f (x)∣∣ : x ∈ R

}
,

and the degree of approximation En(f ,x) is given by Zygmund ([], p.)

En(f ,x) =Min
n

∥∥f (x) – τn(f ;x)
∥∥
p, (.)

in terms of n, where τn(f ;x) =
∑n

k= an,ksk(f ;x) is a trigonometric polynomial of degree n.
This method of approximation is called trigonometric Fourier approximation (tfa).

∥∥τn(f ,x) – f (x)
∥∥∞ = sup

x∈R

{∣∣τn(f ,x) – f (x)
∣∣}.

Let
∑∞

n= un be a given infinite series with the sequence of nth partial sums {sn}. If

E
k =


k

k∑
r=

(
k
r

)
sr → s as n → ∞, (.)

then an infinite series
∑∞

n= un with the partial sums sn is said to be (E, ) summable to the
definite number s (Hardy []).
An infinite series

∑∞
k= uk is said to be (C, ) summable to s if

(C, ) =


(n + )

n∑
k=

sk → s as n→ ∞.

The (C, ) transform of the (E, ) transform E
n defines the (C, )(E, ) transform of the

partial sums sn of the series
∑∞

n= un, i.e., the product summability (C, )(E, ) is obtained
by superimposing (C, ) summability on (E, ) summability.
Thus, if

(CE)n =


(n + )

n∑
k=

E
k =


(n + )

n∑
k=


k

k∑
r=

(
k
r

)
sr → s as n→ ∞, (.)

where E
n denotes the (E, ) transform of sn, then the series

∑∞
n= un with the partial sums

sn is said to be summable (C, )(E, ) to the definite number s, and we can write

(CE)n → s
[
(C, )(E, )

]
as n→ ∞.

Therefore, we have

sn → s ⇒ E
n(sn) = τn =


n

n∑
r=

(
n
r

)
sr → s as n→ ∞,E

n method is regular,

⇒ C
n
(
E
n(sn)

)
= C

nE

n → s as n→ ∞,C

n method is regular,

⇒ C
nE


n method is regular.
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We note that E
n and (CE)n are also trigonometric polynomials of degree (or order) n.

The product transform (C, )(E, ) plays an important role in signal theory as a double
digital filter.
The Riemann-Lebesgue theorem states that if f (x) is integrable over (a,b), then as

λ → ∞, we have
∫ b
a f (x) cosλx →  and

∫ b
a f (x) sinλx→ .

We shall use the following notation throughout the paper:

φ(t) = φx(t) = f (x + t) + f (x – t) – f (x).

2 Known theorem
Lal and Singh [] have obtained a theorem on the degree of approximation of a function
belonging to the class Lip(ξ (t),p) by (C, )(E, ) means of its Fourier series. They proved
the following theorem.

Theorem . f : R → R is a π -periodic function belonging to Lip(ξ (t),p), then the degree
of approximation of f by (C, )(E, )means of its Fourier series satisfies

∥∥(CE)n – f (x)
∥∥
p =O

(
ξ

(


n + 

)
· (n + )/p

)

provided ξ (t)satisfy the following conditions:

{∫ /(n+)



(
tφ(t)
ξ (t)

)p

dt
}/p

=O
(


n + 

)
, (.)

{∫ π

/(n+)

(
t–δφ(t)
ξ (t)

)p

dt
}/p

=O
(
(n + )δ

)
, (.)

where δ is an arbitrary number such that q( – δ) –  > , conditions (.) and (.) hold
uniformly in x and (CE)n are (C, )(E, )means of series (.).

Remark  The proof proceeds by estimating (CE)n– f (x), which is represented in terms of
an integral. The domain of integration is divided into two parts - from [, 

n+ ] and [


n+ ,π ].
Referring to the second integral as I and using Hölder’s inequality, the authors [] obtain

I ≤ 
n + 

{∫ π

/n+

(
t–δφ(t)
ξ (t)

)p

dt
}/p

×
{∫ π

/n+

(
ξ (t)( – cosn+(t/) cos((n + )t/))

tt–δ

)q

dt
}/q

=O
(
(n + )δ–

)
O

{∫ π

/n+

(
ξ (t)
tt–δ

)q

dt
}/q

.

The authors then make the substitution y = /t to obtain

=O
(
(n + )δ–

)
O

[∫ n+

/π

(
ξ (/y)
y–yδ

)q dy
y

]/q

.

In the next step ξ (/y) is removed from the integrand by replacing it with O(ξ ( 
n+ )).

While ξ (t) is an increasing function, ξ (/y) is now a decreasing function. Therefore, from
the second mean value theorem of integrals, this step is invalid.
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Remark  There is a fatal error in the proof of the main theorem of Lal and Singh [,
p.]. In the calculation of I, the authors [] obtain

∫ /(n+)

ε

dt
tq

=
[
t–q+

–q + 

]/(n+)

ε

for some  < ε <


n + 
,

note that –q+ < . Therefore one has 
q– [


εq–

–(n+)q–], which need not beO((n+)q–)
since ε might be O(/nγ ) for some γ > .

3 Main result
The observation of Remark  motivated us to determine a proper set of conditions to
extend Theorem . on the degree of approximation of functions f of the weighted
W (Lp, ξ (t)) (p≥ )-class by product (C, )(E, ) means of its Fourier series. More precisely,
we prove the following.

Theorem . If f : R → R is π -periodic, Lebesgue integrable and belonging to the
weighted W (Lp, ξ (t)) (p ≥ )-class, then the degree of approximation of f (x) by (C, )(E, )
means of its Fourier series is given by

∥∥(CE)n(f ;x) – f (x)
∥∥
p =O

(
nβ+/pξ (/n)

) ∀n > , (.)

provided a positive increasing function ξ (t) satisfies the following conditions:

{∫ π/n



( |φx(t)| sinβ (t/)
ξ (t)

)p

dt
}/p

=O(), (.)

{∫ π

π/n

(
t–δ|φx(t)|

ξ (t)

)p

dt
}/p

=O
(
nδ

)
, (.)

and

ξ (t)
t

is non-increasing in t, (.)

where δ is an arbitrary number such that q(β – δ) –  > , q is the conjugate index of p,
p– +q– = ,  ≤ p≤ ∞, conditions (.), (.) hold uniformly in x, and (CE)n are (C, )(E, )
means of Fourier series (.).

Note  Using condition (.), we get ξ (π
n ) ≤ πξ ( n ) for

π
n ≥ 

n .

Note  Conditions (.) and (.) of Theorem . and (.) and (.) of Theorem . are
derived from the theorem of Khan [].

4 Lemma
For the proof of our theorem, we need the following lemma.

Lemma . For  ≤ t ≤ π/n, we have

 – cosn(t/) cos(nt/) =O
(
nt

)
.
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Proof of Lemma . For ≤ t ≤ π/n, we have

 – cosn(t/) cos(nt/) =  –
[
 –

t


+

t


– · · ·

]n[
 –

nt


+
nt


– · · ·

]

=  –
[
 –

nt



][
 –

nt



]

=  –
[
 –

nt


–
nt


+
nt



]

=
nt



(
 +


n

)
=O

(
nt

)
.

This completes the proof of Lemma .. �

5 Proof of Theorem 3.1
Following Titchmarsh [, p.] and using the Riemann-Lebesgue theorem, the nth par-
tial sum sn of Fourier series (.) at t = xmay be written as

sn(f ;x) – f (x) =

π

∫ π



φx(t)
t

sinnt dt +O(),

so that the (E, ) transform E
n of sn(f ,x) is given by

E
n(f ;x) – f (x) =


nπ

∫ π



φx(t)
t

{ n∑
k=

(
n
k

)
sinkt

}
dt

=


nπ

∫ π



φx(t)
t

I.P. of

{ n∑
k=

(
n
k

)
eikt

}
dt

=

π

∫ π



φx(t)
t

cosn(t/) sin(nt/)dt.

Now, the (C, )(E, ) transform of sn(f ,x) is given by

(CE)n(f ;x) =

n

n∑
k=

E
k (n = , , . . .)

= f (x) +

nπ

∫ π



φx(t)
t

{ n∑
k=

cosk(t/) sin(kt/)

}
dt.

Therefore, we have

(CE)n(f ;x) – f (x) =

nπ

∫ π



φx(t)
t

I.P. of

{ n∑
k=

cosk(t/)eikt/
}
dt

=

nπ

∫ π



φx(t)
t

I.P. of
{
eit/ cos(t/){ – (eit/ cos(t/))n}

 – eit/ cos(t/)

}
dt

=

nπ

∫ π



φx(t)
t

I.P. of
{(
cos(t/)

(
eit/ – cos t/ – ei(n+)t/ cosn t/

+ eint/ cosn+ t/
))
/
(
sin(t/)

)}
dt

http://www.journalofinequalitiesandapplications.com/content/2013/1/300
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=

nπ

∫ π



φx(t)
t

{
cos(t/) sin(t/)( – cosn(t/) cos(nt/))

sin(t/)

}
dt

=

nπ

∫ π



φx(t)
t tan(t/)

(
 – cosn(t/) cos(nt/)

)
dt

≤ 
n

∫ π



φx(t)
t

(
 – cosn(t/) cos(nt/)

)
dt

=

n

[∫ π/n


+

∫ π

π/n

]∫ π



φx(t)
t

(
 – cosn(t/) cos(nt/)

)
dt

= I + I, say. (.)

Clearly,

∣∣φ(x + t) – φ(x)
∣∣ ≤ ∣∣f (u + x + t) – f (u + x)

∣∣ + ∣∣f (u – x – t) – f (u – x)
∣∣.

Hence, by Minkowski’s inequality,

{∫ π



∣∣(φ(x + t) – φ(x)
)
sinβ (x/)

∣∣p dx}/p

≤
{∫ π



∣∣(f (u + x + t) – f (u + x)
)
sinβ (x/)

∣∣p dx}/p

+
{∫ π



∣∣(f (u – x – t) – f (u – x)
)
sinβ (x/)

∣∣p dx}/p

=O
(
ξ (t)

)
.

Then f ∈W (Lp, ξ (t))⇒ φ ∈W (Lp, ξ (t)).
Using Hölder’s inequality, the fact that φ(t) ∈ W (Lp, ξ (t)), condition (.), (sin t/)– ≤

π/t, for  < t ≤ π , p– + q– = ,  ≤ p≤ ∞, Lemma ., Note  and the second mean value
theorem for integrals, we have

|I| ≤ 
n

[∫ π/n



( |φx(t)| sinβ (t/)
ξ (t)

)p

dt
]/p

×
[∫ π/(n+)



(
ξ (t)( – cosn(t/) cos(nt/))

t sinβ (t/)

)q

dt
]/q

=O
(

n

)[∫ π/n



(
ξ (t)nt

t sinβ (t/)

)q

dt
]/q

=O
{
nξ

(
π

n

)}{
lim
h→

∫ π/n

h
t–βq dt

}/q

=O
{
nξ

(

n

)}{(
t–βq+

–βq + 

)π/n

h

}/q

, h→ ,

=O
{
nξ

(

n

)}
O

(
nβ–/q) =O

{
nβ+–/qξ

(
π

n

)}
=O

{
nβ+/pξ

(
π

n

)}
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/300
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Again applying Hölder’s inequality, | sin(t/)| ≤ , (sin t/)– ≤ π/t, for  < t ≤ π , condi-
tions (.), (.), Note  and the second mean value theorem for integrals, we have

|I| ≤ 
n

[∫ π

π/n

(
t–δ|φx(t)| sinβ (t/)

ξ (t)

)p

dt
]/p

×
[∫ π

π/n

(
ξ (t)( – cosn(t/) cos(nt/))

tt–δ sinβ (t/)

)q

dt
]/q

≤ 
n

[∫ π

π/n

(
t–δ|φx(t)|

ξ (t)

)p

dt
]/p[∫ π

π/n

(
ξ (t)

t–δ sinβ (t/)

)q

dt
]/q

=O
(
nδ–)[∫ π

π/n

(
ξ (t)
t–δ+β

)q

dt
]/q

=O
(
nδ–)[∫ n/π

/π

(
ξ (/y)
yδ–β–

)q dy
y

]/q

=O
{
nδ–

(
n
π

)
ξ

(
π

n

)}{∫ n/π

ε

y(β–δ+)q– dy
}/q

for some /π < ε < n/π ,

=O
(
nδξ

(

n

))(
n(β–δ+)q– – (ε)(β–δ+)q–

(β – δ + )q – 

)/q

=O
(
nδξ

(

n

)
nβ–δ+–/q

)
=O

(
nβ+/pξ

(

n

))
, (.)

in view of increasing nature of yξ (/y), p– + q– = ,  ≤ p ≤ ∞, where ε lie in [π–,nπ–].
Collecting (.)-(.), we get

∣∣(CE)n(f ;x) – f (x)
∣∣ =O

(
nβ+/pξ

(

n

))
.

Now, using the Lp-norm of a function, we get

∥∥(CE)n(f ;x) – f (x)
∥∥
p =

{∫ π



∣∣(CE)n(f ;x) – f (x)
∣∣p dx}/p

=O
(∫ π



(
nβ+/pξ

(

n

))p

dx
)/p

=O
(
nβ+/pξ

(

n

)(∫ π


dx

)/p)
=O

(
nβ+/pξ

(

n

))
.

This completes the proof of Theorem ..

6 Corollaries and example
The following corollaries can be derived from Theorem ..

Corollary  If β = , then the generalized weighted W (Lp, ξ (t)) (p≥ )-class reduces to the
class Lip(ξ (t),p), and the degree of approximation of a function f (x) ∈ Lip(ξ (t),p) is given
by

∣∣(CE)n(f ;x) – f (x)
∣∣ =O

(
n/pξ (/n)

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/300
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Proof The result follows by setting β =  in (.), we have

∥∥(CE)n(f ;x) – f (x)
∥∥
p =

{∫ π



∣∣(CE)n(f ;x) – f (x)
∣∣p dx}/p

=O
(
n/pξ (/n)

)
, p≥ .

Thus, we get

∣∣(CE)n(f ;x) – f (x)
∣∣ ≤

{∫ π



∣∣(CE)n(f ;x) – f (x)
∣∣p dx}/p

=O
(
n/pξ (/n)

)
, p≥ .

This completes the proof of Corollary . �

Corollary  If β = , ξ (t) = tα ,  < α ≤ , then the weighted W (Lp, ξ (t)) (p ≥ )-class re-
duces to the class Lip(α,p), (/p) < α <  and the degree of approximation of a π -periodic
function f belonging to the class Lip(α,p) is given by

∣∣(CE)n(f ;x) – f (x)
∣∣ =O

(


nα–/p

)
.

Proof Putting β = , ξ (t) = tα ,  < α ≤  in Theorem ., we have

∥∥(CE)n(f ;x) – f (x)
∥∥
p =

{∫ π



∣∣(CE)n(f ;x) – f (x)
∣∣p dx}/p

or

O
(
nβ+/pξ

(

n

))
=

{∫ π



∣∣(CE)n(f ;x) – f (x)
∣∣p dx}/p

,

or

O() =
{∫ π



∣∣(CE)n(f ;x) – f (x)
∣∣p dx}/p

O
(


nβ+/pξ ( n )

)
,

since otherwise the right-hand side of the above equation will not be O().
Hence

∣∣(CE)n(f ;x) – f (x)
∣∣ =O

((

n

)α

n/p
)
=O

(


nα–/p

)
.

This completes the proof of Corollary . �

Corollary  If β = , ξ (t) = tα for  < α <  and p→ ∞ in (.), then f ∈ Lipα. In this case,
the degree of approximation of the function f ∈ Lipα ( < α < ) class is given by

∣∣(CE)n(f ;x) – f (x)
∣∣ =O

(
n–α

)
.

Proof For p→ ∞ in Corollary , we get

∥∥(CE)n(f ;x) – f (x)
∥∥∞ = sup

≤x≤π

∣∣(CE)n(f ;x) – f (x)
∣∣ =O

(
n–α

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/300
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Thus, we have

∣∣(CE)n(f ;x) – f (x)
∣∣ ≤ ∥∥(CE)n(f ;x) – f (x)

∥∥∞

= sup
≤x≤π

∣∣(CE)n(f ;x) – f (x)
∣∣ =O

(
n–α

)
.

This completes the proof of Corollary . �

Examples (i) Consider the infinite series

 – 
∞∑
n=

(–)n–. (.)

The nth partial sum of (.) is given by

sn =  – 
n∑
k=

(–)k– = (–)n.

Since limn→∞ sn does not exist, therefore the series (.) is not convergent and so

E
n = –n

n∑
k=

(
n
k

)
sk = –n

n∑
k=

(
n
k

)
(–)k = –n

[
 + (–)

]n = (–)n.

Also, limn→∞ E
n does not exist. Therefore the series (.) is not (E, ) summable.

Now,

σ 
n =


n + 

n∑
k=

sk =


n + 

n∑
k=

(–)k =


n + 
{ – (–)n+}

 + 

=


(n + )
{
 – (–)nn+

}
.

Here limn→∞ σ 
n does not exist, the series (.) is not (C, ) summable.

Finally,

(CE)n =


n + 

n∑
ν=

E
ν =


n + 

n∑
ν=

(–)ν ,

(CE)n →  as n→ ∞,

the series (.) is (C, )(E, ) summable.
Therefore the series (.) is neither (C, ) summable nor (E, ) summable. But it is

(C, )(E, ) summable to . Therefore the product summability (C, )(E, ) is more pow-
erful than (C, ) and (E, ). Consequently, (C, )(E, ) gives better approximation than the
individual methods (C, ) and (E, ).
(ii) If we take the sequence {an}for a < , then there are two cases:
(a) If – < a < , then the sequence is already convergent and so it is (C, ) summable.
(b) If a < –, then the sequence {an} = {a}n is not (C, ) summable but (C, )(E, )

summable.

http://www.journalofinequalitiesandapplications.com/content/2013/1/300
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(iii) It is a well-known result that a Hausdorff matrix is a Nörlund matrix if and only if it
is a Cesàromatrix. Cesàromeans and Euler means both are Hausdorffmeans, but they are
not comparable. Two matrices are called comparable if either they are equivalent (that is,
they sum the same set of sequences), or one method is stronger than the other (that is, it
has the larger convergence domain). Hardy [], in his book on Divergent Series, showed
that (C, ) and (E, ) methods are not comparable.
Note that the sequence {(–)k–√k} is (C, ) summable but not bounded, whereas the

sequence x = {xk} given by x = , x =  and

xk =

⎧⎨
⎩, if i– < k ≤ (i–) (i = , , . . .);

, otherwise,

is bounded but not (C, ) summable.

7 Conclusion
Several results concerning the degree of approximation of periodic functions belonging
to the generalized weighted W (Lp, ξ (t)) (p ≥ )-class by product (C, )(E, ) means of its
Fourier series have been reviewed. Further, a proper set of conditions have been discussed
to rectify the errors pointed out in Remarks  and . The theorem of this paper is an at-
tempt to formulate the problem of approximation of the function f ∈ W (Lp, ξ (t)) (p ≥ )
through trigonometric polynomials generated by the product summability (C, )(E, )
transform of the Fourier series of f in a simpler manner. The product summability
(C, )(E, ) used in this paper plays an important role in signal theory as a double digital
filter and the theory of machines in mechanical engineering.
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