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Abstract
We prove some Hardy-type inequalities on half-spaces for Kohn’s sub-Laplacian in the
Heisenberg group. Furthermore, the constants we obtained are sharp.
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1 Introduction
The Hardy inequality in R

N reads that for all u ∈ C∞
 (RN ) and N ≥ ,

∫
RN

|∇u| dx ≥ (N – )



∫
RN

u

|x| dx (.)

and the constant (N–)
 in (.) is sharp. Recently, it has been proved by Nazarov ([],

Proposition ., see also []) that the following Hardy inequality is valid for f ∈ C∞
 (RN

+ ):

∫
R
N
+

∣∣∇u(x)
∣∣ dx ≥ N



∫
R
N
+

u(x)

|x| dx, (.)

where RN
+ = {(x, . . . ,xn)|x > }, and the constant N

 is sharp. This shows that the Hardy
constant jumps from (N–)

 to N

 when the singularity of the potential reaches the bound-
ary. Formore information about this inequality and its applications, we refer to [–] and
the references therein.
The aim of this note is to prove an analogous Hardy-type inequality on a half-space for

Kohn’s sub-Laplacian in Heisenberg groups Hn. It has been proved by D’Ambrosio ([],
Theorem .) that for u ∈ C∞

 (Hn), the following holds:

∫
Hn

|∇Hu| dxdt ≥ (n – )
∫
Hn

u

|x| dxdt, (.)

where ∇H is the horizontal gradient associated with Kohn’s sub-Laplacian on H
n (for de-

tails, see Section ). Furthermore, the constant (n – ) in (.) is sharp (see [], Theo-
rem .). In this note we shall show that when the singularity is on the boundary, the
Hardy constant also jumps. In fact, we have the following.

© 2013 Liu and Luan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/291
mailto:hxliu.math@whu.edu.cn
http://creativecommons.org/licenses/by/2.0


Liu and Luan Journal of Inequalities and Applications 2013, 2013:291 Page 2 of 7
http://www.journalofinequalitiesandapplications.com/content/2013/1/291

Theorem . For all u ∈ C∞
 (Hn

+), the following holds:

∫
H
n
+

|∇Hu| dxdt ≥ n
∫
H
n
+

u

|x| dxdt, (.)

where Hn
+ = {(x, t) ∈H

n : x > }, and the constant n in (.) is sharp.

In order to prove Theorem ., we use a new technique which is different from that in
[, ]. In fact, it seems that the method used in [, ] cannot be applied to Kohn’s sub-
Laplacian.
With the same technique, we obtain the following sharp Hardy inequality on H

n
k+ =

{(x, t) ∈H
n : x > , . . . ,xk > }.

Theorem . Let  ≤ k ≤ n. For all u ∈ C∞
 (Hn

k+), the following holds:

∫
H
n
k+

|∇Hu| dxdt ≥ (n + k – )
∫
H
n
k+

u

|x| dxdt. (.)

Furthermore, the constant (n + k – ) in (.) is sharp.

2 Proofs
LetHn = (Rn×R,◦) be the (n+)-dimensional Heisenberg groupwhose group structure
is given by

(x, t) ◦ (
x′, t′

)
=

(
x + x′, t + t′ + 

n∑
j=

(
x′
jxj– – x′

j–xj
))

.

The vector fields

Xj– =
∂

∂xj–
+ xj

∂

∂t
, Xj =

∂

∂xj
– xj–

∂

∂t

(j = , . . . ,n) are left invariant and generate the Lie algebra of Hn. Kohn’s sub-Laplace on
H

n is

�H =
n∑
j=

X
j =

n∑
j=

∂

∂xj
+ |x| ∂

∂t
+ 

n∑
j=

(
xj

∂

∂xj–
– xj–

∂

∂xj

)
∂

∂t

and the horizontal gradient is the (n)-dimensional vector given by

∇H = (X, . . . ,Xn) = ∇x + �x
∂

∂t
,

where ∇x = ( ∂
∂x

, . . . , ∂
∂xn

), � is a skew symmetric and orthogonal matrix given by

� = diag(J, . . . , Jn), J = · · · = Jn =

(
 
– 

)
.
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By the definition of ∇H , we have, for α ∈R and |x| 	= ,

�H
(
x|x|α

)
=

n∑
j=

∂

∂xj

(
x|x|α

)
=

n∑
j=

∂

∂xj

(
x|x|α

)
+

∂

∂x

(
x|x|α

)

= x
n∑
j=

∂

∂xj
|x|α + x

∂

∂x
|x|α + 

∂|x|α
∂x

= x
n∑
j=

∂

∂xj
|x|α + 

∂|x|α
∂x

= α(n + α)x|x|α–. (.)

Similarly,

�H

(
|x|α

k∏
i=

xi

)
=

n∑
j=

∂

∂xj

(
|x|α

k∏
i=

xi

)

=
n∑

j=k+

∂

∂xj

(
|x|α

k∏
i=

xi

)
+

k∑
l=

∂

∂xl

(
|x|α

k∏
i=

xi

)

=
k∏
i=

xi
n∑
j=

∂

∂xj
|x|α + k|x|α–

k∏
i=

xi

= α(n + k + α – )|x|α–
k∏
i=

xi. (.)

Proof of Theorem . Using the substitution u = x|x|–nf , we get
∫
H
n
+

|∇Hu| =
∫
H
n
+

[∣∣∇H
(
x|x|–n

)∣∣f  + |∇Hf | x
|x|n +

〈∇H (x |x|–n),∇Hf 〉


]

≥
∫
H
n
+

(∣∣∇H
(
x|x|–n

)∣∣f  + 〈∇H (x |x|–n),∇Hf 〉


)

=
∫
H
n
+

f 
(∣∣∇H

(
x|x|–n

)∣∣ – 

�H

(
x |x|–n

))
.

Using the following identity, for g ∈ C(Hn),



�Hg =




n∑
j=

X
j g

 = g
n∑
j=

X
j g +

m∑
j=

|Xjg| = g�Hg + |∇Hg|, (.)

we have, by (.),

∣∣∇H
(
x|x|–n

)∣∣ – 

�H

(
x |x|–n

)
= –x|x|–n�H

(
x|x|–n

)
= –x|x|–n · (–n) · nx|x|–n–

= nx |x|–n–.
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Therefore,

∫
H
n
+

|∇Hu| dxdt ≥
∫
H
n
+

f 
(∣∣∇H

(
x|x|–n

)∣∣ – 

�H

(
x |x|–n

))
dxdt

= n
∫
H
n
+

f x |x|–n– dxdt

= n
∫
H
n
+

u

|x| dxdt. (.)

Now we show the constant n in (.) is sharp. Choosing

g(x, t) = φ(x)ω(t),

where φ ∈ C∞
 (Rn

+ ) and ω ∈ C∞
 (R), we have

∇Hg(x, t) = ∇xg(x, t) + �x
∂

∂t
g(x, t) = ω(t)∇xφ(x) + φ(x)ω′(t)�x.

Therefore,

∣∣∇Hg(x, t)
∣∣ = 〈

ω(t)∇xφ(x) + φ(x)ω′(t)�x,ω(t)∇xφ(x) + φ(x)ω′(t)�x
〉

= ω(t)|∇xφ| + φ|x|∣∣ω′(t)
∣∣ + ω(t)ω′(t)φ〈�x,∇xφ〉. (.)

To get the last equation, we use the fact |�x| = |x|.
Since

∫ +∞

–∞
ω(t)ω′(t)dt =




∫ +∞

–∞
dω(t)
dt

dt = ,

we have, by (.),

∫
H
n
+
|∇Hg(x, t)| dxdt∫
H
n
+

g
|x| dxdt

=

∫
H
n
+
ω(t)|∇xφ| dxdt + 

∫
H
n
+
φ|x||ω′(t)| dxdt∫

R
n
+

φ

|x| dx · ∫
R

ω dt

=

∫
R
n
+

|∇xφ| dx∫
R
n
+

φ

|x| dx
+ 

∫
R

|ω′(t)| dt∫
R

ω dt
·
∫
R
n
+

φ|x| dx∫
R
n
+

φ

|x| dx
.

Notice that

inf
ω∈C∞

 (R)\{}

∫
R

|ω′(t)| dt∫
R

ω dt
= , (.)

we have

inf
u∈C∞

 (Hn
+)\{}

∫
H
n
+
|∇Hu| dxdt∫

H
n
+

u
|x| dxdt

≤ inf
φ∈C∞

 (Rn)\{}

∫
R
n
+

|∇xφ| dx∫
R
n
+

φ

|x| dx
= n.

Here we use the sharp Hardy inequality (.). This completes the proof of Theorem ..
�
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Proof of Theorem . The proof is similar to that of Theorem .. Using the substitution
u = f |x|–n–k+ ∏k

i= xi, we get

∫
H
n
k+

|∇Hu| =
∫
H
n
k+

[∣∣∣∣∣∇H

(
|x|–n–k+

k∏
i=

xi

)∣∣∣∣∣


f  + |∇Hf |
∏k

i= xi
|x|n

+



〈
∇H

(
|x|–n–k+

k∏
i=

xi

)
,∇Hf 

〉]

≥
∫
H
n
k+

(∣∣∣∣∣∇H

(
|x|–n–k+

k∏
i=

xi

)∣∣∣∣∣


f  +



〈
∇H

(
|x|–n–k+

k∏
i=

xi

)
,∇Hf 

〉)

=
∫
H
n
k+

f 
(∣∣∣∣∣∇H

(
|x|–n–k+

k∏
i=

xi

)∣∣∣∣∣


–


�H

(
|x|–n–k+

k∏
i=

xi

))
.

Using the identities (.) and (.), we have

∣∣∣∣∣∇H

(
|x|–n–k+

k∏
i=

xi

)∣∣∣∣∣


–


�H

(
|x|–n–k+

k∏
i=

xi

)

= –|x|–n–k+
k∏
i=

xi · �H

(
|x|–n–k+

k∏
i=

xi

)

= (n + k – )|x|–n–k
k∏
i=

xi .

Therefore,

∫
H
n
k+

|∇Hu| ≥
∫
H
n
k+

f 
(∣∣∣∣∣∇H

(
|x|–n–k+

k∏
i=

xi

)∣∣∣∣∣


–


�H

(
|x|–n–k+

k∏
i=

xi

))

= (n + k – )
∫
H
n
k+

f |x|–n–k
k∏
i=

xi

= (n + k – )
∫
H
n
k+

u

|x| .

To see the constant (n + k – ) in (.) is sharp, we consider the function

h(x, t) = ψ(x)ω(t),

whereψ ∈ C∞
 (Rn

k+ ) and ω ∈ C∞
 (R). Here we denote byRn

k+ = {x ∈ R
n : x > , . . . ,xk > }.

Then

∣∣∇Hh(x, t)
∣∣ = 〈

ω(t)∇xψ(x) + ψ(x)ω′(t)�x,ω(t)∇xψ(x) + ψ(x)ω′(t)�x
〉

= ω(t)|∇xψ | + ψ|x|∣∣ω′(t)
∣∣ + ω(t)ω′(t)ψ〈�x,∇xψ〉
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and

∫
H
n
k+

∣∣∇Hh(x, t)
∣∣ dxdt = ∫

H
n
k+

(
ω(t)|∇xψ | + ψ|x|∣∣ω′(t)

∣∣)dxdt
+ 

∫
R
n
k+

ψ〈�x,∇xψ〉dx ·
∫
R

ω(t)ω′(t)dt

=
∫
H
n
k+

(
ω(t)|∇xψ | + ψ|x|∣∣ω′(t)

∣∣)dxdt
+ 

∫
R
n
k+

ψ〈�x,∇xψ〉dx · 


∫
R

dω(t)

=
∫
H
n
k+

(
ω(t)|∇xψ | + ψ|x|∣∣ω′(t)

∣∣)dxdt.

Therefore,

∫
H
n
k+

|∇Hh(x, t)| dxdt∫
H
n
k+

h
|x| dxdt

=

∫
H
n
k+

ω(t)|∇xψ | dxdt + 
∫
H
n
k+

ψ|x||ω′(t)| dxdt∫
R
n
k+

ψ

|x| dx · ∫
R

ω dt

=

∫
R
n
+

|∇xψ | dx∫
R
n
k+

ψ

|x| dx
+ 

∫
R

|ω′(t)| dt∫
R

ω dt
·
∫
R
n
k+

ψ|x| dx∫
R
n
k+

ψ

|x| dx
.

Thus, by (.),

inf
u∈C∞

 (Hn
k+ )\{}

∫
H
n
k+

|∇Hu| dxdt∫
H
n
k+

u
|x| dxdt

≤ inf
ψ∈C∞

 (Rn)\{}

∫
R
n
+

|∇xψ | dx∫
R
n
k+

ψ

|x| dx

= (n + k – ).

Here we use the sharp Hardy inequality ([], Theorem .)

∫
R
n
+

|∇f | dx ≥ (n + k – )
∫
R
n
+

f 

|x| dx.

The proof of Theorem . is therefore completed. �
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