On a half-discrete Hilbert-type inequality similar to Mulholland's inequality

Zhenxiao Huang ${ }^{1}$ and Bicheng Yang ${ }^{2^{*}}$

"Correspondence:
bcyang@gdei.edu.cn;
bcyang818@163.com
${ }^{2}$ Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P.R. China
Full list of author information is available at the end of the article

Abstract

By using the way of weight functions and Hadamard's inequality, a half-discrete Hilbert-type inequality similar to Mulholland's inequality with a best constant factor is given. The extension with multi-parameters, the equivalent forms as well as the operator expressions are also considered. MSC: 26D15 Keywords: Hilbert-type inequality; weight function; equivalent form

1 Introduction

Assuming that $f, g \in L^{2}\left(R_{+}\right),\|f\|=\left\{\int_{0}^{\infty} f^{2}(x) d x\right\}^{\frac{1}{2}}>0,\|g\|>0$, we have the following Hilbert integral inequality ($c f$. [1]):

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y} d x d y<\pi\|f\|\|g\|, \tag{1}
\end{equation*}
$$

where the constant factor π is the best possible. If $a=\left\{a_{n}\right\}_{n=1}^{\infty}, b=\left\{b_{n}\right\}_{n=1}^{\infty} \in l^{2},\|a\|=$ $\left\{\sum_{n=1}^{\infty} a_{n}^{2}\right\}^{\frac{1}{2}}>0,\|b\|>0$, then we still have the following discrete Hilbert inequality:

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\pi\|a\|\|b\| \tag{2}
\end{equation*}
$$

with the same best constant factor π. Inequalities (1) and (2) are important in analysis and its applications (cf. [2-4]). Also we have the following Mulholland inequality with the same best constant factor (cf. $[1,5])$:

$$
\begin{equation*}
\sum_{m=2}^{\infty} \sum_{n=2}^{\infty} \frac{a_{m} b_{n}}{\ln m n}<\pi\left\{\sum_{m=2}^{\infty} m a_{m}^{2} \sum_{n=2}^{\infty} n b_{n}^{2}\right\}^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

In 1998, by introducing an independent parameter $\lambda \in(0,1]$, Yang [6] gave an extension of (1). By generalizing the results from [6], Yang [7] gave some best extensions of (1) and (2) as follows: If $p>1, \frac{1}{p}+\frac{1}{q}=1, \lambda_{1}+\lambda_{2}=\lambda, k_{\lambda}(x, y)$ is a non-negative homogeneous function of degree $-\lambda$ with $k\left(\lambda_{1}\right)=\int_{0}^{\infty} k_{\lambda}(t, 1) t^{\lambda_{1}-1} d t \in R_{+}, \phi(x)=x^{p\left(1-\lambda_{1}\right)-1}, \psi(x)=$ $x^{q\left(1-\lambda_{2}\right)-1}, f(\geq 0) \in L_{p, \phi}\left(R_{+}\right)=\left\{f \mid\|f\|_{p, \phi}:=\left\{\int_{0}^{\infty} \phi(x)|f(x)|^{p} d x\right\}^{\frac{1}{p}}<\infty\right\}, g(\geq 0) \in L_{q, \psi}\left(R_{+}\right)$,

[^0]$\|f\|_{p, \phi},\|g\|_{q, \psi}>0$, then
\[

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} k_{\lambda}(x, y) f(x) g(y) d x d y<k\left(\lambda_{1}\right)\|f\|_{p, \phi}\|g\|_{q, \psi} \tag{4}
\end{equation*}
$$

\]

where the constant factor $k\left(\lambda_{1}\right)$ is the best possible. Moreover, if $k_{\lambda}(x, y)$ is finite and $k_{\lambda}(x, y) x^{\lambda_{1}-1}\left(k_{\lambda}(x, y) y^{\lambda_{2}-1}\right)$ is decreasing for $x>0(y>0)$, then for $a_{m}, b_{n} \geq 0, a=\left\{a_{m}\right\}_{m=1}^{\infty} \in$ $l_{p, \phi}=\left\{a \mid\|a\|_{p, \phi}:=\left\{\sum_{n=1}^{\infty} \phi(n)\left|a_{n}\right|^{p}\right\}^{\frac{1}{p}}<\infty\right\}, b=\left\{b_{n}\right\}_{n=1}^{\infty} \in l_{q, \psi},\|a\|_{p, \phi},\|b\|_{q, \psi}>0$, we have

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} k_{\lambda}(m, n) a_{m} b_{n}<k\left(\lambda_{1}\right)\|a\|_{p, \phi}\|b\|_{q, \psi} \tag{5}
\end{equation*}
$$

with the same best constant factor $k\left(\lambda_{1}\right)$. Clearly, for $p=q=2, \lambda=1, k_{1}(x, y)=\frac{1}{x+y}, \lambda_{1}=$ $\lambda_{2}=\frac{1}{2}$, (4) reduces to (1), while (5) reduces to (2). Some other results about Hilbert-type inequalities are provided by $[5,8-16]$.

On the topic of half-discrete Hilbert-type inequalities with the general nonhomogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove that the constant factors in the inequalities are the best possible. Moreover, Yang [17] gave an inequality with the particular kernel $\frac{1}{(1+n x)^{\lambda}}$ and an interval variable, and proved that the constant factor is the best possible. Recently, [18] and [19] gave the following half-discrete Hilbert inequality with the best constant factor π :

$$
\begin{equation*}
\int_{0}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{a_{n}}{(x+n)^{\lambda}} d x<\pi\|f\|\|a\| \tag{6}
\end{equation*}
$$

In this paper, by using the way of weight functions and Hadamard's inequality, a halfdiscrete Hilbert-type inequality similar to (3) and (6) with the best constant factor is given as follows:

$$
\begin{equation*}
\int_{0}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{a_{n}}{\ln e\left(n+\frac{1}{2}\right)^{x}} d x<\pi\|f\|\left\{\sum_{n=1}^{\infty}\left(n+\frac{1}{2}\right) a_{n}^{2}\right\}^{\frac{1}{2}} . \tag{7}
\end{equation*}
$$

Moreover, the best extension of (7) with multi-parameters, some equivalent forms as well as the operator expressions are considered.

2 Some lemmas

Lemma 1 If $0<\lambda \leq 2, \alpha \geq \frac{1}{2}$, setting weight functions $\omega(n)$ and $\varpi(x)$ as follows:

$$
\begin{align*}
& \omega(n):=\ln ^{\frac{\lambda}{2}}(n+\alpha) \int_{0}^{\infty} \frac{x^{\frac{\lambda}{2}-1}}{\ln ^{\lambda} e(n+\alpha)^{x}} d x, \quad n \in \mathbf{N}, \tag{8}\\
& \varpi(x):=x^{\frac{\lambda}{2}} \sum_{n=1}^{\infty} \frac{\ln ^{\frac{\lambda}{2}-1}(n+\alpha)}{(n+\alpha) \ln ^{\lambda} e(n+\alpha)^{x}}, \quad x \in(0, \infty), \tag{9}
\end{align*}
$$

we have

$$
\begin{equation*}
\varpi(x)<\omega(n)=B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) . \tag{10}
\end{equation*}
$$

Proof Substitution of $t=x \ln (n+\alpha)$ in (8), by calculation, yields

$$
\omega(n)=\int_{0}^{\infty} \frac{1}{(1+t)^{\lambda}} t^{\frac{\lambda}{2}-1} d t=B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) .
$$

Since, for fixed $x>0$ and in view of the conditions,

$$
\begin{aligned}
h(x, y) & :=\frac{\ln ^{\frac{\lambda}{2}-1}(y+\alpha)}{(y+\alpha) \ln ^{\lambda} e(y+\alpha)^{x}} \\
& =\frac{\ln ^{\frac{\lambda}{2}-1}(y+\alpha)}{(y+\alpha)[1+x \ln (y+\alpha)]^{\lambda}}
\end{aligned}
$$

is decreasing and strictly convex for $y \in\left(\frac{1}{2}, \infty\right)$, then by Hadamard's inequality (cf. [20]), we find

$$
\begin{aligned}
& \varpi(x)<x^{\frac{\lambda}{2}} \int_{\frac{1}{2}}^{\infty} \frac{\ln ^{\frac{\lambda}{2}-1}(y+\alpha)}{(y+\alpha)[1+x \ln (y+\alpha)]^{\lambda}} d y \\
& \stackrel{t=x \ln (y+\alpha)}{=} \int_{x \ln \left(\frac{1}{2}+\alpha\right)}^{\infty} \frac{t^{\frac{\lambda}{2}-1}}{(1+t)^{\lambda}} d t \leq B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)
\end{aligned}
$$

namely, (10) follows.

Lemma 2 Let the assumptions of Lemma 1 befulfilled and, additionally, let $p>1, \frac{1}{p}+\frac{1}{q}=1$, $a_{n} \geq 0, n \in \mathbf{N}, f(x)$ be a non-negative measurable function in $(0, \infty)$. Then we have the following inequalities:

$$
\begin{align*}
J & :=\left\{\sum_{n=1}^{\infty} \frac{\ln ^{\frac{p \lambda}{2}-1}(n+\alpha)}{n+\alpha}\left[\int_{0}^{\infty} \frac{f(x)}{\ln ^{\lambda} e(n+\alpha)^{x}} d x\right]^{p}\right\}^{\frac{1}{p}} \\
& \leq\left[B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\right]^{\frac{1}{q}}\left\{\int_{0}^{\infty} \varpi(x) x^{p\left(1-\frac{\lambda}{2}\right)-1} f^{p}(x) d x\right\}^{\frac{1}{p}}, \tag{11}\\
L_{1} & :=\left\{\int_{0}^{\infty} \frac{x^{\frac{q \lambda}{2}-1}}{[\varpi(x)]^{q-1}}\left[\sum_{n=1}^{\infty} \frac{a_{n}}{\ln ^{\lambda} e(n+\alpha)^{x}}\right]^{q} d x\right\}^{\frac{1}{q}} \\
& \leq\left\{B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \sum_{n=1}^{\infty}(n+\alpha)^{q-1} \ln ^{q\left(1-\frac{\lambda}{2}\right)-1}(n+\alpha) a_{n}^{q}\right\}^{\frac{1}{q}} . \tag{12}
\end{align*}
$$

Proof By Hölder's inequality (cf. [20]) and (10), it follows

$$
\begin{aligned}
& {\left[\int_{0}^{\infty} \frac{f(x) d x}{\ln ^{\lambda} e(n+\alpha)^{x}}\right]^{p}} \\
& \quad=\left\{\int _ { 0 } ^ { \infty } \frac { 1 } { \operatorname { l n } ^ { \lambda } e (n + \alpha) ^ { x } } [\frac { x ^ { (1 - \frac { \lambda } { 2 }) / q } } { \operatorname { l n } ^ { (1 - \frac { \lambda } { 2 }) / p } (n + \alpha) } \frac { f (x) } { (n + \alpha) ^ { \frac { 1 } { p } } }] \left[\frac{\ln ^{\left(1-\frac{\lambda}{2}\right) / p}(n+\alpha)}{\left.\left.x^{\left(1-\frac{\lambda}{2}\right) / q}(n+\alpha)^{\frac{1}{p}}\right] d x\right\}^{p}}\right.\right. \\
& \quad \leq \int_{0}^{\infty} \frac{\ln ^{\frac{\lambda}{2}-1}(n+\alpha)}{\ln ^{\lambda} e(n+\alpha)^{x}} \frac{x^{\left(1-\frac{\lambda}{2}\right)(p-1)} f^{p}(x) d x}{n+\alpha}\left\{\int_{0}^{\infty} \frac{(n+\alpha)^{q-1}}{\ln ^{\lambda} e(n+\alpha)^{x}} \frac{\ln ^{\left(1-\frac{\lambda}{2}\right)(q-1)}(n+\alpha)}{x^{1-\frac{\lambda}{2}}} d x\right\}^{p-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\frac{\omega(n)(n+\alpha)^{q-1}}{\ln ^{q\left(\frac{\lambda}{2}-1\right)+1}(n+\alpha)}\right\}^{p-1} \int_{0}^{\infty} \frac{\ln ^{\frac{\lambda}{2}-1}(n+\alpha)}{\ln ^{\lambda} e(n+\alpha)^{x}} \frac{x^{\left(1-\frac{\lambda}{2}\right)(p-1)} f^{p}(x) d x}{n+\alpha} \\
& =\left[B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\right]^{p-1} \frac{n+\alpha}{\ln ^{\frac{p \lambda}{2}-1}(n+\alpha)} \int_{0}^{\infty} \frac{\ln ^{\frac{\lambda}{2}-1}(n+\alpha)}{\ln ^{\lambda} e(n+\alpha)^{x}} \frac{x^{\left(1-\frac{\lambda}{2}\right)(p-1)} f^{p}(x) d x}{n+\alpha} .
\end{aligned}
$$

Then by the Lebesgue term-by-term integration theorem (cf. [21]), we have

$$
\begin{aligned}
J & \leq\left[B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\right]^{\frac{1}{q}}\left\{\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{\ln ^{\frac{\lambda}{2}-1}(n+\alpha)}{\ln ^{\lambda} e(n+\alpha)^{x}} \frac{x^{\left(1-\frac{\lambda}{2}\right)(p-1)} f^{p}(x) d x}{n+\alpha}\right\}^{\frac{1}{p}} \\
& =\left[B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\right]^{\frac{1}{q}}\left\{\int_{0}^{\infty} \sum_{n=1}^{\infty} \frac{\ln ^{\frac{\lambda}{2}-1}(n+\alpha)}{\ln ^{\lambda} e((n+\alpha))^{x}} \frac{x^{\left(1-\frac{\lambda}{2}\right)(p-1)} f^{p}(x) d x}{n+\alpha}\right\}^{\frac{1}{p}} \\
& =\left[B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\right]^{\frac{1}{q}}\left\{\int_{0}^{\infty} \varpi(x) x^{p\left(1-\frac{\lambda}{2}\right)-1} f^{p}(x) d x\right\}^{\frac{1}{p}},
\end{aligned}
$$

and (11) follows. Still by Hölder's inequality, we have

$$
\begin{aligned}
& {\left[\sum_{n=1}^{\infty} \frac{a_{n}}{\ln ^{\lambda} e(n+\alpha)^{x}}\right]^{q}} \\
& \quad=\left\{\sum_{n=1}^{\infty} \frac{1}{\ln ^{\lambda} e(n+\alpha)^{x}}\left[\frac{x^{\left(1-\frac{\lambda}{2}\right) / q}}{\ln ^{\left(1-\frac{\lambda}{2}\right) / p}(n+\alpha)} \frac{1}{(n+\alpha)^{\frac{1}{p}}}\right]\left[\frac{\ln ^{\left(1-\frac{\lambda}{2}\right) / p}(n+\alpha)}{x^{\left(1-\frac{\lambda}{2}\right) / q}}(n+\alpha)^{\frac{1}{p}} a_{n}\right]\right\}^{q} \\
& \quad \leq\left\{\sum_{n=1}^{\infty} \frac{\ln ^{\frac{\lambda}{2}-1}(n+\alpha)}{\ln ^{\lambda} e(n+\alpha)^{x}} \frac{x^{\left(1-\frac{\lambda}{2}\right)(p-1)}}{(n+\alpha)}\right\}^{q-1} \sum_{n=1}^{\infty} \frac{(n+\alpha)^{q-1}}{\ln ^{\lambda} e(n+\alpha)^{x}} \frac{\ln ^{\left(1-\frac{\lambda}{2}\right)(q-1)}(n+\alpha)}{x^{1-\frac{\lambda}{2}}} a_{n}^{q} \\
& \quad=\frac{[\varpi(x)]^{q-1}}{x^{\frac{q \lambda}{2}-1}} \sum_{n=1}^{\infty} \frac{(n+\alpha)^{q-1}}{\ln ^{\lambda} e(n+\alpha)^{x}} x^{\frac{\lambda}{2}-1} \ln ^{\left(1-\frac{\lambda}{2}\right)(q-1)}(n+\alpha) a_{n}^{q} .
\end{aligned}
$$

Then by the Lebesgue term-by-term integration theorem, we have

$$
\begin{aligned}
L_{1} & \leq\left\{\int_{0}^{\infty} \sum_{n=1}^{\infty} \frac{(n+\alpha)^{q-1}}{\ln ^{\lambda} e(n+\alpha)^{x}} x^{\frac{\lambda}{2}-1} \ln ^{\left(1-\frac{\lambda}{2}\right)(q-1)}(n+\alpha) a_{n}^{q} d x\right\}^{\frac{1}{q}} \\
& =\left\{\sum_{n=1}^{\infty}\left[\ln ^{\frac{\lambda}{2}}(n+\alpha) \int_{0}^{\infty} \frac{x^{\frac{\lambda}{2}-1} d x}{\ln ^{\lambda} e(n+\alpha)^{x}}\right](n+\alpha)^{q-1} \ln ^{q\left(1-\frac{\lambda}{2}\right)-1}(n+\alpha) a_{n}^{q}\right\}^{\frac{1}{q}} \\
& =\left\{\sum_{n=1}^{\infty} \omega(n)(n+\alpha)^{q-1} \ln ^{q\left(1-\frac{\lambda}{2}\right)-1}(n+\alpha) a_{n}^{q}\right\}^{\frac{1}{q}},
\end{aligned}
$$

and then in view of (10), inequality (12) follows.

3 Main results

We introduce two functions

$$
\Phi(x):=x^{p\left(1-\frac{\lambda}{2}\right)-1} \quad(x>0) \quad \text { and } \quad \Psi(n):=(n+\alpha)^{q-1} \ln ^{q\left(1-\frac{\lambda}{2}\right)-1}(n+\alpha) \quad(n \in \mathbf{N}),
$$

wherefrom, $[\Phi(x)]^{1-q}=x^{\frac{q \lambda}{2}-1}$, and $[\Psi(n)]^{1-p}=\frac{\frac{\ln \lambda^{2}-1}{2}(n+\alpha)}{n+\alpha}$.

Theorem 1 If $0<\lambda \leq 2, \alpha \geq \frac{1}{2}, p>1, \frac{1}{p}+\frac{1}{q}=1, f(x), a_{n} \geq 0, f \in L_{p, \Phi}\left(R_{+}\right), a=\left\{a_{n}\right\}_{n=1}^{\infty} \in l_{q, \Psi}$, $\|f\|_{p, \Phi}>0$ and $\|a\|_{q, \Psi}>0$, then we have the following equivalent inequalities:

$$
\begin{align*}
I & :=\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{a_{n} f(x) d x}{\ln ^{\lambda} e(n+\alpha)^{x}} \\
& =\int_{0}^{\infty} \sum_{n=1}^{\infty} \frac{a_{n} f(x) d x}{\ln ^{\lambda} e(n+\alpha)^{x}}<B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\|f\|_{p, \Phi}\|a\|_{q, \Psi}, \tag{13}\\
J & =\left\{\sum_{n=1}^{\infty}[\Psi(n)]^{1-p}\left[\int_{0}^{\infty} \frac{f(x)}{\ln ^{\lambda} e(n+\alpha)^{x}} d x\right]^{p}\right\}^{\frac{1}{p}} \\
& <B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\|f\|_{p, \Phi}, \tag{14}\\
L & :=\left\{\int_{0}^{\infty}[\Phi(x)]^{1-q}\left[\sum_{n=1}^{\infty} \frac{a_{n}}{\ln ^{\lambda} e(n+\alpha)^{x}}\right]^{q} d x\right\}^{\frac{1}{q}} \\
& <B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\|a\|_{q, \Psi}, \tag{15}
\end{align*}
$$

where the constant $B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$ is the best possible in the above inequalities.
Proof By the Lebesgue term-by-term integration theorem, there are two expressions for I in (13). In view of (11), for $\varpi(x)<B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$, we have (14). By Hölder's inequality, we have

$$
\begin{equation*}
I=\sum_{n=1}^{\infty}\left[\Psi^{\frac{-1}{q}}(n) \int_{0}^{\infty} \frac{1}{\ln ^{\lambda} e(n+\alpha)^{x}} f(x) d x\right]\left[\Psi^{\frac{1}{q}}(n) a_{n}\right] \leq J\|a\|_{q, \Psi} . \tag{16}
\end{equation*}
$$

Then by (14), we have (13). On the other hand, assuming that (13) is valid, setting

$$
a_{n}:=[\Psi(n)]^{1-p}\left[\int_{0}^{\infty} \frac{1}{\ln ^{\lambda} e(n+\alpha)^{x}} f(x) d x\right]^{p-1}, \quad n \in \mathbf{N},
$$

then $J^{p-1}=\|a\|_{q, \Psi}$. By (11), we find $J<\infty$. If $J=0$, then (14) is trivially valid; if $J>0$, then by (13), we have

$$
\begin{aligned}
& \|a\|_{q, \Psi}^{q}=J^{p}=I<B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\|f\|_{p, \Phi}\|a\|_{q, \Psi}, \quad \text { i.e. } \\
& \|a\|_{q, \Psi}^{q-1}=J<B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\|f\|_{p, \Phi}
\end{aligned}
$$

that is, (14) is equivalent to (13). In view of (12), for $[\varpi(x)]^{1-q}>\left[B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\right]^{1-q}$, we have (15). By Hölder's inequality, we find

$$
\begin{equation*}
I=\int_{0}^{\infty}\left[\Phi^{\frac{1}{p}}(x) f(x)\right]\left[\Phi^{\frac{-1}{p}}(x) \sum_{n=1}^{\infty} \frac{1}{\ln ^{\lambda} e(n+\alpha)^{x}} a_{n}\right] d x \leq\|f\|_{p, \Phi} L . \tag{17}
\end{equation*}
$$

Then by (15), we have (13). On the other hand, assuming that (13) is valid, setting

$$
f(x):=[\Phi(x)]^{1-q}\left[\sum_{n=1}^{\infty} \frac{1}{\ln ^{\lambda} e(n+\alpha)^{x}} a_{n}\right]^{q-1}, \quad x \in(0, \infty)
$$

then $L^{q-1}=\|f\|_{p, \Phi}$. By (12), we find $L<\infty$. If $L=0$, then (15) is trivially valid; if $L>0$, then by (13), we have

$$
\begin{aligned}
& \|f\|_{p, \Phi}^{p}=L^{q}=I<B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\|f\|_{p, \Phi}\|a\|_{q, \Psi}, \quad \text { i.e., } \\
& \|f\|_{p, \Phi}^{p-1}=L<B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\|a\|_{q, \Psi},
\end{aligned}
$$

that is, (15) is equivalent to (13). Hence, inequalities (13), (14) and (15) are equivalent.
For $0<\varepsilon<\frac{p \lambda}{2}$, setting $\widetilde{f}(x)=x^{\frac{\lambda}{2}+\frac{\varepsilon}{p}-1}, x \in(0,1) ; \widetilde{f}(x)=0, x \in[1, \infty)$, and $\widetilde{a}_{n}=\frac{1}{n+\alpha} \times$ $\ln ^{\frac{\lambda}{2}-\frac{\varepsilon}{q}-1}(n+\alpha), n \in \mathbf{N}$, if there exists a positive number $k\left(\leq B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\right)$ such that (13) is valid as we replace $B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$ with k, then, in particular, it follows

$$
\begin{align*}
& \widetilde{I}:=\sum_{n=1}^{\infty} \int_{0}^{\infty} \frac{1}{\ln ^{\lambda} e(n+\alpha)^{x}} \tilde{a}_{n} \widetilde{f}(x) d x<k\|\widetilde{f}\|_{p, \Phi}\|\widetilde{a}\|_{q, \Psi} \\
& =k\left\{\int_{0}^{1} \frac{d x}{x^{-\varepsilon+1}}\right\}^{\frac{1}{p}}\left\{\frac{1}{(1+\alpha) \ln ^{\varepsilon+1}(1+\alpha)}+\sum_{n=2}^{\infty} \frac{1}{(n+\alpha) \ln ^{\varepsilon+1}(n+\alpha)}\right\}^{\frac{1}{q}} \\
& <k\left(\frac{1}{\varepsilon}\right)^{\frac{1}{p}}\left\{\frac{1}{(1+\alpha) \ln ^{\varepsilon+1}(1+\alpha)}+\int_{1}^{\infty} \frac{1}{(x+\alpha) \ln ^{\varepsilon+1}(x+\alpha)} d x\right\}^{\frac{1}{q}} \\
& =\frac{k}{\varepsilon}\left\{\frac{\varepsilon}{(1+\alpha) \ln ^{\varepsilon+1}(1+\alpha)}+\frac{1}{\ln ^{\varepsilon}(1+\alpha)}\right\}^{\frac{1}{q}} \text {, } \tag{18}\\
& \widetilde{I}=\sum_{n=1}^{\infty} \frac{1}{n+\alpha} \ln ^{\frac{\lambda}{2}-\frac{\varepsilon}{q}-1}(n+\alpha) \int_{0}^{1} \frac{1}{\ln ^{\lambda} e(n+\alpha)^{x}} x^{\frac{\lambda}{2}+\frac{\varepsilon}{p}-1} d x \\
& \stackrel{t=x \ln (n+\alpha)}{=} \sum_{n=1}^{\infty} \frac{1}{(n+\alpha) \ln ^{\varepsilon+1}(n+\alpha)} \int_{0}^{\ln (n+\alpha)} \frac{1}{(t+1)^{\lambda}} t^{\frac{\lambda}{2}+\frac{\varepsilon}{p}-1} d t \\
& =B\left(\frac{\lambda}{2}+\frac{\varepsilon}{p}, \frac{\lambda}{2}-\frac{\varepsilon}{p}\right) \sum_{n=1}^{\infty} \frac{1}{(n+\alpha) \ln ^{\varepsilon+1}(n+\alpha)}-A(\varepsilon) \\
& >B\left(\frac{\lambda}{2}+\frac{\varepsilon}{p}, \frac{\lambda}{2}-\frac{\varepsilon}{p}\right) \int_{1}^{\infty} \frac{1}{(y+\alpha) \ln ^{\varepsilon+1}(y+\alpha)} d y-A(\varepsilon) \\
& =\frac{1}{\varepsilon \ln ^{\varepsilon}(1+\alpha)} B\left(\frac{\lambda}{2}+\frac{\varepsilon}{p}, \frac{\lambda}{2}-\frac{\varepsilon}{p}\right)-A(\varepsilon) \text {, } \\
& A(\varepsilon):=\sum_{n=1}^{\infty} \frac{1}{(n+\alpha) \ln ^{\varepsilon+1}(n+\alpha)} \int_{\ln (n+\alpha)}^{\infty} \frac{1}{(t+1)^{\lambda}} t^{\frac{\lambda}{2}+\frac{\varepsilon}{p}-1} d t . \tag{19}
\end{align*}
$$

We find

$$
\begin{aligned}
0 & <A(\varepsilon) \leq \sum_{n=1}^{\infty} \frac{1}{(n+\alpha) \ln ^{\varepsilon+1}(n+\alpha)} \int_{\ln (n+\alpha)}^{\infty} \frac{1}{t^{\lambda}} t^{\frac{\lambda}{2}+\frac{\varepsilon}{p}-1} d t \\
& =\frac{1}{\frac{\lambda}{2}-\frac{\varepsilon}{p}} \sum_{n=1}^{\infty} \frac{1}{(n+\alpha) \ln ^{\frac{\lambda}{2}+\frac{\varepsilon}{q}+1}(n+\alpha)}<\infty,
\end{aligned}
$$

and then $A(\varepsilon)=O(1)\left(\varepsilon \rightarrow 0^{+}\right)$. Hence by (18) and (19), it follows

$$
\begin{align*}
& \frac{1}{\ln ^{\varepsilon}(1+\alpha)} B\left(\frac{\lambda}{2}+\frac{\varepsilon}{p}, \frac{\lambda}{2}-\frac{\varepsilon}{p}\right)-\varepsilon O(1) \\
& \quad<k\left\{\frac{\varepsilon}{(1+\alpha) \ln ^{\varepsilon+1}(1+\alpha)}+\frac{1}{\ln ^{\varepsilon}(1+\alpha)}\right\}^{\frac{1}{q}}, \tag{20}
\end{align*}
$$

and $B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right) \leq k\left(\varepsilon \rightarrow 0^{+}\right)$. Hence $k=B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$ is the best value of (13).
By equivalence, the constant factor $B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$ in (14) and (15) is the best possible. Otherwise, we can imply a contradiction by (16) and (17) that the constant factor in (13) is not the best possible.

Remark 1 (i) Define the first type half-discrete Hilbert-type operator $T_{1}: L_{p, \Phi}\left(R_{+}\right) \rightarrow$ $l_{p, \Psi^{1-p}}$ as follows: For $f \in L_{p, \Phi}\left(R_{+}\right)$, we define $T_{1} f \in l_{p, \Psi^{1-p}}$, satisfying

$$
T_{1} f(n)=\int_{0}^{\infty} \frac{1}{\ln ^{\lambda} e(n+\alpha)^{x}} f(x) d x, \quad n \in \mathbf{N} .
$$

Then by (14) it follows $\left\|T_{1} f\right\|_{p . \Psi 1-p} \leq B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\|f\|_{p, \Phi}$, and then T_{1} is a bounded operator with $\left\|T_{1}\right\| \leq B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$. Since by Theorem 1 the constant factor in (14) is the best possible, we have $\left\|T_{1}\right\|=B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$.
(ii) Define the second type half-discrete Hilbert-type operator $T_{2}: l_{q, \Psi} \rightarrow L_{q, \Phi^{1-q}}\left(R_{+}\right)$as follows: For $a \in l_{q, \Psi}$, we define $T_{2} a \in L_{q, \Phi^{1-q}}\left(R_{+}\right)$, satisfying

$$
T_{2} a(x)=\sum_{n=1}^{\infty} \frac{1}{\ln ^{\lambda} e(n+\alpha)^{x}} a_{n}, \quad x \in(0, \infty) .
$$

Then by (15) it follows $\left\|T_{2} a\right\|_{q, \Phi^{1-q}} \leq B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\|a\|_{q, \Psi}$, and then T_{2} is a bounded operator with $\left\|T_{2}\right\| \leq B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$. Since by Theorem 1 the constant factor in (15) is the best possible, we have $\left\|T_{2}\right\|=B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)$.

Remark 2 For $p=q=2, \lambda=1, \lambda_{1}=\lambda_{2}=\frac{1}{2}, \alpha=\frac{1}{2}$ in (13), (14) and (15), we have (7) and the following equivalent inequalities:

$$
\begin{align*}
& \left\{\sum_{n=1}^{\infty} \frac{1}{n+\frac{1}{2}}\left[\int_{0}^{\infty} \frac{f(x)}{\ln e\left(n+\frac{1}{2}\right)^{x}} d x\right]^{2}\right\}^{\frac{1}{2}}<\pi\|f\|, \tag{21}\\
& \left\{\int_{0}^{\infty}\left[\sum_{n=1}^{\infty} \frac{a_{n}}{\ln e\left(n+\frac{1}{2}\right)^{x}}\right]^{2} d x\right\}^{\frac{1}{2}}<\pi\left\{\sum_{n=1}^{\infty}\left(n+\frac{1}{2}\right) a_{n}^{2}\right\}^{\frac{1}{2}} . \tag{22}
\end{align*}
$$

Competing interests

The authors declare that they have no competing interests

Author details

${ }^{1}$ Basic Education College of Zhanjiang Normal University, Zhanjiang, Guangdong 524037, P.R. China. ${ }^{2}$ Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P.R. China

Acknowledgements

This work is supported by 2012 Knowledge Construction Special Foundation Item of Guangdong Institution of Higher Learning College and University (No. 2012KJCX0079)

Received: 23 January 2013 Accepted: 30 April 2013 Published: 7 June 2013

References

1. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)
2. Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Acaremic, Boston (1991)
3. Yang, B: Hilbert-Type Integral Inequalities. Bentham Science Publishers, Sharjah (2009)
4. Yang, B: Discrete Hilbert-Type Inequalities. Bentham Science Publishers, Sharjah (2011)
5. Yang, B: On a new extension of Hilbert's inequality with some parameters. Acta Math. Hung. 108(4), 337-350 (2005)
6. Yang, B: On Hilbert's integral inequality. J. Math. Anal. Appl. 220, 778-785 (1998)
7. Yang, B: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijin (2009).
8. Yang, B, Brnetić, I, Krnić, M, Pečarić, J: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005)
9. Krnić, M, Pečarić, J: Hilbert's inequalities and their reverses. Publ. Math. (Debr.) 67(3-4), 315-331 (2005)
10. Jin, J, Debnath, L: On a Hilbert-type linear series operator and its applications. J. Math. Anal. Appl. 371, 691-704 (2010)
11. Azar, L: On some extensions of Hardy-Hilbert's inequality and applications. J. Inequal. Appl. 2009, Article ID 546829 (2009)
12. Yang, B, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003)
13. Arpad, B, Choonghong, O: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006, Article ID 28582 (2006)
14. Kuang, J, Debnath, L: On Hilbert's type inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math. 1(1), 95-103 (2007)
15. Zhong, W: The Hilbert-type integral inequality with a homogeneous kernel of $-\lambda$-degree. J. Inequal. Appl. 2008, Article ID 917392 (2008)
16. Li, Y, He, B: On inequalities of Hilbert's type. Bull. Aust. Math. Soc. 76(1), 1-13 (2007)
17. Yang, B: A mixed Hilbert-type inequality with a best constant factor. Int. J. Pure Appl. Math. 20(3), 319-328 (2005)
18. Yang, B: A half-discrete Hilbert's inequality. J. Guangdong Univ. Educ. 31(3), 1-7 (2011)
19. Yang, B, Chen, Q: A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension. J. Inequal. Appl. 2011, 124 (2011). doi:10.1186/1029-242X-2011-124
20. Kuang, J: Applied Inequalities. Shangdong Science Technic Press, Jinan (2004)
21. Kuang, J: Introduction to Real Analysis. Hunan Education Press, Chansha (1996)

doi:10.1186/1029-242X-2013-290

Cite this article as: Huang and Yang: On a half-discrete Hilbert-type inequality similar to Mulholland's inequality. Journal of Inequalities and Applications 2013 2013:290.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: © 2013 Huang and Yang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

