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Abstract
In this paper, we introduce and study a new class of generalized nonlinear vector
mixed quasi-variational-like inequalities governed by a multi-valued map in Hausdorff
topological vector spaces which includes generalized vector mixed general
quasi-variational-like inequalities, generalized nonlinear mixed variational-like
inequalities, and so on. By using the fixed point theorem, we prove some existence
theorems for the proposed inequality.
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1 Introduction
Variational inequality theory has appeared as an effective and powerful tool to study and
investigate a wide class of problems arising in pure and applied sciences including elas-
ticity, optimization, economics, transportation, and structural analysis; see, for instance,
[–] and the references therein. A vector variational inequality in a finite-dimensional
Euclidean space was first introduced by Giannessi []. This is a generalization of scalar
variational inequality to the vector case by virtue ofmulti-criterion consideration. In ,
Browder [] first introduced andproved the basic existence theorems of solutions to a class
of nonlinear variational inequalities. The Browder’s results was extended to more gener-
alized nonlinear variational inequalities by Liu et al. [], Ahmad and Irfan [], Husain and
Gupta [] and Xiao et al. [], Zhao et al. [].
In this paper, we consider a generalized nonlinear vector mixed quasi-variational-like

inequality governed by a multi-valued map and establish some existence results in locally
convex topological vector spaces by using the fixed point theorem.
Let Y be a locally convex Hausdorff topological vector space (l.c.s., in short) and let K

be a nonempty convex subset of a Hausdorff topological vector space (t.v.s., in short) E.
We denote by L(E,Y ) the space of all continuous linear operators from E into Y , where
L(E,Y ) is equipped with a σ -topology, and by 〈l,x〉 the evaluation of l ∈ L(E,Y ) at x ∈ E.
Let X ⊆ L(E,Y ). From the corollary of Schaefer [], L(E,Y ) becomes a l.c.s. By Ding and
Tarafdar [], we have the bilinear map 〈·, ·〉 : L(K ,Y ) × K → Y is continuous. Let intA
and co(A) represent the interior and convex hull of a set A, respectively. Let C : K → Y
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be a set-valued mapping such that intC(x) �= ∅ for each x ∈ K , let η : K × K → E be a
vector-valued mapping.
Let N : L(E,Y )× L(E,Y )× L(E,Y ) → L(E,Y ) be a set-valued mapping, H : K × K → Y ,

D : K → K and T ,A,M : K → X be set-valued mappings. For each ω∗ ∈ L(E,Y ) and g :
K → K a single-valued mapping, we consider the following class of generalized nonlinear
vector mixed quasi-variational-like inequality governed by a multi-valued map :

(P)

⎧⎪⎪⎨
⎪⎪⎩
find u ∈ K such that u ∈D(u) and for each v ∈D(u),

there exist x ∈ T(u), y ∈ A(u) and z ∈M(u) satisfying

〈N(x, y, z) –ω∗,η(v, g(u))〉 +H(g(u), v)� – intC(u).

(.)

The problem (P) encompasses many models of variational inequality problems. The fol-
lowing problems are the special cases of (P).
(a) If N : L(E,Y )× L(E,Y )× L(E,Y )→ L(E,Y ) and H : K ×K → Y are two

single-valued mappings, N(x, y, z) = A(x), where A : L(E,Y )→ L(E,Y ) and ω∗ = ,
then the problem (P) reduces to the following generalized vector mixed general
quasi-variational-like inequality problem for finding u ∈ K such that u ∈D(u) and
for each v ∈D(u), there exists x ∈ T(u) satisfying

〈
A(x),η

(
v, g(u)

)〉
+H

(
g(u), v

)
/∈ – intC(u). (.)

The problem (.) was studied by Ding and Salahuddin []. Some existence results
of solutions are established under suitable assumptions without monotonicity and
compactness.

(b) If g is an identity mapping and ω∗ = , then the problem (P) reduces to the
following generalized nonlinear vector quasi-variational-like inequality problem for
finding (u,x, y, z) ∈ K ×U ×V ×W such that u ∈D(u) and for each v ∈D(u), there
exist x ∈ T(u), y ∈ A(u) and z ∈M(u) satisfying

〈
N(x, y, z),η(v,u)

〉
+H(u, v)� – intC(u). (.)

The problem (.) was studied by Husain and Gupta [].
(c) If D(u) = K , then the problem (.) reduces to the problem of finding u ∈ K such

that there exist x ∈ T(u), y ∈ A(u) and z ∈ M(u) satisfying

〈
N(x, y, z),η(v,u)

〉
+H(u, v)� – intC(u), ∀v ∈ K , (.)

which is introduced and studied by Xiao et al. []. When
N : L(E,Y )× L(E,Y )× L(E,Y )→ L(E,Y ) and H : K ×K → Y are two single-valued
mappings, the problem (.) includes some generalized variational inequality
problems investigated in [, , –] as special cases.

(d) If T(u) = A(u) = ∅ for all u ∈ K , and N is an identity mapping, the problem (.)
reduces to the problem of finding u ∈ K such that u ∈D(u) and for all v ∈D(u),

〈
T(u),η(v,u)

〉
+H(u, v)� – intC(u),

which is introduced and studied by Peng and Yang [].
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For suitable and appropriate conditions imposed on the mappings C, N , H , D, T , A,
M, η and g and by means of the fixed point theorem, we establish some existence results
of solutions for the problem (P). It is clear that the problem (P) is the most general and
unifying one, which is also one of the main motivations of this paper.

Definition . [] Let A and B be two topological vector spaces and let T : A → B be a
multi-valued mapping, then

(i) T is said to be upper semicontinuous if for any x ∈ A and for each open set U in B
containing T(x), there is a neighborhood V of x in A such that T(x) ⊂U for all
x ∈ V .

(ii) T is said to have open lower sections if the set T–(y) = {x ∈ A : y ∈ T(x)} is open in
X for each y ∈ B.

(iii) T is said to be closed if any net {xα} in A such that xα → x and any {yα} in B such
that yα → y and yα ∈ T(xα) for any α, we have y ∈ T(x).

(iv) T is said to be lower semicontinuous if for any x ∈ A and for each open set U in B
containing T(x), there is a neighborhood V of x in A such that T(x)∩U �= ∅ for
all x ∈ V .

(v) T is said to be continuous if it is both lower and upper semicontinuous.

Lemma . [] Let A and B be two topological spaces. Suppose T : A→ B and H : A →
B are multi-valued mappings having open lower sections, then

(i) G : A→ B defined by, for each x ∈ A, G(x) = co(T(x)) has open lower sections;
(ii) ρ : A→ B defined by, for each x ∈ A, ρ(x) = T(x)∩H(x) has open lower sections.

Lemma . [] Let A and B be two topological spaces. If T : A→ B is an upper semicon-
tinuous mapping with closed values, then T is closed.

Lemma . [] Let A and B be two topological spaces and let T : A → B be an upper
semicontinuousmappingwith compact values. Suppose {xα} is a net in A such that xα → x.
If yα ∈ T(xα) for each α, then there is a y ∈ T(x) and a subset {yβ} of {yα} such that
yβ → y.

Let I be an index set, Ei be a Hausdorff topological vector space for each i ∈ I . Let Ki be
a family of nonempty compact convex subsets in Ei. Let K =

∏
i∈I Ki and E =

∏
i∈I Ei.

Lemma . [] For each i ∈ I , let Ti : K → Ki be a set-valued mapping. Assume that the
following conditions hold.

(i) For each i ∈ I , Ti is a convex set-valued mapping;
(ii) K = ∪{intT–

i (xi) : xi ∈ Ki}.
Then there exists x̄ ∈ K such that x̄ ∈ T(x̄) =

∏
i∈I Ti(x̄i), that is, x̄i ∈ Ti(x̄i) for each i ∈ I ,

where x̄i is the projection of x̄ onto Ki.

2 Main results
In this section, we shall derive the solvability for the problem (P) under certain conditions.
First, we give the concept of -diagonally convex which is useful for establishing the

existence theorem for the problem (P).
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Definition . Let K be a convex subset of a t.v.s. E and Y be a t.v.s. Let C : K → Y be
a set-valued mapping and g : K → K be a single-valued mapping. Then the multi-valued
mappingH : K ×K → Y is said to be -diagonally convex with respect to g in the second
variable if for any finite subset {x, . . . ,xn} of K and any x =

∑n
i= αixi with αi ≥  for i =

, . . . ,n, and
∑n

i= αi = ,

n∑
i=

αiH
(
g(x),xi

)
� – intC(x).

Remark .
(i) If g is an identity mapping, then the concept in Definition . reduces to the

corresponding concept of -diagonal convexity in [].
(ii) If H : K ×K → Y is a single-valued mapping, then the concept in Definition .

reduces to the corresponding concept of -diagonally convex with respect to g in
the second variable in [].

Theorem . Let Y be a l.c.s., K be a nonempty convex subset of a Hausdorff t.v.s. E, X be
a nonempty compact convex subset of L(E,Y ), which is equipped with a σ -topology. Let g :
K → K , ω∗ ∈ L(E,Y ) and T ,A,M : K → X be upper semicontinuous set-valued mappings
with nonempty compact values. Assume that the following conditions are satisfied:

(i) D : K → K is a nonempty convex set-valued mapping and has open lower sections;
(ii) for each v ∈ K , the mapping

〈
N(·, ·, ·) –ω∗,η(v, ·)〉 +H(·, v) : L(E,Y )× L(E,Y )× L(E,Y )×K ×K → Y

is an upper semicontinuous set-valued mapping with compact values;
(iii) C : K → Y is a convex set-valued mapping with intC(u) �= ∅ for all u ∈ K ;
(iv) η : K ×K → E is affine in the first argument and for all u ∈ K , η(u, g(u)) = ;
(v) H : K ×K → Y is generalized vector -diagonally convex with respect to g ;
(vi) g : K → K is continuous;
(vii) for each u ∈ K , the set {u ∈ K : co�(u)∩D(u) �= ∅} is closed in K , where �(u) is

defined as

�(u) =
{
v ∈ K :

〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ⊆ – intC(u),

∀x ∈ T(u), y ∈ A(u), z ∈M(u)
}
.

Then the problem (P) admits at least one solution.

Proof Let ω∗ ∈ L(E,Y ). Define a set-valued mapping Q : K → K by

Q(u) =
{
v ∈ K :

〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ⊆ – intC(u),

∀x ∈ T(u), y ∈ A(u), z ∈M(u)
}

for all u ∈ K . We first prove that u /∈ coQ(u) for all u ∈ K . To see this, suppose, by the
method of contradiction, that there exists some point ū ∈ K such that ū ∈ coQ(ū). Then

http://www.journalofinequalitiesandapplications.com/content/2013/1/294
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there exists a finite subset {v, v, . . . , vn} ⊂Q(ū), for ū ∈ co{v, v, . . . , vn}, such that

〈
N(x̄, ȳ, z̄) –ω∗,η

(
vi, g(ū)

)〉
+H

(
g(ū), vi

) ⊆ – intC(ū), i = , , . . . ,n.

Since intC(ū) is a convex set and η is affine in the first argument, for i = , , . . . ,n, αi ≥ 
with

∑n
i= αi = , ū =

∑n
i= αivi, we have

〈
N(x̄, ȳ, z̄) –ω∗,η

( n∑
i=

αivi, g(ū)

)〉
+

n∑
i=

αiH
(
g(ū), vi

) ⊆ – intC(ū).

Since η(u, g(u)) = , for all u ∈ K , we have

n∑
i=

αiH
(
g(ū), vi

) ⊆ – intC(ū),

which contradicts the condition (v), so that u /∈ coQ(u) for all u ∈ K .
We now prove that

Q–(v) =
{
u ∈ K :

〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ⊆ – intC(u),

∀x ∈ T(u), y ∈ A(u), z ∈ M(u)
}

is open for all v ∈ K , that is, Q has open lower sections.
Consider a set-valued mapping J : K → K is defined by

J(v) =
{
u ∈ K : ∃x ∈ T(u), y ∈ A(u), z ∈M(u) such that〈
N(x, y, z, ) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

)
� – intC(u)

}
.

We only need to prove that J(v) is closed for all v ∈ K . Let {uα} be a net in J(v) such that

uα → u∗.

Since g is continuous, we have

g(uα) → g
(
u∗).

Then there exist xα ∈ T(uα), yα ∈ A(uα) and zα ∈M(uα) such that

〈
N(xα , yα , zα , ) –ω∗,η

(
vα , g(uα)

)〉
+H

(
g(uα), vα

)
� – intC(uα).

Since T , A, M are upper semicontinuous set-valued mappings with compact values, by
Lemma ., {xα}, {yα}, {zα} have convergent subnets with limits, say x∗, y∗, z∗ and x∗ ∈
T(u∗), y∗ ∈ A(u∗) and z∗ ∈M(u∗).Without loss of generality, wemay assume that xα → x∗,
yα → y∗ and zα → z∗. Suppose that

mα ∈ {〈
N(xα , yα , zα , ) –ω∗,η

(
vα , g(uα)

)〉
+H

(
g(uα), vα

)
� – intC(uα)

}
.
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Since 〈N(·, ·, ·) – ω∗,η(v, ·)〉 + H(·, v) is upper semicontinuous with compact values, by
Lemma ., there exist m∗ ∈ 〈N(x∗, y∗, z∗) – ω∗,η(v∗, g(u∗))〉 + H(g(u∗), v∗) and a subnet
{mβ} of {mα} such thatmβ →m∗. Hence J(v) is closed in K . So thatQ–(v) is open for each
v ∈ K . Therefore Q has open lower sections.
Consider a set-valued mapping G : K ×U ×V ×W → K defined by

G(u) = coQ(u)∩D(u), ∀u ∈ K .

Since D has open lower sections by hypothesis (i), we may apply Lemma . to assert that
the set-valued mapping G has also open lower sections. Let

Z =
{
u ∈ K :G(u) �= ∅}

.

There are two cases to consider. In the case Z = ∅, we have

coQ(u)∩D(u) = ∅ for each u ∈ K .

This implies that for each u ∈ K ,

Q(u)∩D(u) = ∅.

On the other hand, by the condition (i), and the fact that K is a compact convex subset
of Y , we can apply Lemma ., in this case that I = {}, to assert the existence of a fixed
point u∗ ∈D(u∗), we have

Q
(
u∗) ∩D

(
u∗) = ∅.

This implies ∀v ∈ D(u∗), v /∈ Q(u∗). Hence, in this particular case, the assertion of the
theorem holds.
We now consider the case Z �= ∅. Define a set-valued mapping S : K → K by

S(u) =

⎧⎨
⎩G(u), u ∈ Z;

D(u), u ∈ K \ Z.

Then, for each u ∈ K , S(u) is a convex set and for each t ∈ K ,

S–(t) =G–(t)∪ (
(K \ Z)∩ (

D–(t)
))
.

Since D–(t), coQ–(t) are open in K and K \ Z is open in K by the condition (vii), we have
S–(t) is open in K . This implies that S has open lower sections. Therefore, there exists
u∗ ∈ K such that u∗ ∈ S(u∗). Suppose that u∗ ∈ Z, then

u∗ ∈ coQ
(
u∗) ∩D

(
u∗),

so that u∗ ∈ coQ(u∗). This is a contradiction. Hence, u∗ /∈ Z. Therefore,

u∗ ∈D
(
u∗) and G

(
u∗) = ∅.

http://www.journalofinequalitiesandapplications.com/content/2013/1/294
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Thus

u∗ ∈D
(
u∗) and coQ

(
u∗) ∩D

(
u∗) = ∅.

This implies

Q
(
u∗) ∩D

(
u∗) = ∅.

Consequently, the assertion of the theorem holds in this case. The problem (P) admits at
least one solution. �

Corollary . Let Y be a l.c.s., K be a nonempty convex subset of a Hausdorff t.v.s. E, X be
a nonempty compact convex subset of L(E,Y ),which is equipped with a σ -topology.Assume
that N and H are single-valued mappings and T ,A,M : K → X are upper semicontinu-
ous set-valued mappings with nonempty compact values. Let ω∗ ∈ L(E,Y ) and g : K → K .
Assume that the following conditions are satisfied:

(i) D : K → K is a nonempty convex set-valued mapping and has open lower sections;
(ii) for each v ∈ K , the mapping

〈
N(·, ·, ·) –ω∗,η(v, ·)〉 +H(·, v) : L(E,Y )× L(E,Y )× L(E,Y )×K ×K → Y

is continuous;
(iii) C : K → Y is a convex set-valued mapping with intC(u) �= ∅ for all u ∈ K ;
(iv) η : K ×K → E is affine in the first argument and for all u ∈ K , η(u, g(u)) = ;
(v) H : K ×K → Y is vector -diagonally convex with respect to g ;
(vi) g : K → K is continuous;
(vii) for each u ∈ K , the set {u ∈ K : co�(u)∩D(u) �= ∅} is closed in K , where �(u) is

defined as

�(u) =
{
v ∈ K :

〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ⊆ – intC(u),

∀x ∈ T(u), y ∈ A(u), z ∈M(u)
}
;

(viii) Y \ {– intC(u)} is an upper semicontinuous set-valued mapping.
Then there exists a point ū ∈ K such that ū ∈ D(ū) and for each v ∈ D(ū), there exist x̄ ∈
T(ū), ȳ ∈ A(ū) and z̄ ∈ M(ū) such that

〈
N(x̄, ȳ, z̄) –ω∗,η

(
v, g(ū)

)〉
+H

(
g(ū), v

)
/∈ – intC(ū).

Proof
Define a set-valued mapping Q : K → K by

Q(u) =
{
v ∈ K :

〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ∈ – intC(u),

∀x ∈ T(u), y ∈ A(u), z ∈M(u)
}

http://www.journalofinequalitiesandapplications.com/content/2013/1/294
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for all u ∈ K . We now prove that Q–(v) is open for each v ∈ K , that is,

(
Q–(v)

)c = {
u ∈ K : ∃x ∈ T(u), y ∈ A(u), z ∈M(u) such that〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ∩ Y \ {
– intC(u)

} �= ∅}
is closed in K . Let {ut} be a net in (Q–(v))c such that

g(ut) → g
(
u∗) ∈ K .

Then there exist xt ∈ T(ut), yt ∈ A(ut) and zt ∈ M(ut) such that

〈
N(xt , yt , zt) –ω∗,η

(
v, g(ut)

)〉
+H

(
g(ut), v

) ∈ Y \ {
– intC(ut)

}
.

The upper semicontinuity, compact values of T , A, M and Lemma . imply that there
exist convergent subnets {xtj}, {ytj} and {ztj} such that

xtj → x∗, ytj → y∗ and ztj → z∗

for some x∗ ∈ T(u), y∗ ∈ A(u) and z∗ ∈M(u). Since 〈N(·, ·, ·) –ω∗,η(v, ·)〉+H(·, v) is contin-
uous, we have

〈
N(xtj , ytj , ztj ) –ω∗,η

(
v, g(utj )

)〉
+H

(
g(utj ), v

)
→ 〈

N
(
x∗, y∗, z∗) –ω∗,η

(
v, g

(
u∗))〉 +H

(
g
(
u∗), v).

From Lemma . and upper semicontinuity of Y \ (– intC(u)), we have
〈
N

(
x∗, y∗, z∗) –ω∗,η

(
v, g

(
u∗))〉 +H

(
g
(
u∗), v) ∈ Y \ (

– intC
(
u∗)),

and hence u∗ ∈ (Q–(v))c, which gives that (Q–(v))c is closed. Therefore Q has open lower
sections. For the remainder of the proof, we can just follow that of Theorem .. This
completes the proof. �

Theorem. Let Y be a l.c.s.,K be a nonempty convex subset of a Hausdorff t.v.s. E,X be a
nonempty compact convex subset of L(E,Y ), which is equipped with a σ -topology. Let ω∗ ∈
L(E,Y ), g : K → K and T ,A,M : K → X be upper semicontinuous set-valued mappings.
Assume that the following conditions are satisfied.

(i) D : K → K is a nonempty convex set-valued mapping and has open lower sections;
(ii) for each y ∈ K , the mapping

〈
N(·, ·, ·) –ω∗,η(v, ·)〉 +H(·, v) : L(E,Y )× L(E,Y )× L(E,Y )×K ×K → Y

is upper semicontinuous;
(iii) C : K → Y is a convex set-valued mapping with intC(u) �= ∅ for all u ∈ K ;
(iv) η : K ×K → E is affine in the first argument and for all x ∈ K , η(u, g(u)) = ;
(v) H : K ×K → Y is generalized vector -diagonally convex with respect to g ;
(vi) g : K → K is continuous;

http://www.journalofinequalitiesandapplications.com/content/2013/1/294
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(vii) For each u ∈ K , the set {u ∈ K : co�(u)∩D(u) �= ∅} is closed in K , where �(u) is
defined as

�(u) =
{
v ∈ K :

〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ⊆ – intC(u),

∀x ∈ T(u), y ∈ A(u), z ∈M(u)
}
;

(viii) for a given u ∈ K , and a neighborhood O of u, for all t ∈ O, intC(u) = intC(t).
Then the problem (P) admits at least one solution.

Proof Define a set-valued mapping Q : K → K by

Q(u) =
{
v ∈ K :

〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ⊆ – intC(u),

∀x ∈ T(u), y ∈ A(u), z ∈M(u)
}

for all u ∈ K . We now prove that for each v ∈ K ,

Q–(v) =
{
u ∈ K :

〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ⊆ – intC(u),

∀x ∈ T(u), y ∈ A(u), z ∈ M(u)
}

is open. That is, Q has open lower sections in K . Indeed, let ū ∈Q–(v), that is,

〈
N(x, y, z) –ω∗,η

(
v, g(ū)

)〉
+H

(
g(ū), v

) ⊆ – intC(ū).

Since 〈N(·, ·, ·) – ω∗,η(y, g(·))〉 + H(g(·), y) is upper semicontinuous, there exists a neigh-
borhood O of ū such that

〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ⊆ – intC(u), ∀u ∈O.

By (vii),

〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ⊆ – intC(ū), ∀u ∈O.

Hence, O ⊂ Q–(v). This implies Q–(v) is open for each v ∈ K , and so Q has open lower
sections. For the remainder of the proof, we can just follow that of Theorem .. This
completes the proof. �

Corollary . Let Y be a l.c.s., K be a nonempty convex subset of a Hausdorff t.v.s. E,
X be a nonempty compact convex subset of L(E,Y ), which is equipped with a σ -topology.
Let ω∗ ∈ L(E,Y ), g : K → K and T ,A,M : K → X be upper semicontinuous set-valued
mappings. Assume that the following conditions are satisfied.

(i) D : K → K is a nonempty convex set-valued mapping and has open lower sections;
(ii) for each y ∈ K , the mapping

〈
N(·, ·, ·)–ω∗,η

(
v, g(·))〉+H(

g(·), v) : L(E,Y )×L(E,Y )×L(E,Y )×K ×K → Y

is upper semicontinuous;

http://www.journalofinequalitiesandapplications.com/content/2013/1/294


Wangkeeree and Yimmuang Journal of Inequalities and Applications 2013, 2013:294 Page 10 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/294

(iii) C : K → Y is a convex set-valued mapping such that for each u ∈ K , C(u) = C is a
convex cone with intC(u) �= ∅ for all u ∈ K ;

(iv) η : K ×K → E is affine in the first argument and for all u ∈ K , η(u, g(u)) = ;
(v) H : K ×K → Y is generalized vector -diagonally convex with respect to g ;
(vi) g : K → K is continuous;
(vii) for each u ∈ K , the set {u ∈ K : co�(u)∩D(u) �= ∅} is closed in K , where �(u) is

defined as

�(u) =
{
v ∈ K :

〈
N(x, y, z) –ω∗,η

(
v, g(u)

)〉
+H

(
g(u), v

) ⊆ – intC(u),

∀x ∈ T(u), y ∈ A(u), z ∈M(u)
}
.

Then the problem (P) admits at least one solution.

Proof By hypothesis (iii), the condition (vii) in Theorem . is satisfied. Hence, all the
conditions in Theorem . are satisfied. �
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