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Abstract
Let (Xnk , k = 1, 2, . . . ,n; n = 1, 2, . . .) be a row-wise triangular array of independent
Bernoulli random variables with success probabilities
P(Xnk = 1) = 1 – P(Xnk = 0) = pnk ∈ [0, 1], k = 1, 2, . . . ,n; n = 1, 2, . . . . For every n = 1, 2, . . . ,
the random variables Sn =

∑n
k=1 Xnk have probability distributions with complicated

structure and therefore they are used to being approximated by Poisson distribution.
Well-known Le Cam’s inequality is established for providing information on the
quality of a Poisson approximation. The main aim of this paper is to re-establish the Le
Cam-type inequalities via a linear operator. The operator method used in this paper is
quite elementary and it also could be applied for the probability distributions of
random sums SNn =

∑Nn
k=1 Xnk in the Poisson approximation, where Nn, n = 1, 2, . . . , are

positive integer-valued random variables, independent of all Xnk , k = 1, 2, . . . ,n;
n = 1, 2, . . . .
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1 Introduction
Throughout this paper, let (Xnk , k = , , . . . ,n; n = , , . . .) be a row-wise triangular ar-
ray of independent Bernoulli random variables with success probabilities P(Xnk = ) =
–P(Xnk = ) = pnk ∈ [, ], k = , , . . . ,n; n = , , . . . . The random variables Sn =

∑n
k=Xnk ,

n = , , . . . , are often called the Poisson-binomial random variables. And it is easily
seen that the mean, variance, and characteristic function of Sn, n = , , . . . , are E(Sn) =∑n

k= pnk , D(Sn) =
∑n

k= pnk( – pnk), and fSn (t) = E(eitSn ) =
∏n

k=( – pnk + pnkeit), respec-
tively.
The probability distributions of Sn, n = , , . . . , have many applications in various areas

of mathematics and statistics such as reliability, survival analysis, survey sampling, econo-
metrics, and so on (the reader is referred to [, ] and [] for full development). However,
since the probability distributions of Sn, n ≥ , have the complicated structure (see, for
instance, []), they are used to being approximated by the distribution of Poisson random
variables Zλn with a positive parameter λn = E(Sn) =

∑n
k= pnk . More specifically, assume
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that

lim
n→∞λn = λ ( < λ < +∞), ()

then

Sn
d–→ Zλ, as n→ ∞, ()

where, and from now on, the notation d–→ means the convergence in distribution (see, for
instance, []). Moreover, remarkable Le Cam’s inequality for the Poisson-binomial distri-
bution [] is widely considered in literature as follows:

∞∑
k=

∣∣P(Sn = k) – P(Zλn = k)
∣∣ ≤ 

n∑
k=

pnk ()

(we refer the reader to the results of Le Cam [], Barbour, Holst, and Janson [], Steele [],
Chen [], Chen and Liu [], Neammanee [], and Ross [] for more details).
It should be noted that in [, ], and [] various powerful tools (such as the method

of matrix analysis, the semi-group method, the coupling method, and the Chen-Stein
method) for providing LeCam’s inequality have been demonstrated. Themain objective of
this paper is to obtain the bounds for well-known Le Cam’s inequality in () using the op-
erator method, introduced by Renyi []. In the third section, we use the operator method
from [] to establish the bounds for the approximation of Poisson-binomial distribution
by Poisson distribution. The operator method in this paper is quite elementary and it also
could be applied for random sums SNn =

∑Nn
k=Xnk , S = , where Nn, n = , , . . . are pos-

itive integer-valued random variables, independent of all Xnk , k = , , . . . ,n; n = , , . . . .
This will be taken up in the last section. We refer the reader to the works of Trotter [],
Renyi [], and Hung [] for a deeper discussion of this operator method. Based on the
operator method, the received results of this paper are analogues of Le Cam’s inequality in
classical literature (we refer the reader to Steele [], Le Cam [], Chen [], Neammanee [],
and Wang [] for a complete treatment of the problem).

2 Preliminaries
In the sequel we will need the operator method, which has been used for a long time in
various studies of classical limit theorems for sums of independent random variables (see
Trotter [], Renyi [], and Hung [] for the complete bibliography).
We recall some definitions and notations. We denote by K the set of all real-valued

bounded functions f (x), defined on the set of non-negative integers Z+ = {, , , . . .}. The
norm of a function f ∈ K is defined by ‖f ‖ = supx∈Z+ |f (x)|.

Definition . We define a linear operator associated with a positive discrete random
variable X, AX : K → K , by setting

(AXf )(x) := E
(
f (X + x)

)
=

∞∑
k=

f (x + k)P(X = k), ∀f ∈ K ,x ∈ Z+. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/30
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It is to be noticed that the linear operator defined in () is actually a discrete form of
Trotter’s operator (we refer the readers to Trotter [], Renyi [], and Hung [] for a more
general and detailed discussion of this operator method).
Wewill need someproperties of the operator in () in the sequel. LetAX ,AY be operators

associated with two discrete random variables X and Y for f , g ∈ K . Suppose that α and
β are two real numbers, then we easily get the following linear property of the operator
in ():

AX(αf + βg) = αAX(f ) + βAX(g).

We define the operator (AX + AY ) by (AX + AY )f = AXf + AY f , ∀f ∈ K , and the product
of two operators AX and AY is (AXAY )f = AX(AY f ), ∀f ∈ K .
It is obvious that
. ‖AXf ‖ ≤ ‖f ‖ for all f ∈ K .
. ‖AXf +AY f ‖ ≤ ‖AXf ‖ + ‖AY f ‖ for all f ∈ K .
. Suppose that AX and AY are operators associated with two independent random vari-

ables X, Y and f ∈ K . Then AXAY f = AYAXf = AX+Y f .
In fact, for all f ∈ K and x ∈ Z+,

AXAY f (x) = AX
(
AY f (x)

)
= AX

( ∞∑
k=

f (x + k)P(Y = k)

)

=
∞∑

r,k=

f (x + k + r)P(Y = k)P(X = r)

=
∞∑
l=

f (x + l)P(X + Y = l)

= AX+Y f (x)

by an argument analogous to that used for the proof of AYAXf = AX+Y f .
. Suppose thatAX ,AX , . . . ,AXn are the operators associated with the independent ran-

dom variables X,X, . . . ,Xn. ThenASn = AXAX · · ·AXn is the operator associated with the
partial sum Sn = X +X + · · · +Xn.
. Suppose that AX ,AX , . . . ,AXn and AY ,AY , . . . ,AYn are operators associated with in-

dependent random variables X,X, . . . ,Xn and Y,Y, . . . ,Yn. Moreover, assume that all Xi

and Yj are independent for i, j = , , . . . ,n. Then, for every f ∈ K ,

‖A∑n
k= Xk

f –A∑n
k= Yk

f ‖ ≤
n∑
k=

‖AXk f –AYk f ‖. ()

Clearly,

AXAX · · ·AXn –AYAY · · ·AYn =
n∑
k=

AXAX · · ·AXk– (AXk –AYk )AYk+ · · ·AYn .

http://www.journalofinequalitiesandapplications.com/content/2013/1/30
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It deduces that

‖A∑n
k= Xk

f –A∑n
k= Yk

f ‖ ≤
n∑
k=

∥∥AX · · ·AXk– (AXk –AYk )AYk+ · · ·AYnf
∥∥

≤
n∑
k=

∥∥AYk+ · · ·AYn (AXk –AYk )f
∥∥

≤
n∑
k=

‖AXk f –AYk f ‖.

. It is to be noticed that ‖An
Xf –An

Y f ‖ ≤ n‖AXf –AY f ‖.
. Suppose that X, . . . ,Xn and Y, . . . ,Yn are independent random variables (in each

group), and let {Nn,n = , , . . .} be a sequence of positive integer-valued random variables
independent of all Xk and Yk , k = , , . . . . Then, for every f ∈ K ,

‖A∑Nn
k= Xk

f –A∑Nn
k= Yk

f ‖ ≤
∞∑
n=

P(Nn = n)
n∑
k=

‖AXk f –AYk f ‖.

Lemma . The equation AXf (x) = AY f (x) for f ∈ K , x ∈ Z+, provided that X and Y are
identically distributed random variables.

LetAX ,AX , . . . ,AXn , . . . be a sequence of operators associated with the independent dis-
crete random variables X,X, . . . ,Xn, . . . , and AX be the operator associated with the dis-
crete randomvariableX. The following lemma states one of themost important properties
of the operator AX .

Lemma. A sufficient condition for a sequence of random variables X,X, . . . ,Xn . . . con-
verging in distribution to a random variable X is that

lim
n→∞‖AXnf –AXf ‖ =  for all f ∈ K .

Proof Since limn→∞ ‖AXnf –AXf ‖ = , for all f ∈ K , we get

lim
n→∞

∣∣∣∣∣
∞∑
k=

f (x + k)
(
P(Xn = k) – P(X = k)

)∣∣∣∣∣ =  for all f ∈ K and x ∈ Z+.

If we choose

f (x) =

⎧⎨
⎩, if  ≤ x≤ t,

, if x > t.

Then

lim
n→∞

∣∣∣∣∣
t∑

k=

(
P(Xn = k) – P(X = k)

)∣∣∣∣∣ = .

It follows that P(Xn ≤ t) – P(X ≤ t) →  as n tends to +∞.
In other words, Xn

d–→ X as n→ +∞. �
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3 A bound of Poisson-binomial approximation
LetAXnk , k = , . . . ,n; n = , , . . . be the operators associatedwith the random variablesXnk ,
k = , . . . ,n; n = , , . . . , and let AZpnk , k = , . . . ,n; n = , , . . . , be the operators associated
with the Poisson random variables with parameters pnk , k = , . . . ,n; n = , , . . . . On the
assumption that Zλn is a Poisson random variable with a positive parameter λn =

∑n
k= pnk ,

we can perform that Zλn
d=

∑n
k=Zpnk , where Zpn ,Zpn , . . . ,Zpnn are independent Poisson

random variables with positive parameters pn,pn, . . . ,pnn, and the notation d= denotes
coincidence of distributions. We will now state an analogue of Le Cam’s inequality [] via
the linear operator in () as follows.

Theorem . Let (Xnk ,  ≤ k ≤ n; n = , , . . .) be a row-wise triangular array of indepen-
dent, Bernoulli random variables with success probabilities P(Xnk = ) =  – P(Xnk = ) =
pnk , pnk ∈ [, ], k = , , . . . ,n; n = , , . . . . Let us write Sn =

∑n
k=Xnk and λn =

∑n
k= pnk .We

denote by Zλn the Poisson random variable with the parameter λn.Then, for all real-valued
bounded functions f ∈ K , we have

‖ASn f –AZλn f ‖ ≤ ‖f ‖
n∑
k=

pnk . ()

Proof Applying the inequality in (), we have

‖ASn f –AZλn f ‖ ≤
n∑
k=

‖AXnk f –AZpnk f ‖.

Moreover, for all f ∈ K and for all x ∈ Z+, we conclude that

AXnk f (x) –AZpnk f (x) =
∞∑
r=

f (x + r)
(
P(Xnk = r) – P(Zpnk = r)

)

=
∞∑
r=

f (x + r)
(
P(Xnk = r) –

e–pnk prnk
r!

)

= f (x)
(
 – pnk – e–pnk

)
+ f (x + )

(
pnk – pnke–pnk

)
–

∞∑
r=

f (x + r)
e–pnk prnk

r!
.

Since
∑∞

r=
e–pnk prnk

r! =  – e–pnk – pnke–pnk , for all f ∈ K and x ∈ Z+, it may be concluded that

∣∣AXnk (f ) –AZpnk (f )
∣∣ =

∣∣∣∣∣f (x)( – pnk – e–pnk
)
+ f (x + )

(
pnk – pnke–pnk

)

–
∞∑
r=

f (x + r)
e–pnk prnk

r!

∣∣∣∣∣
≤ ∣∣f (x)( – pnk – e–pnk

)∣∣ + ∣∣f (x + )
(
pnk – pnke–pnk

)∣∣
+

∣∣∣∣∣
∞∑
r=

f (x + r)
e–pnk prnk

r!

∣∣∣∣∣

http://www.journalofinequalitiesandapplications.com/content/2013/1/30
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≤ sup
x∈Z+

∣∣f (x)∣∣(e–pnk –  + pnk + pnk – pnke–pnk +  – e–pnk – pnke–pnk
)

≤ ‖f ‖pnk
(
 – e–pnk

) ≤ ‖f ‖pnk .

Therefore, applying (), we can assert that

∥∥ASn (f ) –AZλn (f )
∥∥ ≤ ‖f ‖

n∑
k=

pnk .

This completes the proof. �

Remark . According to Theorem . and assumption (), using the definition of the
norm of the operator A, we get following inequality:

‖ASn –AZλ
‖ ≤ 

( n∑
k=

pnk

)
.

The following corollaries are immediate consequences from Theorem ..

Corollary . Under the stated assumptions of Theorem ., for all k = , , , . . . ,

∣∣P(Sn = k) – P(Zλn = k)
∣∣ ≤ 

n∑
j=

pnj. ()

Proof Choose the particular function f (x), x ∈ Z+, such that

f (x +m) =

⎧⎨
⎩ ifm = k,

 ifm 	= k.

Set y = x +m. Since x,m ∈ Z+, it follows that y ∈ Z+. Then we have

‖f ‖ = sup
x

∣∣f (x)∣∣ = sup
y

∣∣f (y)∣∣ = .

Thus, according to Theorem ., we conclude that

∥∥ASn (f ) –AZλn (f )
∥∥ ≤ 

n∑
j=

pnj. ()

On the other hand, by choosing the function f (x) as above, we have

‖ASn f –AZλn f ‖ = sup
x

∣∣ASnf (x) –AZλn f (x)
∣∣

= sup
x

∣∣∣∣∣
∞∑
m=

f (x +m)
[
P(Sn =m) – P(Zλn =m)

]∣∣∣∣∣
= sup

x

∣∣f (x)[P(Sn = ) – P(Zλn = )
]
+ · · ·

http://www.journalofinequalitiesandapplications.com/content/2013/1/30
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+ f (x + k)
[
P(Sn = k) – P(Zλn = k) + · · · ]∣∣

=
∣∣P(Sn = k) – P(Zλn = k)

∣∣.
Applying () we can assert that

∣∣P(Sn = k) – P(Zλn = k)
∣∣ ≤ 

n∑
j=

pnj.

The proof is complete. �

Corollary . Let condition () hold. Under the hypotheses of Theorem ., if moreover

lim
n→∞ max

≤k≤n
pnk = , ()

then the distribution of Sn converges to the Poisson distribution with mean λ, i.e., Sn
d–→ Zλ

as n→ ∞.

Proof The proof is based on the following observation:

n∑
k=

pnk ≤ max
≤k≤n

pnk ×
n∑
k=

pnk .

According to the inequality in () for all f ∈ K and (), we conclude that

lim
n→∞

∥∥ASn (f ) –AZλn (f )
∥∥ = .

As an argument analogous to the one used for the proof of Corollary ., on account of
Lemma ., we get

lim
n→∞

[
P(Sn = k) – P(Zλn = k)

]
= .

Then, on account of (), we have

lim
n→∞P(Sn = k) = lim

n→∞
e–λn (λn)k

k!
=
e–λλk

k!
, k = , ,  . . . .

Thus, the proof is straightforward. �

4 A bound of random Poisson-binomial approximation
Throughout this section, we begin with assuming thatNn, n = , , . . . , are positive integer-
valued random variables independent of all Xnk , k = , , . . . ,n; n = , , . . . , which are sup-
posed to obey the relation

Nn
P–→ +∞ as n→ +∞. ()

Here and subsequently, P–→ denotes the convergence in probability. For every n = , , . . . ,
we denote by SNn the random sums SNn =

∑Nn
k=Xnk (S =  by convention). Therefore, the

http://www.journalofinequalitiesandapplications.com/content/2013/1/30


Hung and Thao Journal of Inequalities and Applications 2013, 2013:30 Page 8 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/30

random sums SNn could be said to be the random Poisson-binomial random variables.
In this section, we establish Le Cam-type inequalities related to the Poisson approxima-
tion for distributions of random Poisson-binomial variables. It is to be noticed that many
various results concerning the random summations have already been included in the
textbooks of probability theory; see, e.g., [, , ]).
Let AXn ,AXn , . . . ,AXnNn be operators associated with the independent triangular array

of random variables Xn,Xn, . . . ,XnNn , and let AZpn ,AZpn , . . . ,AZpnNn
be operators asso-

ciated with the independent Poisson distributed random variables with positive param-
eters pn,pn, . . . ,pnNn . According to the properties of the linear operator in (), we have
ASNn = AXnAXn · · ·AXnNn and AZλNn

= AZpnAZpn · · ·AZpnNn
are the respective operators

associated with the random sums SNn =
∑Nn

k=Xnk and ZλNn =
∑Nn

k=Zpnk .

Theorem . Let (Xnk , k = , , . . . ,n; n = , , . . .) be a row-wise triangular array of inde-
pendent, non-identically distributed Bernoulli random variables with success probabilities
P(Xnk = ) =  – P(Xnk = ) = pnk , pnk ∈ [, ], k = , , . . . ,n; n = , , . . . . Moreover, we sup-
pose that Nn, n = , , . . . are independent positive integer-valued random variables, inde-
pendent of all Xnk , k = , , . . . ,n; n = , , . . . . Then, for all real-valued bounded functions
f ∈ K and for all x ∈ Z+, we have

∥∥ASNn (f ) –AZλNn
(f )

∥∥ ≤ ‖f ‖E
( Nn∑

k=

pnk

)
.

Proof According to the assumptions on the random variables Nn, Xnk , Zλn , k = , , . . . ,n;
n = , , . . . , we can write

ASNn f (x) =
∞∑
m=

P(Nn =m)
∞∑
k=

f (x + k)P(Sm = k),

and

AZλNn
f (x) =

∞∑
m=

P(Nn =m)
∞∑
k=

f (x + k)
e–λmλk

m
k!

.

Therefore, by an argument analogous to that used for the proof of Theorem ., for all
real-valued function f ∈ K , x ∈ Z+, we have

∥∥ASNn (f ) –AZλNn
(f )

∥∥ =

∥∥∥∥∥
∞∑
m=

P(Nn =m)
(
AXn · · ·AXnm (f ) –AZpn · · ·AZpnm (f )

)∥∥∥∥∥
≤

∞∑
m=

P(Nn =m)
∥∥AXn · · ·AXnm (f ) –AZpn · · ·AZpnm (f )

∥∥

≤
∞∑
m=

P(Nn =m)
m∑
k=

‖f ‖pnk

≤ ‖f ‖E
( Nn∑

k=

pnk

)
.

The proof is complete. �
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Note that the following remarks are immediate consequences from Theorem ..

Remark . According to Theorem . and assumption (), using the definition of the
norm of the operator A, we conclude that

‖ASNn –AZλ
‖ ≤ E

( Nn∑
k=

pnk

)
.

Remark . By an argument analogous to that used for the proof of Corollary ., under
the stated assumptions of Theorem ., for all k = , , , . . . , we have

∣∣P(SNn = k) – P(ZλNn = k)
∣∣ ≤ E

( Nn∑
k=

pnk

)
.

When the success probability is identical, pnk = pn ∈ [, ], k = , , . . . ,n; for n = , , . . . ,
we obtain the following remark.

Remark . Suppose that theNn, n = , , . . . are positive integer-valued random variables
independent of all independent identically distributed random variables Xnk , and assume
that P(Xnk = ) =  – P(Xnk = ) = pn ∈ [, ], k = , , . . . ,Nn; n = , , . . . . Then, for all k =
, , , . . . , we get the following inequality:

∣∣P(SNn = k) – P(ZλNn = k)
∣∣ ≤ E(Nn)pn.

It is worth noticing that when the positive integer-valued random variables Nn, n =
, , . . . take on the value n with probability one, i.e., P(Nn = n) = , the results concern-
ing the probability distributions of the random sums SNn in the Poisson approximation in
this section return to the ones in Section .
We conclude this paper with the following comments. The linear operator in this paper

introduced by Renyi [] essentially is a discrete form of Trotter’s operator [] which has
been used in the theory of limit theorems. The proofs of theorems in this paper by the
operatormethod are very elementary and elegant. The received results in this article allow
us to think about a new approach method to the Poisson approximation problems for
the distributions of the sums of the discrete independent random variables like Poisson-
binomial, geometric, and negative binomial variables.
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