Elmonser et al. Journal of Inequalities and Applications 2013, 2013:289 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2013/1/289 a SpringerOpen Journal

RESEARCH Open Access

Inequalities related to the third Jackson
g-Bessel function of order zero

Hédi Elmonser'”, Mouna Sellami? and Ahmed Fitouhi®

“Correspondence:
monseur2004@yahoo.fr
'College of Science and Human
Studies at Hotat Sudair, Majmaah
University, Riyadh, Saudi Arabia
Full list of author information is
available at the end of the article

@ Springer

Abstract

In Bettaibi and Bouzeffour (J. Math. Anal. Appl. 342:1203-1219, 2008), some properties
of the third Jackson g-Bessel function of order zero were established. This paper is
devoted to studying the g-convolution product by using a g-integral representation
of the related g-translation.

The central part of this work is first to study the related g-heat semi-group and its
hypercontractivity and second to specify the g-analogue of the Wiener algebra.

1 Introduction: notations and preliminaries

1.1 Introduction

In harmonic analysis the positivity of the translation operator is crucial. It plays a central
role in establishing some useful results such as the properties of the convolution product.

In contrast to the classical theory, the positivity of the translation operator associated
to the normalized g-Bessel function of order « is not clear at this stage. In fact it is still
an open conjecture to find g € [0,1] and o which assure the positivity of the related trans-
lation. For o = —1/2, it was proved that the g-translation is not positive for all g € [0,1]
(see [1]). However, for « = 0, the authors proved (see [2]) that the g-translation is positive
for all g € [0,1]. This fact helps us to study the harmonic analysis associated to the third
Jackson g-Bessel function of order zero and to establish some important inequalities.

This paper is organized as follows. In Section 2 we begin by summarizing some state-
ments concerning the g-translation operator T, studied in [2]. Then we prove some facts
about the positivity and the x-continuity of T, for an appropriate space and we give an
integral representation.

In Section 3, we recall some basic properties of the g-convolution product cited in [2].
Then we establish some results of density.

In Section 4, we study the g-Fourier Bessel transform F,(f): after recalling some results
in [2] and by the use of the inversion formula, we prove that we can extend the definition
of F,4(f) to L;(Rq,,,,xdqx) and by density to L‘Z Ry xdgx), 1<p <2.

Sections 5 and 6 are reserved to study the g-analogue of some well-known results asso-
ciated to the heat semi-group and the Wiener algebra.

1.2 Notations and preliminaries

We recall some usual notions and notations used in the g-theory (see [3]). We refer to
the book by Gasper and Rahmen [3] for the definitions, notations and properties of the g-
shifted factorials and the g-hypergeometric functions. Throughout this paper, we assume
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that ¢ €]0,1[ and we note

l-q
[x]qZ ﬂ, x e C.

The g-derivatives D,f and Df of a function f are given by

fx) —flqw) cov Slax) —f )
e e I ) R e

—— ifx 0, Q)

(Dgf)(0) = f"(0) and (Dgf(0) = q'f'(0) provided f'(0) exists.
Using these two derivatives, we put

_(1-gp

A
B x

D, [xD;]. 2)

The g-Jackson integrals from 0 to 4 and from 0 to oo are defined by (see [4])

/0 S dgr=1-a> flag)g, 3)
n=0
/0 f@dp=1-9 Y f(@")d" ()

provided the sums converge absolutely.
The g-Jackson integral in a generic interval [a, b] is given by (see [4])

b b a
/ﬂf(x)dqx:/() f(x)a,'qx—/0 flx)dgx. (5)

We recall that the g-hypergeometric function ;¢ satisfies the following properties (see [5]
or [6]):
(1) For all w,z € C, we have

(W, @)00191(0; W3 ¢ 2) = (2, @) 0c191(0; 2; G W). (6)

(2) For m e Nand z € C, we have

1

(47 q) 1901(0:6" "5 432) = (1yg"5 2 (@) 101(0:0" 545" 2). 7)

(3) Both sides of (6) are majorized by

n(n-1)
2

(-Z QoW and q 7 |z"(-l2l;q) (-:9)s ifw=g" (neN). (8)

In [6] Koornwinder and Swarttouw, in order to study a g-analogue of the Hankel trans-
form and to give its inversion formula and a Plancherel formula, defined the third Jackson
q-Bessel function using the g-hypergeometric function ¢; as follows:

~ Za(q2a+2;q2)oo

]o( (Z; qZ) — (qZ;qz)oo 1@1(0;q2a+2;q2;q222)- (9)
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They proved the following orthogonality relation:

)
Z qqun+m]n+k(x; q2)]m+k(x; qz) = 8n,m; |x| < q_l, n,mée7. (10)

k=-00

In [7], and more generally in [8], the authors gave the following g-analogue of Graf’s ad-
dition formula by the use of an analytic approach:

1. (Rg"*Y; ¢ e (5 47) Zl R V] k R ) (@575 4%),  (11)

where z € Z, x,y,v € C satisfy g2 RWRO)|R1Z < 1, R(x) > -1 and R # 0. We have the
following behavior (see [2]).

Lemmal Foro > —% and x € Ry, = {q" :n € Z}, we have

@

( ,
)| < (-2*9%)0(-4" "¢ | %" ifx < 1%,

)
|]a (x’q (@ ") q Toed

(2) Forallv e R, we have J,(x;q*) = o(x™") as x — +00.
In particular, we have lim,_, .o Jo(%; %) = 0.
(3) Dy (xJu(x:6%) = (1 = @) "% 1 (x:4°).

In literature, some authors (see [5]) developed some elements of g-harmonic analysis
related to the normalized g-j, function using a transmutation operator.

In this paper, we are concerned with Jy (x; g%), the third Jackson g-Bessel function of order
zero. We construct a product formula for this function leading to a positive g-translation
which is necessary and constructive for some applications.

It is well known (see [5], Prop. 1) that for all A € C, the function

o (—l)qu(k+l))\2kx2k

Jo (Kx; qz) = Z BT YPC Iy A 12)

= (@)

is the solution of the g-problem

Agy(x) + 22y(x) = 0
¥(0) =1, ¥'(0) = 0.

We need the following spaces and sets:

e Ry={#q":n€Z),R,, = {g":neZ}and R,, =R,, U{0}.

+ S,4(R,,) the space of restrictions on R, . of even functions f such that for all
m,n € N, we have SUcR, IxzmAZ(f)(x)l < 00 and for all # € N, we have
(D;(Ag(f)))(x) —0asx|0inR,,.

+ D,4(R,,,) the space of restrictions on Ry, of even functions with bounded support
such that for all # € N, we have (D;(A;f)) —0asx | 0inRR,,.
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.

Ciq0(Ry,+) the space of restrictions on R, of even functions, for which f(x) — 0 as
x— +ooin Ry, and f(x) - Oasx | 0in R, ,, equipped with the norm

Ifllcoqg = sup |[f(%)].

x€R;, 4

. C*q,;,(]?Rq#) the space of restrictions on Iﬁq,+ of even functions for which f(x) — f(0) as
x]0inR,, and

fllo,g = sup [f()] < 00 (13)

x€Ry,+

o IH(R,,,xd,x), p> 0, the set of all functions defined on R, , such that

T { /0 £ () |pxdqx}p < 0. (14)

.

L (Ry,+), the set of all functions defined on Ry, such that

Ifllcoq = sup |[f(x)] < oco. (15)

x€Ry,+

2 A g-generalized translation
In [2], using the kernel

K(q™q",4") = [ni(a"™; qz)]z, m,nk € Z, (16)

the authors defined the g-generalized translation as

Todf =/, 17)
Teaf 0) = Y jo oo K3, (q"), %y€R,,,
provided the sum converges.
The kernel K satisfies the following properties.
For m,n, k € Z, we have
©)
_204n-k) _ 2. 22 2(m—k)(n—k) if k,
0<K(g"qhq) < 4 ) 4 tm=f (18)
(@ 9°)5 ARl i <k,
(2)
K(q"‘,q”, qk) = K(q”,q"’,qk). (19)
3)

1<(qm,qn,qk) _ q2(k—n)1<(qm’qk, qn) (20)
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(4)
2m+2n m n _k\ : ..
q K(q 4" q ) is symmetric in n, m and k. (21)
(5)
o0
Z qz(n—k)]<(qn’qm’qk) =1 (22)
n=—00
(6)
Vm,nmkeZ, 0< K(qm,q”,qk) < min{l, gk gkl g2 } (23)
7)
I((qmw’qnﬂ"’qkﬂﬂ) — I((qm,qn’qk), re?. (24)

It was shown in [2] that the generalized g-translation satisfies the following results.

Proposition 1
(1) The g-generalized translation is positive.
(2) Tugf 0) = Tyaf (), 2y € Ry
(3) Forf € LNRyp,xdyx), y € Ryy, Toof () = limys oo Tynf (), ¥ € Ry s
4) Toglo(4)®) = Jo@ Vo3 4%), %,y € Rye.

Proposition 2 For f,g € L'(R,,,xdyx), we have for all x € R, .,
W fo* Teaf Olyday = [y f @)y day.
@) Jo Tuaf 00y dey = [5 fO) Tuqg0)y doy.

Now, we put, for x,y,t € R, .,

K (%, 9,1)
S (l-gf

W(x,y,t) (25)

Using the proprieties of the kernel K and the definition of the generalized g-translation,

one can state the following results.

Proposition 3

1)
W(x,y,t) > 0. (26)
(2)

Wx,y,t) = W(y,xt) = W, t,y), VYx,yteR,,. (27)
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3)
/m W (x,y, )t dyt = 1. (28)
0

(4) Forx,y € Ry, we have

+00
Tuaf0)= [ FOW Gy, e 29)
0
The following result is useful for the remainder.

Proposition 4
(1) Forf e Li(Ry.,xdyx), p>1and x € I@qﬁ, we have T, 4(f) € P (R, ., x dgx) and

|| Ty q(f) ||M < fllpg- (30)
(2) Forf e L;"(RW) and x € I@qm we have Ty 4(f) € L;"(Rq,+) and

| Teq )] o g = fllsog- (31)

Proof The case x =0 is evident.
-Ifp e [1, +o0[.
Using (28) and the g-Holder inequality, we deduce, for x,y € R, .,

([ rolwesoar) = [ lrorwesoas

Applying Fubini-Tonelli’s theorem and the relations (27) and (28), we obtain

Tl < [ rop ( | wes, t)ydqy)tdqt .

-If p = +o0.
Ve e Ry, Vy e Ry,

+00 +00
| Tug(NO)] < / @)W )t dyt < If g f W .5, 0)t dgt = |[f lloc.g
0 0
which achieves the proof. d

Corollary 1 For f € LH(R,,,xd,x), p > 1, the mapping x — Ty,(f) from I@,N into
L’;(Rqﬁ,xdqx) is continuous at 0, i.e.,

lim | T ()~ £, = 0. (32)

For f € LP(Ry,4), the mapping x — Ty,(f) from ]INQW into L*(Ry,+) is continuous at 0,

ie.,

lim | Z0 () - £, = 0- (33)
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Proof Theresult follows from the previous proposition, the properties of the g-generalized
translation and the Lebesgue theorem. O

3 g-Bessel Fourier transform
In [2], we have defined, for f € L;(Rq,+,xdqx), the g-Bessel Fourier transform by

Fo(f)A) = ﬁ/o f@x)Jo (Ax; qz)xdqx, AE @q,+- (34)

In the following propositions, we summarize some of its properties (see [2]).

Proposition 5
(1) Forf € L(Ry,,,xdyx), we have

Falf) € Cigo(Ry,4) (35)
and

0] < T Wy, e B (36)
(2) Forf € LL(Rq,,xdyx), we have

FoTuaH)R) = Jo (A 42) Fo(H)0), x4 e Ry .. 37)
(3) Iff,Dif, Agf € Ly(Ry,s,xdgx) and xD}f (x) — 0 asx | 0 in Ry, then

Fi ALYV = =22 F, (), reR,,. (38)

Theorem 1 (Plancherel formula) F, is an isomorphism from S.4(R, ) onto itself, F, 7 1=
Fy and for all f € S.y(Ry1),

[ 745 = 1 N2

Using this result and the relation (37), one can state the following proposition.

Proposition 6 Forall f € S5,;(R, ) and all x € @qw we have for . e R, .,

Toaf 0= 1= [ FDOR(esaVo(eisa)ed,, 39)

which can be extended for f € L'(R,,,,x dgx).

Proposition 7 For f € 5,4(R, ) and y € R, ., we have

n(n+l)

Tof=) &
n=0

(q ;qz)ﬁyzn(A;f)(x)’ (40)

where A)(f) = f and A2 (f) = Ag[A(f)], n e N.

Page 7 of 22
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Proof First by the Plancherel formula, we have

1 o0
fx) = -4 /0 Fo(O 0o (tx: 4% )t dyt.

So,

(="

1 oo o0
Alf(x) = E/o Fo) &) A5 (Jo (tx:4°) )t dgt = E/o Fo) O To (tx; q* )t dyt.

On the other hand, from the definition of the function Jy, the Plancherel formula and the
relations (39) and (38), we have

o]

1 oo —1)" n(n+1)t2n 2n
T )= -, /0 N0 (52 Y ()(ZZsztdqt
n=0 ’ n

+00 n(n+1)

q (A
) nZ:o: (612;612)%y2 (A3) @) =

Proposition 8 Forl < p < o0, §,4(R,.) is dense in LZ(Rq,+,xdqx).

Proof It suffices to consider functions with compact supports on R .. d

4 g-convolution product

In [2], the authors defined the g-convolution product of two suitable functions as

1 e}
Frog) = [T Oelydy, xRy @)

It satisfies the following properties (see [2]).

Proposition 9 Forf,g,h e L;(Rq,,r,xdqx), we have
@) f*sg=g*sf.
(2) Folf x5g) = Fq(f)Fq(2)-
(3) (f xpg) xg h=f *p (g *p h).

In this section, we shall prove that the notion of g-convolution product can be extended

to functions in L5 (R, ., x d,x) space. We begin by the following result.

Proposition 10 Let g € L;(Rq,+,xdqx) and f € LZ(Rq,+,xdqx), 1<p<oo.Then

1) VxR, y > Tug(H)gly) € L;(Rq,Jr,xdqx).
(2) The function f x5 g € Ly(Ry+, x dyx) and

1
If *5 &llpg < E”glll,q”f”p,q~ (42)

Proof
(a) Forp=1:
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From Fubini-Tonelli’s theorem and Proposition 4, we have

/ [f*Bg|(x)xdqx§/ |g(y)|(/ ‘Tx,q(f)(y)‘xdqx)ydqy
0 0 0

[o¢]
= /0 8O Toa D,y day < Iglhglf g

(b) Forl<p<oo:
Let r €]1, +o0o[ be such that }7 + % = 1. For a bounded subset E of R, ., we note xg

the characteristic function of E.

From Fubini-Tonelli’s theorem, we have

/(; /0 | T (N0 |g0) | x£ @)y dyys dygx

- / {gm|( f |Tx,q(f><y><><g(x>xdqx)ydqy.
0 0

Using the Holder inequality and Proposition 4, we obtain

1
y

/0 /0 yTx,q(f)(y)!!g(y)\xE(x)xdqudqys||g||1,quf||p,q( /0 x;;(x)xdqx> < +00.

Then the function (x,y) = T,4(f)(¥)g(y) xe(x) is integrable on R, , x R, , with respect to
the measure xd,xyd,;y. From Fubini’s theorem we deduce that for all x € E, the mapping
y = Tug(f)(¥)g(y) belongs to LL(R,,,,yd,y), and the mapping x = x£(x) [y Treq()() X
g)yd,y belongs also to L;(Rq,+,xdqx). Then the function x fooo T (N WgW)ydyy is
measurable.

Furthermore, from the Holder inequality, we have for allx e R,

1 o0 1 1
lf*Bg(x)| = E/O |Tx,q(f)(Y)||g(Y)|”|g(V)|Vydq)’

-t maorions) ()

Finally, using Fubini’s theorem and Proposition 4, we obtain

p 1 et p
If 6 gllf, < 1-4 gl IF 15,4
This completes the proof. O

Proposition 11 Let fbe in LZ(Rq,+,xdqx), l<p<+00,andgin L;(Rq,+,xdqx), l<r<+o0,
such that }7 + % = 1. Then the function f xp g is continuous at 0, and we have

1
sup |f *pg(x)| < mufnp,qngn,,q. (43)

x€Rg,+


http://www.journalofinequalitiesandapplications.com/content/2013/1/289

Elmonser et al. Journal of Inequalities and Applications 2013, 2013:289 Page 10 of 22
http://www.journalofinequalitiesandapplications.com/content/2013/1/289

Proof From the Holder inequality and Proposition 4, we have, for x € R, ., |f g g(x)| <

ﬁ”f”p,q”g”r,q and lf *B g(x) _f *B g(0)| = ”Tx,q(f) _f”p,q”g”r,q‘ The COHtiHUitY Off *B g
at 0 follows from Corollary 1. d

In the same way, we have the following result.

Proposition 12 Let f be in L}](Rq,+,xdqx) and g in L (Ry,.). Then the function f xp g is
continuous in 0, bounded and we have

1
sup |f #pg(x)| < 17 W lhgliglioog: (44)
x€Rg,+ -9

Proof From the definition of the g-convolution product and Proposition 4, we have

1
58] = 1= W halgloca

On the other hand, we have, for x e R, .,

1 +00
V*Bg(x) -f *Bg(0)| = —‘[ [Tx,q(f)(y) —f()/)]g(y)ydqy
1-4glJo
1
= 7 1T =1l el

which gives the result by the use of Corollary 1. 0

Now, let us adopt the following notation:
For a function u defined on R, , and o € R, ,, we define

o (x) = éu@) xeR,,. (45)

o

Theorem 2 Let u be a non-negative function defined on R, , such that

+00

S u(x)xdx=1. (46)
1-gJo 1

Then
(i) Forallf € I?(Ry.,xdyx), 1 < p < 00, we have

Llrpoo ”f *B Ugn _f”p,q =0; (47)

n

(i) Forall f € Cigo(Ry+), we have

lim ||f s tgn — flloog = 0. (48)
—+00

n

Proof (i) From the properties of the g-generalized translation, the definition of the
g-convolution product and the relation (46), we have forallx e R, , and n € N,

Frstp ) =1 = - [ up OO =0y (49)
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Then
V *B Ugn (%) _f(x)| =— Ugn 0/)| Tx,q(f)(y) _f(x)|ydqy

So, for p,r €11, +00] such that 1 + % =1, we have, by the use of the g-Holder inequality and

the relation (46),

1 p +00 ; l p

; g (9)| Tug () —f @[y dyy.

<

=14

Then
/ |f*3 Ugn (%) f(x)|pxdqx < — / Ugn (y)|qu(f () fx)|pydqyxdqx

The Fubini-Tonelli’s theorem leads to

Ugn 0’)” ya(f) f“ J’dqy~

+00

lf*B Ugn _f”pq = 1

The change of variable ¢ = - gives

Vst =Sl = 7= | 4O Tareal) =Sl g2t

From the dominated convergence theorem, Corollary 1 and Proposition 4, we deduce that

li - =0.
iglm|[f*3uq” f”p,q 0

(ii) We have, for all x e R, .,

s ) =19] = = [ s )| T =0y

Thus
1 +00
Vst ~fla = 1z [ e O Tt =11,y

2 we have

n

By the change of variables ¢ =

1 +00
U st =l = /0 u®)| Tyreal) —f |yt

Thus, the dominated convergence theorem, Corollary 1 and Proposition 4 give

lim ”f *B qu _f”oo,q =0.
— +00
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5 The g-analogue of the heat semi-group

In this section, we are concerned with the g-analogue of the heat semi-group associated
with the third Jackson g-Bessel function of order zero and we define it on L}I(Rq,ﬂxdqx)
by the following.

Definition 1

oo

Pry(f)(x) = (G(',t; q2) *Bf)(x) = é | Tx,qG(y’ L q2)f()/)ydqy, (50)

where t > 0, G(-, t;q°) is the q-Gaussian kernel of Py, defined by

1 —x2
Glotia’) = = qZ)rq<<1—q2)2t>’ 1)
and
1 1
R (= N ) 2

Proposition 13 The q-Gaussian kernel satisfies the following properties:
ey

G(xt:q°) = Foleq (-2()?)) ). (53)
2)
Fa(G(-54°)) @) = e (-227). (54)
Proof (1) On the one hand, we have

1 oo
=g ), G Vold)ydy
1 o (_l)qu(kJrl)ka 2k

= y
ol AL 0D CEton v

1Jo k=0

1 o k k k+1) 2k poo N
=1 Z /(; ep(-ty?)y"*dyy.

1= (q /s

Fq (eq2 (_t(')z))(x)

On the other hand, we have

00 N 2k+2)
fo ep(-ty?)y*dy=(1-¢q) Z PP
e 3 (=), 0%
A-tq) "

But, by using the Ramanujan identity (see [3]), we obtain

—2k
i(—(l -)64°), ()" = U i)

2
— ( _(lfi_qz)t G242 q2)
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This gives

- k+1
1 2
2N, 2k+l 7 . _ 2, 2 ~k*~k
/0 eqz(—ty )y dqy—(l_LI)(q iq )k<(1—q2)t) 9 ’

Thus

o (_l)kx2k( 1 )k"'l
Fylep(~65)) () =
(en (oW =2 o (g

~ 1 —x2
_O—fﬁ%<ﬂ—fVJ
= G(xt:4°).

(2) By the use of Plancherel formula and Theorem 1, we obtain
fq(G(-, t; qz))(x) =ep (—txz). O

Using this second equality and equalizing terms by terms, we obtain the following
lemma.

Lemma 2

2

/0 Gt dyy=0-q)(q%5q°),1-4")"t"q" " (55)
Now, we are in a situation to state some properties of the heat semi-group Py ,.

Proposition 14 The following properties hold:
(1) Forallf € S:q(Ry.4),

Poy(f)®) = e (EA L)), (56)
(2) Forallf € S,y(Ry.) such that f > 0 and t > 0, we have
Piyf > 0. (57)

Proof (1) From the definition of P, ,, the properties of the g-generalized translation and
Lemma 2, we have

1 o° 1 o
Pl = 1 [ TGl 6 2) 0O dy = - [ Gl R)0 Tt Oy

1 100 n*+n 00
S ([t s
n=0 ’ n

22 8(1- )" AL (x)
-y ) A

=e 2 (EAf) ().
B Gt/ P !

(2) Follows from the positivity of the g-generalized translation and the fact that
Gx, t;q%) > 0. O
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Since G(-,£¢%) € Siy(Ry:), then Proposition 10 implies that P, can be extended to

LE(R,,.,xdyx), 1 < p < 0o and we have the following.

Proposition 15 Forall f € Ly(R, ., xdx),1 < p < 00, Py,f € L1(R, ., xd,x) and

1Pg.ef llp.g = If llp.g- (58)

Proof Using Lemma 2, we have

o0
I6( )y, = [ GOt )ydy=a-0)
0
So, the result follows by using this equality and Proposition 10. O

Now, for f(x) = Y o2y axx", t,t’ € R, we note

where [t + 217 = (t+1)(t+qt)--- (£ + q"'t)if n#0and [t + t/]g =1 (see [9]).
It is clear that f(£) = f([t + 0];) and we have

61]1_I)I}[t w0 = (e+d)" (59)

On the other hand, we have (see [10])

e (t)

ep ([t + t’]qZ) = qu(—t/)' (60)

Using this equality and Proposition 14, one can state the following result.

Proposition 16 Forf € S,;,(R,.), and t > —t' > 0, we have

P—t’,q(f) 'P[Ht’]qz,q(f) = Pt,q(f)- (61)

Remarks
(1) From the relation (59) and the fact that e 2 is a g-analogue of the classical
exponential function, we can see that (P, ,):.0 as a g-analogue of the classical heat
semi-group.

(2) For two formal g?-commuting variables ¢ and ¢’ (¢t' = g>¢'t), we have

Pt+t’,q(f) = Pt,q(f)Pt’,q(f);

which proves that P, is a g-analogue of the classical heat semi-group.
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6 The g-analogue of the Wiener algebra

In this section, we attempt to study the following g-analogue of the Wiener algebra:
AR, = {f € L}](Rq,J,,xdqx);fq(f) € L;(Rq,+,xdqx)}. (62)
Note that
Siq(Ry+) C A(Ry) C Ly(Ry,y).
We begin by the following results which are useful in the sequel.

Proposition 17 For all function C. (@q,+), we have

lim —— /0 f®)Ggn (- 1:4°) (x)x dgx = £(0), (63)

n—+oo ] — q
where G (-, t;q°) is defined in (45).

Proof 1t follows from the fact that

1 +00 )
/s G(x 64" )xdgx =1

and the following lemma. O
Lemma 3 Letu € L}I(Rq,J,,xdqx) be such that fo+°° u(x)xdgx =1, then for all function f €

C*q,b(ﬂiq,+), we have

n—+00

lim /0 S ugn (x)xdgx = £(0). (64)

Proof [(of the lemma)]

’ / f@ug(x)xdyx—f (O)‘ / S ugn (x)x dyx — / FO)ux)x dyx
0 0 0

+00 1 X +00
= /0 S ) per M(;>xdqx - ‘/0 F(O)u(x)xdyx

- /0 T (Fla") ) ulx)edyx

+00
= / If (4"%) = £ (0) || ulex) |x dx.
0
Finally, the dominated convergence theorem achieves the proof. 0O

Theorem 3 Letf € L’,;(Rq,+,xdqx), 1 < p < 00, then we have

tim |f —f %5 Ggu (. 8.4°) |, = O- (65)

n—+00
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Proof The result follows from Theorem 2 and the fact that

1 +00 )
-2/, G(x, 4" )xdyx=1. 0

Theorem 4 Forf € L;(Rq,+,xdqx) such that F,(f) € L}I(Rq,+,xdqx), then

1 0]
16 =1 | Fnom ey (66)
Proof Using the inequality
U= |f @) —f %8 G ( £.4°) )| < |f = f 55 G (- £.0°) |, VxER,  (67)

and Theorem 3, we have
f@)= im fxpGp(-tq")x).
Hn—>+00

Furthermore, using the fact that f %5 G (-, t, qz) € 8,4(R,.) and the Plancherel formula,
we have

S*p Gy ("t’ ‘12)(") = ]:q_lfq(f *p G ("t’ ‘12))(") = fq(fq(f)]'—q(Gq”("t’qz)))(")
1 o0
- [ FO0FGr () D)y
1-g9Jo
On the other hand, we have

1 o]

_1—‘1 0

1 o u 9 2
:m ; G ?,t,q ]O(My;q )udqu

1 (0]

Fo(Gor (- 6:%)) ) Gy (6.0 o (uy; *)udgu

= G(ut; q2)/0 (q" uy; 612)” dqu
-4 Jo

= F4(G(-t:4%)) (d")

= e (-tq"y").

This gives
1 oo
fxp Gy (-, t, qz)(x) = :I /o Fo()»es (—tq2"y2)10 (xy; qz)ydqy.
Thus, the dominated convergence theorem leads to
1 [e¢]
flx) = —— lim Fi()»ez (—tqznyz)]o (xy; qz)y dgy
1- q n—>+ Jq

1 o0
- ff FaOVo(%y:0%)y dgy. .
qJo

In the following result, we summarize some of its density properties.
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Proposition 18 We have
)

AR,,) C LRy, xdgx) and A(Ry,) = L(Ry,,xdyx). (68)
2)
A(Rq,+) C C*q,O (Rq,+) and A(Rq,+) = C*q,O (Rq,+)' (69)

Proof Letf € A(R,.), then f € L}Z(Rq,+,xdqx) and F,(f) € L}Z(Rq,+,xdqx).
By Theorem 4 and the fact that |Jo(x;4%)| <1 (see[2]) , we have |f| < ﬁ I F,(F)ll1,4 and

1 1
Vi, < (EHM) HM) Vg

Thus, A(R,,+) C LZ(R,,,Jr,xdqx).
On the other hand, we have by Theorem 4, f = F,(F,(f)) and F,(f) € L}I(Rq,+,xdqx).
Then, by Proposition 5, f € Cyg,0(Rg,+). Thus

A(Rq,+) C C*q,O (Rq,+)

(1) Letf € L(R,,,xdgx). For & > 0, there exists an &, = h € L (R, ,,x d,x) with compact
support in [¢¥,g7¥] such that ||f - k]|, < €. By using Theorem 3, we have

lim ||l —hxg Gy (- t,q%)|

=0.
n—+00 pq
Let us show that /1, = 1 x5 Ggn € A(Ry,,). We have
1 2
Minlig < =Wl Gor (- 5.4°)
which gives 4, € L;(Rq,+,xdqx). Furthermore, we have
|]:q(h,,)(t)| = |]7q(h)(t)eqz (—tq2”u2)| <Cep (—tqznuz),
with C is some constant.
Since ¢ > ep(—tg*"u?) belongs to L (R, d,x) (see [11] ), we have F(h,) € LL(Ry,.,
xdgx).
(2) Let f € Cig0(Ry4). For & > 0, there exists an i, = & € L{;(Rq,+,xdqx) with compact
support in [¢¥, g7¥] such that ||f — Ko < &.
Using the inequality
1
((1 - 61)962)’” ’h(x) - hn(x)| =< ”h - hn”p,q

and (1), we obtain

lim sup |h(x) - h,,(x)| =0.
n—>+oox2 k

Page 17 of 22
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Now, for all x < ¥, we have

ha(x) = h(x) = hy(x) = quh ) Tg G (+,4°) (4)-

On the other hand, we have

1 o0

TogGon (- 6.4°)(4) = — fq(an(»tyqz))(u)/o(ux:qZ)/o(uqi:qz)udqu

l-q
1 *° 4
14/, e (—tq”"u?)]o (ux; q*)Jo (uq's 4* ) u dgu.

Therefore, there exists k,, > k + 1 such that

sup TuqGor (- . 4°) (4) = T on g G (15 ) (7).

x<qk

g e{q }j=k+1U {0} is a compact subset in ]R}YH then there exists a convergent subsequence

(q*") of (g").
- If (¢*™) tends to ¢, then

1 [ .
im Tpm G (6.0°)(@) = — | Jo(uq'a*)o(ug's ¢ )udyu

n—+00 l—q

ZH Z ql+L] l+/ ]0( z+] )q2/ - 0.

- If (¢*™) tends to 0, then

1 o .
M T Gor (o 66) (@) = 7= | Joud's 4" Judgu

b

1 . i
Tl |, e ol

. b1 )
=—— lim /0 ﬁAq(fo(uq;q ))udgu

1—qb—>+oo
1
-5 i [y i) o

7 tim [uD; (1o (ud's )],

qu b—+

1 . j 4
=~ im (o(ba'™a?) ~Jo(ba' 7)) =0.

This gives

lim sup |h(x) By (x)|:

n—>00 weRy,

Theorem 5 Forf € L2(Ry,., xdyx), then

| F4(f) ||2,q = fll2g-

(70)
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Proof Forf € L;(Rq,+,xdqx) and f, = f *p Gn(. 1 ,2), We have
21,2
Folf)(u) = ep (—tq "u ).Fq(f)(u).

On the other hand, using the fact that f, € 5,4(R,,+), Theorem 4 gives

1 o0
Jalx) = :1/0 Fot) o (v1; ¢*)u dyu,

which gives

Af(xm(x)xdqxz/() Fo () @) Fy(f) (x)x dygx
- [T e (g

By using Theorem 2, we obtain

o]

lim (Fq(f)(x))2eqz (~tq”" %) xdgx = |f 113,

n—+00 0

Since the sequence e, (—tq*"x*) is increasing, the use of Fatou Beppo-Levi theorem
achieves the result. O

Theorem 6 Letl<p <2 and}% + 1% =1.Iff e LS(Rq,+,xdqx), then F,(f) € Lﬁ/ (Rg+>x dgx)
and

| Fah) vq < Bralflpg (71)

where

1\
Bra=\125 : (72)

Proof We have, by Theorem 5,
Fa L;(Rq,J,,x dgx) — L;(Rqﬁ, X dgx)

is a linear isomorphism with norm 1.
On the other hand, we have

1 o0
Fpo] = /0 F)xdy, %Ry
which gives

1
[FaDl g = 7=, Wlha
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So,

1
]:q:Lq

(R +rxdyx) — L;o (Rg,+rx dyx)
is with norm bounded by ﬁ.

Finally, the use of the Riesz-Thorin theorem gives the result (see [12]). O
1

Proposition 19 Let 1 < p,p/,r < 2 be such that % + - 1="1 and

7

L5(Ryy xdyx) and g € L) R,y xdgx), then f 5. g € LRy, xdyx)

Lyl=11Ife

r

f*Bg= fq(fq(f)fq(g)) (73)

and

”f *B g”r,q = Bp,qu’,qBr’,q “f”pq ”g”p’,qr (74)
where By, 4, By ; and By 4 are defined by (72).

Proof (i) If f and g belong to 5,4(R,,.) the result is clear.

(i) If f € LR, xdyx) and g € L‘Z/(]Rq,,r,xdqx), we consider two sequences (f;),>0 and
(gw)n=0 in S,z (R,,+) which converge to f and g respectively in L (R,,,,xd,x) and L‘;/ Ry
From i) we have f,, %5 g, = F(F,(f1) F4(g4))-

We have le + I’Li =1withp, = 1% and p] = p{’;:l the dual exponents of p and p’ respectively,
which belong to [2, +00[. From Theorem 6 and the Holder inequality, we have

| Falt) Falen) = FoNF4 @,
< [FDl, o Faler) - Fi@)1,,,
+ [ F @1, | Falh) - Fah)]
+ | Falh) - Foh)]

p1q

gl Fa@) = Fo@l

We deduce that the sequence (F(f,).F;(g.))n=0 converges to F,(f)F,(g) in L;’ Ry, dgx).
Theorem 6 implies that the sequence(F,(F;(f,)F4(g1)))n=0 converges to F,(F,(f)F,(g))
in L;(RW, xdgx).

On the other hand, from Propositions 9 and 10, we have

1 1
"fn *B &n _f *Bg”r,q =< Euf”p,qngn _g”p’,q + E”g”p’,qufn _f”p,q

1

+ E”fn _f”p,q”gn _g”p/,q-

Thus, the sequence (f;, *5 g,)u>0 converges to f *p g in L;(Rq,Jr,xdqx). And so

S*g= ]:q(]:q(f)]:q(g))'
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To prove the inequality, we have, by the use of Theorem 6,

If *5g&llrq < ”‘Fq(fq(f)fq(g)) ” = Br’,q”fq(f)fq(g) ”r/,q

g —
< By g|Fof)l,,, | 7o @]

pw‘ Pua’

Thus

If *8&llrq < BpaBp.aBr.gllf p.qlgllp q- O

From the last proposition we deduce the hypercontractivity of the g-analogue of the heat
semi-group Py .

Theorem 7 Letf € Ly(Ry,,xdx) andt € Rp . Then

L
”Pt,q”r,q =< Bp,qBr’,qt w1 01(101: q)”f”p,q: (75)
where % - pil = %, % + r—l, =1, P, is given by (50) and o(p1,q) = ||eq2(—(-)2)||p1,q.

Proof By Theorem (6) we have

”P ,t”r,q = Bp,qu’,qBr’,q”f”p,q”Gq"(»,t,qz)”p’,q:

where 1% + pil =1
By Theorem (1) and (53), we have

|G (- t’q2)|p’,q = | Fo(Fa (G (- 1:4%)))]

prlyq”eqz(_t('))Z”

r'q
g’

1
The result follows from the fact that B, ;B , =1 and ||eqz(—t(~)2)||p1,q =t alp,q). O
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