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1 Introduction
Throughout the article, R denotes the set of real numbers, x = (x,x, . . . ,xn) denotes
n-tuple (n-dimensional real vectors), the set of vectors can be written as

R
n =

{
x = (x, . . . ,xn) : xi ∈ R, i = , . . . ,n

}
,

R
n
+ =

{
x = (x, . . . ,xn) : xi > , i = , . . . ,n

}
.

In particular, the notations R and R+ denote R and R

+, respectively.

For convenience, we introduce some definitions as follows.

Definition  [, ] Let x = (x, . . . ,xn) and y = (y, . . . , yn) ∈R
n.

(i) x ≥ y means xi ≥ yi for all i = , , . . . ,n.
(ii) Let � ⊂R

n, ϕ :� →R is said to be increasing if x ≥ y implies ϕ(x) ≥ ϕ(y). ϕ is said
to be decreasing if and only if –ϕ is increasing.

Definition  [, ] Let x = (x, . . . ,xn) and y = (y, . . . , yn) ∈R
n.

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i= x[i] ≤
∑k

i= y[i] for
k = , , . . . ,n –  and

∑n
i= xi =

∑n
i= yi, where x[] ≥ · · · ≥ x[n] and y[] ≥ · · · ≥ y[n] are

rearrangements of x and y in a descending order.
(ii) Let � ⊂R

n, ϕ :� →R is said to be a Schur-convex function on � if x ≺ y on �

implies ϕ(x) ≤ ϕ(y). ϕ is said to be a Schur-concave function on � if and only if –ϕ

is Schur-convex function on �.

Definition  [, ] Let x = (x, . . . ,xn) and y = (y, . . . , yn) ∈R
n.

(i) � ⊂R
n is said to be a convex set if x,y ∈ �,  ≤ α ≤  implies

αx + ( – α)y = (αx + ( – α)y, . . . ,αxn + ( – α)yn) ∈ �.
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(ii) Let � ⊂R
n be a convex set. A function ϕ :� →R is said to be a convex function

on � if

ϕ
(
αx + ( – α)y

) ≤ αϕ(x) + ( – α)ϕ(y)

for all x,y ∈ � and all α ∈ [, ]. ϕ is said to be a concave function on � if and only
if –ϕ is a convex function on �.

(iii) Let � ⊂R
n. A function ϕ :� →R is said to be a log-convex function on � if the

function lnϕ is convex.

Definition  []
(i) � ⊂R

n is called a symmetric set, if x ∈ � implies Px ∈ � for every n× n
permutation matrix P.

(ii) The function ϕ :� →R is called symmetric if for every permutation matrix P,
ϕ(Px) = ϕ(x) for all x ∈ �.

TheoremA (Schur-convex function decision theorem [, p.]) Let� ⊂R
n be symmetric

and have a nonempty interior convex set. � is the interior of �. ϕ : � → R is continuous
on � and differentiable in �. Then ϕ is the Schur-convex (Schur-concave) function if and
only if ϕ is symmetric on � and

(x – x)
(

∂ϕ

∂x
–

∂ϕ

∂x

)
≥  (≤ ) ()

holds for any x ∈ �.

The Schur-convex functions were introduced by Schur in  and have important ap-
plications in analytic inequalities, elementary quantummechanics and quantum informa-
tion theory. See [].
In recent years, many scholars use the Schur-convex function decision theorem to de-

termine the Schur-convexity of many symmetric functions.
Xia et al. [] proved that the symmetric function

Ek

(
x

 + x

)
=

∑
≤i<···<ik≤n

k∏
j=

xij
 + xij

, k = , . . . ,n, ()

is Schur-convex on R
n
+.

Chu et al. [] proved that the symmetric function

Ek

(
x

 – x

)
=

∑
≤i<···<ik≤n

k∏
j=

xij
 – xij

, k = , . . . ,n, ()

is Schur-convex on [ k–
(n–) , )

n and Schur-concave on [, k–
(n–) ]

n.
Xia and Chu [] proved that the symmetric function

Ek

(
 – x
x

)
=

∑
≤i<···<ik≤n

k∏
j=

 – xij
xij

, k = , . . . ,n, ()

is Schur-convex on (, n–k–(n–) ]
n and Schur-concave on [ n–k–(n–) , ]

n.
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Xia and Chu [] also proved that the symmetric function

Ek

(
 + x
 – x

)
=

∑
≤i<···<ik≤n

k∏
j=

 + xij
 – xij

, k = , . . . ,n, ()

is Schur-convex on (, )n.
Mei et al. [] proved that the symmetric function

Ek

(

x
– x

)
=

∑
≤i<···<ik≤n

k∏
j=

(

xij

– xij

)
, k = , . . . ,n, ()

is Schur-convex on (, )n. More results for Schur convexity of the symmetric functions,
we refer the reader to [].
In this paper, by the properties of a Schur-convex function, we study Schur-convexity of

the dual form of the above symmetric functions, and we obtained the following results.

Theorem  The symmetric function

E∗
k

(
x

 + x

)
=

∏
≤i<···<ik≤n

k∑
j=

xij
 + xij

, k = , . . . ,n, ()

is a Schur-concave function on R
n
+.

Theorem  The symmetric function

E∗
k

(
x

 – x

)
=

∏
≤i<···<ik≤n

k∑
j=

xij
 – xij

, k = , . . . ,n, ()

is a Schur-convex function on [  , )
n.

Theorem  The symmetric function

E∗
k

(
 – x
x

)
=

∏
≤i<···<ik≤n

k∑
j=

 – xij
xij

, k = , . . . ,n, ()

is a Schur-convex function on (,  ]
n.

Theorem  The symmetric function

E∗
k

(
 + x
 – x

)
=

∏
≤i<···<ik≤n

k∑
j=

 + xij
 – xij

, k = , . . . ,n, ()

is a Schur-convex function on (, )n.

Theorem  The symmetric function

E∗
k

(

x
– x

)
=

∏
≤i<···<ik≤n

k∑
j=

(

xij

– xij

)
, k = , . . . ,n, ()

is a Schur-convex function on (,
√√

 – )n.
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2 Lemmas
To prove the above three theorems, we need the following lemmas.

Lemma  ([, p.], []) If ϕ is symmetric and convex (concave) on a symmetric convex set
�, then ϕ is Schur-convex (Schur-concave) on �.

Lemma  [, p.] Let � ⊂ R
n, ϕ : � → R+. Then logϕ is Schur-convex (Schur-concave)

if and only if ϕ is Schur-convex (Schur-concave).

Lemma  ([, p.], []) Let � ⊂ R
n be an open convex set, ϕ : � → R. For x,y ∈ �,

define one variable function g(t) = ϕ(tx + ( – t)y) on the interval (, ). Then ϕ is convex
(concave) on � if and only if g is convex (concave) on [, ] for all x,y ∈ �.

Lemma  Let x = (x, . . . ,xm) and y = (y, . . . , ym) ∈R
m
+ . Then the function p(t) = log g(t) is

concave on [, ], where

g(t) =
m∑
j=

txj + ( – t)yj
 + txj + ( – t)yj

.

Proof

p′(t) =
g ′(t)
g(t)

,

where

g ′(t) =
m∑
j=

xj – yj
( + txj + ( – t)yj)

,

p′′(t) =
g ′′(t)g(t) – (g ′(t))

g(t)
,

where

g ′′(t) = –
m∑
j=

(xj – yj)

( + txj + ( – t)yj)
.

Thus,

g ′′(t)g(t) –
(
g ′(t)

)
=

(
–

m∑
j=

(xj – yj)

( + txj + ( – t)yj)

)( m∑
j=

txj + ( – t)yj
 + txj + ( – t)yj

)

–

( m∑
j=

xj – yj
( + txj + ( – t)yj)

)

≤ ,

and then p′′(t) ≤ , that is, p(t) is concave on [, ].
The proof of Lemma  is completed. �
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Lemma  Let x = (x, . . . ,xm) and y = (y, . . . , ym) ∈ [  , )
m. Then the function q(t) =

logψ(t) is convex on [, ], where

ψ(t) =
m∑
j=

txj + ( – t)yj
 – txj – ( – t)yj

.

Proof

q′(t) =
ψ ′(t)
ψ(t)

,

where

ψ ′(t) =
m∑
j=

xj – yj
( – txj – ( – t)yj)

,

q′′(t) =
ψ ′′(t)ψ(t) – (ψ ′(t))

ψ(t)
,

where

ψ ′′(t) =
m∑
j=

(xj – yj)

( – txj – ( – t)yj)
.

By the Cauchy inequality, we have

ψ ′′(t)ψ(t) –
(
ψ ′(t)

)
=

( m∑
j=

(xj – yj)

( – txj – ( – t)yj)

)( m∑
j=

txj + ( – t)yj
 – txj – ( – t)yj

)
–

( m∑
j=

xj – yj
( – txj – ( – t)yj)

)

≥
( m∑

j=

√
|xj – yj|

( – txj – ( – t)yj)



√
txj + ( – t)yj√

 – txj – ( – t)yj

)

–

( m∑
j=

xj – yj
( – txj – ( – t)yj)

)

=

( m∑
j=

√
|xj – yj|

√
txj + ( – t)yj

( – txj – ( – t)yj)

)

–

( m∑
j=

xj – yj
( – txj – ( – t)yj)

)

.

From xj, yj ∈ [  , ) it follows that
√

√
txj + ( – t)yj ≥ , hence ψ ′′(t)ψ(t) – (ψ ′(t)) ≥ ,

and then q′′(t)≥ , that is, q(t) is convex on [, ].
The proof of Lemma  is completed. �

Lemma  Let x = (x, . . . ,xm) and y = (y, . . . , ym) ∈ (,  ]
m. Then the function r(t) =

logϕ(t) is convex on [, ], where

ϕ(t) =
m∑
j=

 – txj – ( – t)yj
txj + ( – t)yj

.

Proof

r′(t) =
ϕ′(t)
ϕ(t)

,
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where

ϕ′(t) = –
m∑
j=

xj – yj
(txj + ( – t)yj)

,

r′′(t) =
ϕ′′(t)ϕ(t) – (ϕ′(t))

ϕ(t)
,

where

ϕ′′(t) =
m∑
j=

(xj – yj)

(txj + ( – t)yj)
.

By the Cauchy inequality, we have

ϕ′′(t)ϕ(t) –
(
ϕ′(t)

)
=

( m∑
j=

(xj – yj)

(txj + ( – t)yj)

)( m∑
j=

 – txj – ( – t)yj
txj + ( – t)yj

)
–

(
–

m∑
j=

xj – yj
(txj + ( – t)yj)

)

≥
( m∑

j=

√
|xj – yj|

(txj + ( – t)yj)



√
 – txj – ( – t)yj√
txj + ( – t)yj

)

–

( m∑
j=

xj – yj
(txj + ( – t)yj)

)

=

( m∑
j=

√
|xj – yj|

√
 – txj – ( – t)yj

(txj + ( – t)yj)

)

–

( m∑
j=

xj – yj
(txj + ( – t)yj)

)

.

From xj, yj ∈ (,  ] it follows that
√

√
 – txj – ( – t)yj ≥ , hence ϕ′′(t)ϕ(t) – (ϕ′(t)) ≥ ,

and then r′′(t)≥ , that is, r(t) is convex on [, ].
The proof of Lemma  is completed. �

Lemma  Let x = (x, . . . ,xm) and y = (y, . . . , ym) ∈ (, )m.Then the function h(t) = log f (t)
is convex on [, ], where

f (t) =
m∑
j=

 + txj + ( – t)yj
 – txj – ( – t)yj

.

Proof

h′(t) =
f ′(t)
f (t)

,

where

f ′(t) =
m∑
j=

(xj – yj)
( – txj – ( – t)yj)

,

h′′(t) =
f ′′(t)f (t) – (f ′(t))

f (t)
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/295
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where

f ′′(t) =
m∑
j=

(xj – yj)

( – txj – ( – t)yj)
.

By the Cauchy inequality, we have

f ′′(t)f (t) –
(
f ′(t)

)
=

( m∑
j=

(xj – yj)

( – txj – ( – t)yj)

)( m∑
j=

 + txj + ( – t)yj
 – txj – ( – t)yj

)

–

( m∑
j=

(xj – yj)
( – txj – ( – t)yj)

)

≥
( m∑

j=

|xj – yj|
( – txj – ( – t)yj)




√
 + txj + ( – t)yj√
 – txj – ( – t)yj

)

–

( m∑
j=

(xj – yj)
( – txj – ( – t)yj)

)

=

( m∑
j=

|xj – yj|
√
 + txj + ( – t)yj

( – txj – ( – t)yj)

)

–

( m∑
j=

(xj – yj)
( – txj – ( – t)yj)

)

.

From xj, yj ∈ (, ) it follows that
√

√
 + txj + ( – t)yj ≥ , hence f ′′(t)f (t) – (f ′(t)) ≥ ,

and then h′′(t)≥ , that is, h(t) is convex on [, ].
The proof of Lemma  is completed. �

Lemma  Let x = (x, . . . ,xm) and y = (y, . . . , ym) ∈ (,
√√

 – )m.Then the function s(t) =
logw(t) is convex on [, ], where

w(t) =
m∑
j=

(


txj + ( – t)yj
–

(
txj + ( – t)yj

))
.

Proof

s′(t) =
w′(t)
w(t)

,

where

w′(t) = –
m∑
j=

(xj – yj)
(


(txj + ( – t)yj)

+ 
)
,

s′′(t) =
w′′(t)w(t) – (w′(t))

w(t)
,

where

w′′(t) =
m∑
j=

(xj – yj)

(txj + ( – t)yj)
.
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By the Cauchy inequality, we have

w′′(t)w(t) –
(
w′(t)

)
=

( m∑
j=

(xj – yj)

(txj + ( – t)yj)

)( m∑
j=

(


txj + ( – t)yj
–

(
txj + ( – t)yj

)))

–

(
–

m∑
j=

(xj – yj)
(


(txj + ( – t)yj)

+ 
))

≥
( m∑

j=

√
|xj – yj|

(txj + ( – t)yj)



√


txj + ( – t)yj
–

(
txj + ( – t)yj

))

–

( m∑
j=

(xj – yj)
(


(txj + ( – t)yj)

+ 
))

=

( m∑
j=

√
|xj – yj|

√
 – (txj + ( – t)yj)

(txj + ( – t)yj)

)

–

( m∑
j=

(xj – yj)
 + (txj + ( – t)yj)

(txj + ( – t)yj)

)

.

Let uj := txj + ( – t)yj. From xj, yj ∈ (,
√√

 – ) it follows that uj ≤ √
 – . Since

uj ≤ √
 –  ⇔ (

uj + 
) ≤  ⇔ uj + uj – ≤ 

⇔ 
(
 – uj

) ≥ (
 + uj

) ⇔ √

√
 – uj ≥  + uj ,

so w′′(t)w(t) – (w′(t)) ≥ , and then s′′(t) ≥ , that is, s(t) is convex on [, ].
The proof of Lemma  is completed. �

3 Proof of main results
Proof of Theorem  For any  ≤ i < · · · < ik ≤ n, by Lemma  and Lemma , it follows that
log

∑k
j=

+xij
–xij

is convex on (, )k . Obviously, log
∑k

j=
+xij
–xij

is also convex on (, )n, and

then logE∗
k (

+x
–x ) =

∑
≤i<···<ik≤n log

∑k
j=

+xij
–xij

is convex on (, )n. Furthermore, it is clear

that logE∗
k (

+x
–x ) is symmetric on (, )n. By Lemma , it follows that logE∗

k (
+x
–x ) is Schur-

convex on (, )n, and then from Lemma  we conclude that E∗
k (

+x
–x ) is also Schur-convex

on (, )n.
The proof of Theorem  is completed. �

Similar to the proof of Theorem , we can use Lemma , Lemma , Lemma  and
Lemma  respectively to prove Theorem , Theorem , Theorem  and Theorem ; there-
fore we omit the details of the proof.

Remark  Using the Schur-convex function decision theorem, Liu et al. [] have proved
Theorem . Xia and Chu [] have proved that the symmetric function

E∗
k

(
 + x
x

)
=

∏
≤i<···<ik≤n

k∑
j=

 + xij
xij

, k = , . . . ,n, ()

is a Schur-convex function on R
n
+.

http://www.journalofinequalitiesandapplications.com/content/2013/1/295


Shi and Zhang Journal of Inequalities and Applications 2013, 2013:295 Page 9 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/295

The reader may wish to prove the inequality () by the properties of a Schur-convex
function.
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