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Abstract
The Razumikhin-type stability theorems of neutral stochastic functional differential
equations (NFDEs) were investigated by several authors, but there was almost no
Razumikhin-type theorems on the general asymptotic stability of NFDEs with infinite
delay. This paper investigates the Razumikhin-type pth moment asymptotic stability
of neutral stochastic pantograph equations (NSPEs). Sufficient conditions of the pth
moment asymptotic stability for NSPEs are obtained. The NSPE is a special class of
NFDEs with infinite delay. We should emphasize that the Razumikhin-type theorem of
this paper is established without taking difficulties from infinite delay into account.
We also develop the backward Euler method for NSPEs. We prove that the backward
Euler method can preserve the asymptotic behavior of the mean square stability of
exact solutions under suitable conditions. Numerical examples are demonstrated for
illustration.
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1 Introduction
Neutral stochastic functional differential equations (NSFDEs) can be used to model vari-
ous phenomena and processes in the field of the chemical-engineering and aero elasticity.
Stability analysis of NSFDEs has attracted increasing attention; for instance, see [–].
Among the methods contributed to the study of stability for NSFDEs, the Razumikhin
technique is a powerful and effective method. In this paper, we consider the following
neutral stochastic pantograph equation (NSPE):

d
[
x(t) –N

(
x(qt)

)]
= f

(
t,x(t),x(qt)

)
dt + g

(
t,x(t),x(qt)

)
dB(t), ()

where  < q < . NSPE () is an important extension of stochastic pantograph equations
(see [, ]), and NSPE () stems from neutral pantograph equations (NPEs). NPEs play
important roles in mathematical and industrial problems (see []). Many authors have
studied NPEs numerically and analytically. We refer the reader to [–]. One class of
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NPEs reads

[
x(t) –N

(
x(qt)

)]′ = f (t,x(t),x(qt). ()

Taking the environmental disturbances into account, we are led to NSPE (). The almost
sure asymptotic stability of Eq. () has been studied (please see []). In this paper, we aim
to study the pthmoment asymptotic stability of Eq. () by using the Razumikhin technique.
The Razumikhin technique has been successfully applied to study the stability of various

NSFDEs (see, e.g., [–, –]). Recently, Wu et al. [] studied the ψγ stability of the
following NSFDE with unbounded delay:

d
[
x(t) –N(xt)

]
= f (t,xt)dt + g(t,xt)dB(t) ()

by using the Razumikhin technique, where xt = {x(t + θ ) : –∞ < θ ≤ }, and some tech-
niques are adopted to overcome the difficulties from infinite delay. Note that Eq. () is also
a class of NSFDEs with time delay τ (t) = ( – q)t ↑ ∞ as t → ∞. For given t > , it is easy
to see that the solution x(t) of Eq. () depends on states of [qt, t], but the solution x(t) of
Eq. () depends on states of (–∞, t]. Obviously, theψγ Razumikhin-type stability theorem
of Eq. () obtained in [] can be applied to Eq. (). However, the general asymptotic sta-
bility of Eq. (), one of important stability criteria, has not been considered. Inmany cases,
the general asymptotic stability of the equilibrium of systems is much more economically
and practically feasible in contrast to the exponential stability and general decay ψγ sta-
bility. Moreover, to the best of the authors’ knowledge, so far no result has been concerned
with Razumikhin-type theorems on the general asymptotic stability of Eq. ().
In this paper, the Razumikhin-type pth moment asymptotic stability of Eq. () is estab-

lished without taking difficulties from infinite delay into account. On the other hand, as
most NSFDEs could not be solved explicitly, numerical solutions have become essential.
Efficient numericalmethods for variousNSFDEs can be found in [–]. In this paper, we
develop the backward Euler method for Eq. (). We show that the backward Euler method
can preserve the asymptotic behavior of the mean square stability of exact solutions to
Eq. ().
The paper is organized as follows. In Section , we introduce some necessary notations

and definitions. In Section , we establish the Razumikhin-type theorem on the pth mo-
ment asymptotic stability for Eq. (). In Section , we study the mean square asymptotic
stability of the backward Euler method for Eq. (). Numerical experiments are presented
in the finial section.

2 Preliminaries
Throughout this paper, unless otherwise specified, we use the following notations. Let
(�,F , {Ft}t≥,P) be a complete probability space with filtration {Ft}t≥ satisfying the
usual conditions (i.e., it is right continuous and F contains all P-null sets). B(t) is an
r-dimensional Brownian motion defined on the probability space. | · | denotes the Eu-
clidean norm in Rn. The inner product of x, y in Rn is denoted by 〈x, y〉 or x
y. If A is a
vector or matrix, its transpose is denoted by A
. If A is a matrix, its norm ‖A‖ is defined
by ‖A‖ = sup{|Ax| : |x| = }. Let t ≥  and C([qt, t];Rn) denote the family of all contin-
uous functions ξ from [qt, t] to Rn with the norm ‖ξ‖ = supqt≤θ≤t |ξ (θ )|. For p > , de-
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note by LpFt
([qt, t];Rn) the family of all Ft-measurable, C([qt, t];Rn)-value random vari-

ables ξ = {ξ (θ ) : qt ≤ θ ≤ t} with E‖ξ‖p < ∞.
Consider an n-dimensional neutral stochastic pantograph equation

d
[
x(t) –N

(
x(qt)

)]
= f

(
t,x(t),x(qt)

)
dt + g

(
t,x(t),x(qt)

)
dB(t), t ≥ t, ()

with initial data {x(t) : qt ≤ t ≤ t} = ξ ∈ LpFt
([qt, t];Rn). Here  < q < , f : [t,∞) ×

Rn ×Rn → Rn, g : [t,∞)×Rn ×Rn → Rn×r and N : Rn → Rn are all continuous functions.
As usual, thought this paper, we assume that Eq. () has a unique global solution

x(t; ξ ) on t ≥ qt with E(supqt≤t<∞ |x(t; ξ )|p) < ∞. Moreover, we assume that f (t, , ) = ,
g(t, , ) = , N() =  for the stability purpose, so that Eq. () admits a trivial solution
x(t; ) = .
The following assumption and definition will be used in the following sections.

Assumption (H) Assume that there is a constant κ ∈ (, ) such that

∣∣N(x) –N(y)
∣∣ ≤ κ|x – y|, ∀x, y ∈ Rn.

Definition . The trivial solution of Eq. () is said to be:
() pth moment stable if, for every ε > , there exists δ = δ(ε) >  such that

E
∣∣x(t; ξ )∣∣p ≤ ε, ∀t ≥ t,

whenever E‖ξ‖p < δ;
() pth moment asymptotically stable if it is pth moment stable and there exists a δ > 

such that E‖ξ‖p < δ implies

lim
t→∞E

∣∣x(t; ξ )∣∣p = ;

() globally pth moment asymptotically stable if it is pth moment stable and, moreover,
for all initial data ξ ∈ LpFt

([qt, t];Rn),

lim
t→∞E

∣∣x(t; ξ )∣∣p = .

To study the stability of Eq. (), we need to introduce some other notations. Let
C,([qt,∞) × Rn;R+) denote the family of all nonnegative functions V (t,x) on [qt,∞),
which are once differentiable in t and twice differentiable in x. Define an operator LV ,
associated with Eq. (), acting on V (t,x) ∈ C,([qt,∞)× Rn;R+) by

LV (t,x, y) = Vt
(
t,x –N(y)

)
+Vx

(
t,x –N(y)

)
f (t,x, y)

+


trace

[
g
(t,x, y)Vxx

(
t,x –N(y)

)
g(t,x, y)

]

for t ≥ t and x, y ∈ Rn, where

Vt =
∂V (t,x)

∂t
, Vx =

(
∂V (t,x)

∂x
,
∂V (t,x)

∂x
, . . . ,

∂V (t,x)
∂xn

)
, Vxx =

(
∂V (t,x)
∂xi∂xj

)
n×n

.
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The following inequality (see Lemma . of chapter  in [] ) will be used in this paper:
Let p ≥ , a,b ∈ Rn. Then for any ε > ,

|a + b|p ≤ ( + ε)p–
(|a|p + ε–p|b|p). ()

3 Razumikhin-type theorem
In this section, we investigate the pth moment asymptotic stability of Eq. () by using the
Razumikhin-type technique.

Theorem . Let p ≥ , c ≥ c > , λ >  and Assumption (H) hold. Assume that there
exists a function V (t,x) ∈ C,([qt,∞)× Rn;R+) such that

c|x|p ≤ V (t,x) ≤ c|x|p, ∀(t,x) ∈ [qt,∞)× Rn ()

and,moreover,

ELV
(
t,ϕ(t),ϕ(qt)

) ≤ –λEV
(
t,ϕ(t) –N

(
ϕ(qt)

))
, t ≥ t, ()

for all ϕ ∈ LpFt
([qt, t];Rn) satisfying

EV
(
qt,ϕ(qt)

)
< p̄EV

(
t,ϕ(t) –N

(
ϕ(qt)

))
,

where p̄ > c
c
( – κ)–p. Then the trivial solution of Eq. () is globally pth moment asymptot-

ically stable.

Proof For any given initial data ξ ∈ LpFt
([qt, t];Rn), let x(t) = x(t; ξ ) be the solution of

the system ().
() For any given ε > , we will prove that there exists a δ >  such that E‖ξ‖p < δ implies

E|x(t)|p ≤ ε for t ≥ t. Let δ = c(–κ)p
c(+κ)p ε. Using the inequality () with ε = κ and Assump-

tion (H), we have

E
∣∣x(t) –N

(
x(qt)

)∣∣p ≤ ( + κ)p–
(
E
∣∣x(t)∣∣p + κ–pE

∣∣N(
x(qt)

)∣∣p)
≤ ( + κ)p–

(
E
∣∣x(t)∣∣p + κE

∣∣x(qt)∣∣p)
< ( + κ)p–(δ + κδ)

= ( + κ)pδ.

Since E|x(t) –N(x(qt))|p is continuous, there exists a T > t such that

E
∣∣x(t) –N

(
x(qt)

)∣∣p ≤ ( + κ)pδ for t ≤ t ≤ T .

Then, by (),

EV
(
t,x(t) –N

(
x(qt)

)) ≤ c( + κ)pδ for t ≤ t ≤ T .

We assert that

EV
(
t,x(t) –N

(
x(qt)

)) ≤ c( + κ)pδ for t ≥ t. ()
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We will prove () by contradiction. Suppose that there exists a t∗ > T such that

EV
(
t∗,x

(
t∗

)
–N

(
x
(
qt∗

)))
> c( + κ)pδ.

Set t̄ =max{t : EV (s,x(s)–N(x(qs)))≤ c(+κ)pδ, s ∈ [t, t]}. Then there exists a sufficiently
small h >  such that

qt ≤ t̄ for t ∈ (t̄, t̄ + h],

EV
(
t,x(t) –N

(
x(qt)

))
> c( + κ)pδ for t ∈ (t̄, t̄ + h].

()

Using the inequality () with ε = κ
–κ

and Assumption (H), we obtain that

E
∣∣x(t)∣∣p ≤ E|x(t) –N(x(qt))|p

( – κ)p–
+
E|N(x(qt))|p

κp–

≤ E|x(t) –N(x(qt))|p
( – κ)p–

+ κE
∣∣x(qt)∣∣p. ()

Using () and (), we have

E
∣∣x(t)∣∣p ≤ supt≤s≤t̄ E|x(s) –N(x(qs))|p

( – κ)p–
+ κ sup

qt≤s≤t̄
E
∣∣x(s)∣∣p

≤ supt≤s≤t̄ EV (s,x(s) –N(x(qs)))
c( – κ)p–

+ κ sup
qt≤s≤t̄

E
∣∣x(s)∣∣p

≤ c( + κ)pδ
c( – κ)p–

+ κ sup
qt≤s≤t̄

E
∣∣x(s)∣∣p

for t ∈ [t, t̄], which also holds for t ∈ [qt, t]. Then we have

sup
qt≤t≤t̄

E
∣∣x(t)∣∣p ≤ c( + κ)pδ

c( – κ)p–
+ κ sup

qt≤t≤t̄
E
∣∣x(t)∣∣p.

That is,

sup
qt≤t≤t̄

E
∣∣x(t)∣∣p ≤ c( + κ)p

c( – κ)p
δ. ()

Using () yields

EV
(
t,x(t)

) ≤ c( + κ)pδ
c( – κ)p

for t ∈ [qt, t̄]. ()

Applying p̄ > c
c
( – κ)–p, () and (), we obtain that

p̄EV
(
t,x(t) –N

(
x(qt)

)) ≥ p̄c( + κ)pδ >
c( + κ)pδ
c( – κ)p

≥ EV
(
qt,x(qt)

)
for t ∈ [t̄, t̄ + h].
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By Itô’s formula and (),

EV
(
t,x(t) –N

(
x(qt)

)) ≤ EV
(
t̄,x(t̄) –N

(
x(qt̄)

)) ≤ c( + κ)pδ for t ∈ (t̄, t̄ + h],

which contradicts (). Therefore () must hold. In a similar way to (), we have

sup
qt≤s≤t

E
∣∣x(s)∣∣p ≤ c( + κ)pδ

c( – κ)p
for t ≥ t.

That is,

E
∣∣x(t)∣∣p ≤ c( + κ)pδ

c( – κ)p
= ε for t ≥ t.

The pth moment stability is proved.
() By the same argument as shown in (), we can obtain that for any initial data ξ ∈

LpFt
([qt, t];Rn), there exists a constant H such that

EV
(
t,x(t) –N

(
x(qt)

)) ≤ H for t ≥ t,

E
∣∣x(t)∣∣p ≤ H

c( – κ)p
for t ≥ t

and

EV
(
t,x(t)

) ≤ cH

c( – κ)p
for t ≥ t.

We first show that

lim
t→∞EV

(
t,x(t) –N

(
x(qt)

))
= . ()

In order to prove (), it is enough to show that for any given γ with  < γ < H, there
exists a T >  such that EV (t,x(t) –N(x(qt))) < γ for t > T . Let d >  satisfy p̄ c

c
( – κ)pγ >

γ +d/(–κ). Obviously, p̄ c
c
(–κ)ps > s+d/(–κ) for s≥ γ . Set T =

p̄ c
c

(–κ)p–
λ(–q) , t̄i = t+T

qi ,
s̄i = t+T

qi+ , Ii = [s̄i, t̄i+]. LetM be the smallest nonnegative integer such that H ≤ γ +Md.
We will show that

EV
(
t,x(t) –N

(
x(qt)

)) ≤ γ + (M – i)d for t ≥ t̄i, i = , , , . . . ,M,

E
∣∣x(t)∣∣p ≤ γ + (M – (i + ))d + ( + κ + κ + · · · + κ i)d

c( – κ)p

for t ≥ t̄i, i = , , , . . . ,M,

EV
(
t,x(t)

) ≤ c
γ + (M – (i + ))d + ( + κ + κ + · · · + κ i)d

c( – κ)p

for t ≥ t̄i, i = , , , . . . ,M.

()

http://www.journalofinequalitiesandapplications.com/content/2013/1/299
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Wewill prove () by induction. Obviously, () holds for i = . Assume that () holds for
 ≤ i≤ n <M. Then we will obtain that there exists a t∗ ∈ In such that

EV
(
t∗,x

(
t∗

)
–N

(
x
(
qt∗

))) ≤ γ +
(
M – (n + )

)
d. ()

Otherwise, for all t ∈ In, we have

qt ≥ t̄n,

EV
(
t,x(t) –N

(
x(qt)

))
> γ +

(
M – (n + )

)
d,

()

which implies that

p̄EV
(
t,x(t) –N

(
x(qt)

)) ≥ p̄
(
γ +

(
M – (n + )

)
d
)
> c

γ + (M – (n + ))d + d
–κ

c( – κ)p

> c
γ + (M – (n + ))d + ( + κ + κ + · · · + κn)d

c( – κ)p

≥ EV
(
qt,x(qt)

)
for t ∈ In. ()

Using Itô’s formula, () and (), we have

EV
(
t̄n+,x(t̄n+) –N

(
x(qt̄n+)

))

≤ EV
(
s̄n,x(s̄n) –N

(
x(qs̄n)

))
– λ

∫ t̄n+

s̄n
EV

(
t,x(t) –N

(
x(qt)

))
dt

≤ γ + (M – n)d – λ
(
γ +

(
M – (n + )

)
d
)
(t̄n+ – s̄n)

≤ γ + (M – n)d –
(
p̄
c
c
( – κ)p – 

)(
γ +

(
M – (n + )

)
d
)

≤ γ + (M – n)d –
d

 – κ
< γ +

(
M – (n + )

)
d, ()

which contradicts (). So, () must hold. We assert that for all t ≥ t∗,

EV
(
t,x(t) –N

(
x(qt)

)) ≤ γ +
(
M – (n + )

)
d. ()

Otherwise, there is a t > t∗ such that

EV
(
t,x(t) –N

(
x(qt)

))
> γ +

(
M – (n + )

)
d. ()

Set t̄ = max{t : EV (s,x(s) – N(x(qs))) ≤ γ + (M – (n + ))d, s ∈ [t∗, t]}. Then there exists a
sufficiently small h >  such that

qt ≥ t̄n for t ∈ [t̄, t̄ + h],

EV
(
t,x(t) –N

(
x(qt)

))
> γ +

(
M – (n + )

)
d for t ∈ (t̄, t̄ + h],

()
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which implies that

p̄EV
(
t,x(t) –N

(
x(qt)

)) ≥ p̄
(
γ +

(
M – (n + )

)
d
)
> c

γ + (M – (n + ))d + d
–κ

c( – κ)p

> c
γ + (M – (n + ))d + ( + κ + κ + · · · + κn)d

c( – κ)p

≥ EV
(
qt,x(qt)

)
for t ∈ [t̄, t̄ + h]. ()

Then, by Itô’s formula and (),

EV
(
t̄ + h,x(t̄ + h) –N

(
x
(
q(t̄ + h)

)))
– EV

(
t̄,x(t̄) –N

(
x(qt̄)

)) ≤ .

Hence EV (t̄ + h,x(t̄ + h) –N(x(q(t̄ + h))))≤ γ + (M – (n + ))d, which contradicts (). We
therefore have

EV
(
t,x(t) –N

(
x(qt)

)) ≤ γ +
(
M – (n + )

)
d for t ≥ t̄n+ ≥ t∗. ()

On the other hand, using (), () and (), we can obtain that

E
∣∣x(t)∣∣p ≤ E|x(t) –N(x(qt))|p

( – κ)p–
+ κE

∣∣x(qt)∣∣p

≤ EV (t,x(t) –N(x(qt)))
c( – κ)p–

+ κE
∣∣x(qt)∣∣p

≤ γ + (M – (n + ))d
c( – κ)p–

+ κ
γ + (M – (n + ))d + ( + κ + κ + · · · + κn)d

c( – κ)p

=
γ + (M – (n + ))d + ( + κ + κ + · · · + κn+)d

c( – κ)p
for t ≥ t̄n+. ()

Moreover, by (),

EV
(
t,x(t)

) ≤ c
γ + (M – (n + ))d + ( + κ + κ + · · · + κn+)d

c( – κ)p

for t ≥ t̄n+. That is, () holds for i = n + . By induction, () holds for ≤ i ≤ M. Thus

EV
(
t,x(t) –N

(
x(qt)

)) ≤ γ for t ≥ T = t̄M.

So, () must hold. Using () yields

lim
t→∞E

∣∣x(t) –N
(
x(qt)

)∣∣p = .

Since E|x(t)|p ≤ H
c(–κ)p , we conclude that lim supt→∞ E|x(t)|p < ∞. Using (), we have

lim sup
t→∞

E
∣∣x(t)∣∣p ≤ 

( – κ)p–
lim
t→∞E

∣∣x(t) –N
(
x(qt)

)∣∣p + κ lim sup
t→∞

E
∣∣x(qt)∣∣p

=  + κ lim sup
t→∞

E
∣∣x(t)∣∣p,

http://www.journalofinequalitiesandapplications.com/content/2013/1/299
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which implies that

lim sup
t→∞

E
∣∣x(t)∣∣p = .

The proof is complete. �

Remark The result obtained in Theorem . is different from the ones in [, , , ,
]. The results obtained in [, , , ] only deal with NSFDEs with finite delay. It is
easy to see that NSPE () is a class of NSFDEs with infinite delay. So, these results obtained
in [, , , ] cannot be applied to NSPE (). On the other hand, the result obtained in
[] studied the ψγ stability of NSFDEs with infinite delay. But Theorem . studied the
pth moment asymptotic stability of NSPE (). Since Theorem . is established without
taking difficulties from infinite delay into account, the conditions of Theorem . aremuch
weaker than the one obtained in []. So, our work is not trivial.
If we take V (t,x) = |x|p, the condition () may be written as

E
{
p

∣∣ϕ(t) –N

(
ϕ(qt)

)∣∣p–(∣∣ϕ(t) –N
(
ϕ(qt)

)∣∣[(ϕ(t) –N
(
ϕ(qt)

))
f
(
t,ϕ(t),ϕ(qt)

)

+
∣∣g(t,ϕ(t),ϕ(qt))∣∣] + (p – )

∣∣(ϕ(t) –N
(
ϕ(qt)

))
g
(
t,ϕ(t),ϕ(qt)

)∣∣)}

≤ –λE
∣∣ϕ(t) –N

(
ϕ(qt)

)∣∣p, t ≥ t, ()

for all ϕ ∈ LpFt
([qt, t];Rn) satisfying

E
∣∣ϕ(qt)∣∣p < p̄E

∣∣ϕ(t) –N
(
ϕ(qt)

)∣∣p,

where p̄ > ( – κ)–p.

Corollary . Let Assumption (H) hold. Assume that there are two positive constants λ

and λ such that

E
{
p

∣∣ϕ(t) –N

(
ϕ(qt)

)∣∣p–(∣∣ϕ(t) –N
(
ϕ(qt)

)∣∣[(ϕ(t) –N
(
ϕ(qt)

))
f
(
t,ϕ(t),ϕ(qt)

)

+
∣∣g(t,ϕ(t),ϕ(qt))∣∣] + (p – )

∣∣(ϕ(t) –N
(
ϕ(qt)

))
g
(
t,ϕ(t),ϕ(qt)

)∣∣)}

≤ –λE
∣∣ϕ(t)∣∣p + λE

∣∣ϕ(qt)∣∣p ()

for all t ≥ t and ϕ ∈ LpFt
([qt, t];Rn). If

 < κ <



and λ >
λ

( – κ)p
, ()

then the trivial solution of Eq. () is globally pth moment asymptotically stable.
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Proof As in Theorem ., let x(t) = x(t; ξ ) be the solution of the system () for any given
initial data ξ ∈ LpFt

([qt, t];Rn). By the condition (), we can choose p̄ such that


κp > p̄ >


( – κ)p

and λ >
λp̄

( – κ(p̄)

p )p

. ()

Let t ≥  and x(t) satisfy

E
∣∣x(qt)∣∣p < p̄E

∣∣x(t) –N
(
x(qt)

)∣∣p.

Note that for any ε ∈ (, ),

E
∣∣x(t) –N

(
x(qt)

)∣∣p ≤ 
( – ε)p–

E
∣∣x(t)∣∣p + 

εp–
E
∣∣N(

x(qt)
)∣∣p

≤ 
( – ε)p–

E
∣∣x(t)∣∣p + κpp̄

εp–
E
∣∣x(t) –N

(
x(qt)

)∣∣p.

Hence

–E
∣∣x(t)∣∣p ≤ –( – ε)p–

(
 –

κpp̄
εp–

)
E
∣∣x(t) –N

(
x(qt)

)∣∣p. ()

It then follows from () and () that

E
{
p

∣∣x(t) –N

(
x(qt)

)∣∣p–(∣∣x(t) –N
(
x(qt)

)∣∣[(x(t) –N
(
x(qt)

))
f
(
t,x(t),x(qt)

)

+
∣∣g(t,x(t),x(qt))∣∣] + (p – )

∣∣(x(t) –N
(
x(qt)

))
g
(
t,x(t),x(qt)

)∣∣)}

≤ –λE
∣∣x(t)∣∣p + λE

∣∣x(qt)∣∣p

≤ –
[
λ( – ε)p–

(
 –

κpp̄
εp–

)
– λp̄

]
E
∣∣x(t) –N

(
x(qt)

)∣∣

= –
[
λ

(
 – κ(p̄)


p
)p – λp̄

]
E
∣∣x(t) –N

(
x(qt)

)∣∣, ()

where ε = κ(p̄)

p . Using () yields

λ
(
 – κ(p̄)


p
)p – λp̄ > .

That is, the condition () is satisfied. Hence the conclusion follows from Theorem ..
The proof is complete. �

Corollary . Let Assumption (H) hold. Assume that there are four positive constants λ,
λ, λ and λ such that


(
x –N(y)

)
f (t,x, y)≤ –λ|x| + λ|y|,∣∣g(t,x, y)∣∣ ≤ λ|x| + λ|y|
()

http://www.journalofinequalitiesandapplications.com/content/2013/1/299
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for all t ≥ t and x, y ∈ Rn. If

 < κ <



and λ – λ >
λ + λ

( – κ)
, ()

then the trivial solution of Eq. () is mean square stable.

Proof Using (), we have

E
(

(
ϕ(t) –N

(
ϕ(qt)

))
f
(
t,ϕ(t),ϕ(qt)

)
+

∣∣g(t,ϕ(t),ϕ(qt))∣∣)
≤ –(λ – λ)E

∣∣ϕ(t)∣∣ + (λ + λ)E
∣∣ϕ(qt)∣∣

for all ϕ ∈ LpFt
([qt, t];Rn). Then the desired conclusion is obtained from Corollary . as

taking p = . The proof is complete. �

4 Mean square stability of the backward Euler method
In this section, we develop the backward Euler method for Eq. (). We will show that the
backward Eulermethod can preserve themean square stability of exact solutions of Eq. ().
To define the backward Euler method for Eq. (), we introduce a mesh H̄ = {m; t–m, . . . ,

t–, t, t, . . . , tm, . . .} as follows. We assume that the initial time t > . Set tm = q–t. We
definem –  grid points t < t < · · · < tm– in (t, tm) by

ti = t + i� for i = , , . . . ,m – ,

where the initial step size � = tm–t
m , and define the other grid points by

tkm+i = q–kti for k = –, , , . . . , i = , , , . . . ,m – .

Let hn = tn+ – tn. It is easy to see that grid points tn satisfy qtn = tn–m for n ≥  and the
step size hn satisfies

qhn = hn–m for n≥  and lim
n→∞hn = ∞.

For the given mesh H̄ , the backward Euler method for Eq. () is defined as follows:

Yn+ –N(Yn+–m)

= Yn –N(Yn–m) + hnf (tn+,Yn+,Yn+–m) + g(tn,Yn,Yn–m)�Bn ()

with the initial values

Yn = ξ (tn), n = –m, –m + , . . . , . ()

Here, Yn (n > ) is an approximation value of x(tn) and Ftn -measurable. �Bn = B(tn+) –
B(tn) is the Brownian motion increment.

http://www.journalofinequalitiesandapplications.com/content/2013/1/299
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Definition . The numerical solution Yn (n = , , . . .) of Eq. () is said to bemean square
stable if for every ε > , there exists δ = δ(ε) >  such that

E|Yn| ≤ ε, n = , , . . . ,

whenever the initial values satisfy E(maxn=–m,..., |ξ (tn)|) < δ and, moreover,

lim
n→∞E|Yn| = .

Theorem. Assume the backward Eulermethod () is well defined. Let Assumption (H),
conditions () and () hold. Then the backward Euler method approximate solution ()
is mean square stable.

Proof Set Yn = Yn –N(Yn–m). For n≥ , by (),

∣∣Yn+ – hnf (tn+,Yn+,Yn+–m)
∣∣ = ∣∣Yn + g(tn,Yn,Yn–m)�Bn

∣∣.
Then we can obtain that

|Yn+| ≤ |Yn| + hn
〈
Yn+, f (tn+,Yn+,Yn+–m)

〉
+

∣∣g(tn,Yn,Yn–m)�Bn
∣∣

+ 
〈
Yn, g(tn,Yn,Yn–m)�Bn

〉
,

which subsequently leads to

E|Yn+| ≤ E|Yn| + hnE
〈
Yn+, f (tn+,Yn+,Yn+–m)

〉
+ E

∣∣g(tn,Yn,Yn–m)
∣∣hn.

By the condition (),

E|Yn+| ≤ E|Yn| – λhnE|Yn+| + λhnE|Yn+–m|

+
(
λE|Yn| + λE|Yn–m|)hn. ()

Using the equality |a + b| ≤ |a| + |b| yields

|Yn+| ≥ 

|Yn+| –

∣∣N(Yn+–m)
∣∣

and

|Yn| ≤ |Yn| + 
∣∣N(Yn–m)

∣∣.
Inserting these inequalities into () and using Assumption (H), we have

(


+ λhn

)
E|Yn+| ≤ ( + λhn)E|Yn| +

(
κ + λhn

)
E|Yn+–m|

+
(
κ + λhn

)
E|Yn–m|. ()
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Let An = / + λhn, Bn =  + λhn, Cn = κ + λhn and Dn = κ + λhn. Using these nota-
tions, () implies that

E|Yn+| ≤ Bn +Cn +Dn

An
max

{
E|Yn|,E|Yn+–m|,E|Yn–m|}. ()

By the condition (), we have

 < A = lim
n→∞

Bn +Cn +Dn

An
=

λ + λ + λ

λ
< .

Let ε ∈ (,  –A). There exists a positive integer N such that

∣∣∣∣Bn +Cn +Dn

An
–A

∣∣∣∣ < ε, n≥ N ,

that is,

Bn +Cn +Dn

An
< A + ε < , n≥ N .

Set C =max{max≤n≤N {Bn+Cn+Dn
An

}, }. Then, by (),

E|Yn+| ≤ CN+ max
n=–m,...,

E|Yn|, n≥ ,

E|Yn+| ≤ (A + ε)[
n–N
m+ ] max

–m≤i≤

{
E|YN+i|

}
, n≥ N ,

()

where [·] denotes the ‘greatest integer in’ function. () implies

lim
n→∞E|Yn| = .

The proof is complete. �

5 Numerical experiments
In this section, we present numerical experiments to illustrate theoretical results obtained
in the previous sections.
Consider the following scalar problem:

⎧⎨
⎩
d[x(t) – 

 sin(x(.t))] = (–x(t) +  sin(x(.t)))dt + x(.t)dB(t), t ≥ ,

x(t) =  +  cos(t),  ≤ t ≤ .
()

For Eq. (), we can obtain that κ = /, λ = , λ = /, λ =  and λ =  corresponding
to Corollary .. By Corollary ., the solution x(t) of Eq. () is mean square stable. Theo-
rem . shows that the backward Euler method approximation Yn of Eq. () can preserve
the mean square stability of the exact solution x(t).
A set of  blocks each containing  outcomes (ωij,  ≤ i ≤ ,  ≤ j ≤ ) is simu-

lated, and Yn(ωij) denotes the nth step value of the backward Euler method approximation

http://www.journalofinequalitiesandapplications.com/content/2013/1/299
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Figure 1 Asymptotic behavior of the backward Euler approximation with different initial step size
�0, left: �0 = 0.1; right: �0 = 1. The left one of Figure 1 describes the mean square asymptotic behavior of
the backward Euler approximation E|Yn|2 of Eq. (39) with initial step size �0 = 0.1; the right one of Figure 1
describes the mean square asymptotic behavior of the backward Euler approximation E|Yn|2 of Eq. (39) with
initial step size �0 = 1.

of the jth trajectory in the ith block. We compute E|Yn| of the backward Euler method
approximation by

E|Yn| ∼= 
,

∑
i=

∑
j=

∣∣Yn(ωij)
∣∣.

Two tests are developed with different initial step sizes � = ., . Results are shown in
Figure . It is easy to see that these results are compatible with the conclusion of Theo-
rem ..

Conclusion
In this paper, we have firstly investigated the pth moment asymptotic stability of NSPEs.
Although the NSPE is a special class of NFDEs with infinite delay, we show that the
Razumikhin-type theorem on the pth moment asymptotic stability of NSPEs can be es-
tablished without taking into account difficulties from infinite delay. On the other hand,
we also develop the backward Euler method for NSPEs. We show that the backward Euler
method can preserve the mean square stability of exact solutions under suitable condi-
tions. Numerical examples have been provided to demonstrate the validity of our results.
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