
Wang et al. Journal of Inequalities and Applications 2013, 2013:285
http://www.journalofinequalitiesandapplications.com/content/2013/1/285

RESEARCH Open Access

New complexity analysis of interior-point
methods for the Cartesian P∗(κ)-SCLCP
Guoqiang Wang1*, Minmin Li1, Yujing Yue2 and Xinzhong Cai2

*Correspondence:
guoq_wang@hotmail.com
1College of Fundamental Studies,
Shanghai University of Engineering
Science, Shanghai, 201620,
P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we give a unified analysis for both large- and small-update interior-point
methods for the Cartesian P∗(κ )-linear complementarity problem over symmetric
cones based on a finite barrier. The proposed finite barrier is used both for
determining the search directions and for measuring the distance between the given
iterate and the μ-center for the algorithm. The symmetry of the resulting search
directions is forced by using the Nesterov-Todd scaling scheme. By means of
Euclidean Jordan algebras, together with the feature of the finite kernel function, we
derive the iteration bounds that match the currently best known iteration bounds for
large- and small-update methods. Furthermore, our algorithm and its polynomial
iteration complexity analysis provide a unified treatment for a class of primal-dual
interior-point methods and their complexity analysis.
MSC: 90C33; 90C51
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1 Introduction
Let (V ,◦) be an n-dimensional Euclidean Jordan algebra with rank r equipped with the
standard inner product 〈x, s〉 = tr(x ◦ s). Let K be the corresponding symmetric cone. For
a linear transformationA : V → V and a q ∈ V , the linear complementarity problem over
symmetric cones, denoted by SCLCP, is to find x, s ∈ V such that

x ∈K, s =A(x) + q ∈K and x ◦ s = . ()

Note that 〈x, s〉 =  ⇔ x ◦ s =  (Lemma . in []).
The SCLCP is a wide class of problems that contains linear complementarity problem

(LCP), second-order cone linear complementarity problem (SOCLCP) and semidefinite
linear complementarity problem (SDLCP) as special cases. For an overview of these and
related results, we refer to the survey paper [] and references within.
There are many solution approaches for SCLCP. Among them, the interior-point meth-

ods (IPMs) gain much more attention. Faybusovich [] made the first attempt to general-
ize IPMs to symmetric optimization (SO) and SCLCP using the ‘machinery’ of Euclidean
Jordan algebras. Potra [] proposed an infeasible corrector-predictor IPM for the mono-
tone SCLCP. Yoshise [] proposed the homogeneous model for the monotone nonlinear
complementarity problems (NCP) over symmetric cones (SCNCP) and analyzed IPM to
solve it.
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Let V be a Cartesian product of a finite number of simple Euclidean Jordan algebras
(Vj,◦) with dimensions nj and ranks rj for j = , . . . ,N , that is, V = V × · · · × VN with its
cone of squaresK =K ×· · ·×KN , whereKj are the corresponding cones of squares of Vj

for j = , . . . ,N . The dimension of V is n =
∑N

j= nj and the rank is r =
∑N

j= rj. Recall that a
Euclidean Jordan algebra is said to be simple if it cannot be represented as the orthogonal
direct sum of two Euclidean Jordan algebras.
We call SCLCP the Cartesian P∗(κ)-SCLCP if the linear transformationA has the Carte-

sian P∗(κ)-property for some nonnegative constant κ , i.e.,

( + κ)
∑

j∈I+(x)

〈
x(j),

[
A(x)

](j)〉 + ∑
j∈I–(x)

〈
x(j),

[
A(x)

](j)〉 ≥ , ∀x ∈ V , ()

where I+(x) = {j : 〈x(j), [A(x)](j)〉 > } and I–(x) = {j : 〈x(j), [A(x)](j)〉 < } are two index sets.
It is closely related to the Cartesian P- and P-properties which were first introduced by
Chen and Qi [] over the space of symmetric matrices, and later extended by Pan and
Chen [] and Luo andXiu [] to the space of second-order cones and the general Euclidean
Jordan algebras, respectively.
The Cartesian P∗(κ)-SCLCP is indeed the generalization of P∗(κ)-LCP, which was first

introduced by Kojima et al. []. They established the existence of the central path and
designed and analyzed IPMs for solving P∗(κ)-LCP. The theoretical importance of this
class of LCPs lays in the fact that this is the largest class for which polynomial convergence
of IPMs can be proved without additional conditions (such as boundedness of the level
sets).
Luo and Xiu [] were the first to establish a theoretical framework of path-following

interior-point algorithms for the Cartesian P∗(κ)-SCLCP and to prove the global con-
vergence and the iteration complexities of the proposed algorithms. Wang and Bai []
analyzed a class of IPMs for the Cartesian P∗(κ)-SCLCP based on a parametric kernel
function different from the logarithmic kernel function. Lesaja et al. [] gave a unified
analysis of kernel-based IPMs for the Cartesian P∗(κ)-SCLCP and derived the currently
best known iteration bounds for large- and small-update methods for some special eli-
gible kernel functions. Wang and Lesaja [] generalize Roos’s full-Newton step feasible
IPM for LO [] and Gu et al. extension to SO [], to the Cartesian P∗(κ)-SCLCP. Liu
et al. [] proposed smoothing Newton methods for the Cartesian P- and P-SCLCPs.
Huang and Lu [] presented a globally convergent smoothing method with a linear rate
of convergence for the Cartesian P∗(κ)-SCLCP.
Bai et al. [] introduced a finite kernel function as follows:

ψ(t) =
t – 


+
eσ (–t) – 

σ
, σ ≥ , ()

which is not a kernel function in the usual sense (see, e.g., [, ]). It has a finite value at
the boundary of the feasible region, i.e.,

lim
t↓ ψ(t) = ψ() = –



+
eσ – 

σ
< ∞. ()

However, the iteration bound of a large-update method based on this kernel function is
shown to be O(

√
n logn log n

ε
). Recently, Ghami et al. [] studied the generalization of
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the finite kernel function ψ(t) as follows:

ψp,σ (t) =
tp+ – 
p + 

+
eσ (–t) – 

σ
, p ∈ [, ],σ ≥ . ()

This parametric kernel function also has finite value at the boundary of the feasible region
and its growth terms are between linear and quadratic. They proposed a class of primal-
dual interior-point algorithms for LO and the extension to SDO [] based on the para-
metric kernel function ψp,σ (t), respectively. Meanwhile, the results for LO in [, ] were
extended to P∗(κ)-LCP byWang and Bai in [], again matching the best known iteration
bounds for LO with the addition  + κ . An interesting question here is whether we can
directly extend the interior-point algorithms for LO in [] to the Cartesian P∗(κ)-SCLCP.
As we will see later, LO cannot be trivially generalized to the Cartesian P∗(κ)-SCLCP con-
text. The analysis of the algorithm proposed in this paper is more complicated than in the
LO case mainly due to the fact that the search directions are no longer orthogonal.
In this paper, we consider a generalization of kernel-based IPMs discussed in the paper

[] to the Cartesian P∗(κ)-SCLCP. The paper also extends the results of the paper []
where we consider the same type of IPMs for P∗(κ)-LCP, however, only over the nonneg-
ative orthant. Our goal is to provide a unified analysis for both large- and small-update
IPMs for the Cartesian P∗(κ)-SCLCP based on the finite barrier. Although the proposed
algorithm is an exact extension of the algorithms for LO and P∗(κ)-LCP, the Cartesian
P∗(κ)-property makes the analysis of the method far more complicated. Furthermore, we
loose the orthogonality of the scaled search directions in the Cartesian P∗(κ)-SCLCP case.
This also yields many difficulties in the analysis of the algorithm for the Cartesian P∗(κ)-
SCLCP. However, we manage to prove the same good characteristics as in the LO case.
The obtained complexity results match the best known iteration bounds known for large-
and small-update methods, namely O(( + κ)

√
r log r log r

ε
) and O(( + κ)

√
r log r

ε
), re-

spectively. The order of the iteration bounds almost coincides with the bounds derived
for LO in [], except that the iteration bounds in the Cartesian P∗(κ)-SCLCP case are
multiplied by the factor ( + κ).
The paper is organized as follows. In Section , we briefly describe some concepts, prop-

erties, and results from Euclidean Jordan algebras. In Section , we provide and develop
some useful properties of the finite kernel function ψ(t) and the corresponding barrier
function �(v). In Section , we mainly study primal-dual IPMs for the Cartesian P∗(κ)-
SCLCP based on the finite kernel function. The analysis and complexity bounds of the
algorithm are presented in Sections  and , respectively. Finally, some conclusions and
remarks follow in Section .
Notations used throughout the paper are as follows.Rn, Rn

+, and Rn
++ denote the set of all

vectors (with n components), the set of nonnegative vectors, and the set of positive vectors,
respectively. The largest eigenvalue of x and the smallest eigenvalue of x are defined by
λmax(x) and λmin(x). The Löwner partial ordering ‘�K’ of V defined by a symmetric cone
K is defined by x �K s if x – s ∈ K. The interior of K is denoted as intK, and we write
x �K s if x – s ∈ intK. Finally, if g(x) ≥  is a real-valued function of a real nonnegative
variable, the notation g(x) = O(x) means that g(x) ≤ c̄x for some positive constant c̄, and
g(x) = �(x) that cx ≤ g(x)≤ cx for two positive constants c and c.

http://www.journalofinequalitiesandapplications.com/content/2013/1/285
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2 Preliminaries
In what follows, we assume that the reader is familiar with the basic concepts of Euclidean
Jordan algebras and symmetric cones. The detailed information can be found in themono-
graph of Faraut and Korányi [] and in [, , –] as it relates to optimization.
The bilinear form on V is defined as

x � s :=
(
x() ◦ s(), . . . ,x(N) ◦ s(N))T , ()

where x = (x(), . . . ,x(N))T and s = (s(), . . . , s(N))T in V with x(j), s(j) ∈ Vj, j = , . . . ,N . If e(j) ∈ Vj

is the identity element in the Euclidean Jordan algebra Vj, then the vector

e =
(
e(), . . . , e(N))T ()

is the identity element in V .
For each x(j) ∈ Vj with j = , . . . ,N , the Lyapunov transformation and the quadratic rep-

resentation of Vj are given by

L
(
x(j)

)
y(j) = x(j) ◦ y(j) and P

(
x(j)

)
:= L

(
x(j)

) – L
((
x(j)

)), ()

where L(x(j)) = L(x(j))L(x(j)). They can be adjusted to the Cartesian product structure V as
follows:

L(x) = diag
(
L
(
x()

)
, . . . ,L

(
x(N))) and P(x) = diag

(
P
(
x()

)
, . . . ,P

(
x(N))). ()

The spectral decomposition of x(j) ∈ Vj with respect to the Jordan frame {c(j) , . . . , c(j)rj } is
given by

x(j) =
rj∑
i=

λi
(
x(j)

)
c(j)i , j = , . . . ,N , ()

where λ(x(j)), . . . ,λrj (x(j)) are the corresponding eigenvalues. The spectral decomposition
of x ∈ V can be defined straightforwardly by using the spectral decomposition of compo-
nents x(j) ∈ Vj as follows:

x =

( r∑
i=

λi
(
x()

)
c()i , . . . ,

rN∑
i=

λi
(
x(N))c(N)

i

)T

. ()

It enables us to extend the definition of any real-valued, continuous univariate function to
elements of a Euclidean Jordan algebra, using the eigenvalues. In particular this holds for
the finite kernel function.
Let x ∈ V with the spectral decomposition as defined (). The vector-valued function

ψ(x) is defined by

ψ(x) =
(
ψ

(
x()

)
, . . . ,ψ

(
x(N)))T , ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/285
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where

ψ
(
x(j)

)
= ψ

(
λ

(
x(j)

))
c(j) + · · · +ψ

(
λrj

(
x(j)

))
c(j)rj , j = , . . . ,N . ()

Furthermore, if ψ(t) is differentiable, the derivative ψ ′(t) exists, and we also have a
vector-valued function ψ ′(x), namely

ψ ′(x) =
(
ψ ′(x()), . . . ,ψ ′(x(N)))T , ()

where

ψ ′(x(j)) = ψ ′(λ
(
x(j)

))
c(j) + · · · +ψ ′(λrj

(
x(j)

))
c(j)rj , j = , . . . ,N . ()

It should be noted thatψ ′(x), which does notmean that the derivative of the vector-valued
function ψ(x) defined by () is just a vector-valued function induced by the derivative
ψ ′(t) of the function ψ(t).
The Peirce decomposition of x(j) ∈ Vj with respect to the Jordan frame {c(j) , . . . , c(j)rj } is

given by

x(j) =
rj∑
i=

x(j)i c
(j)
i +

∑
i<mj

x(j)imj
, j = , . . . ,N , ()

with x(j)i ∈ R, i = , . . . , rj and x(j)imj
∈ V (j)

imj
,  ≤ i <mj ≤ rj. The V (j)

imj
for  ≤ i <mj ≤ rj are the

Peirce subspaces of Vj induced by the Jordan frame c(j) , . . . , c
(j)
rj . The Peirce decomposition

of x ∈ V can be defined straightforwardly by using the Peirce decomposition of compo-
nents x(j) ∈ Vj as follows:

x =

( r∑
i=

x()i c()i +
∑
i<m

x()im
, . . . ,

rN∑
i=

x(N)
i c(N)

i +
∑
i<mN

x(N)
imN

)T

. ()

The canonical inner product is defined as

〈x, s〉 =
N∑
j=

〈
x(j), s(j)

〉
=

N∑
j=

tr
(
x(j) ◦ s(j)). ()

We recall the following definitions:

tr
(
x(j)

)
=

rj∑
i=

λi
(
x(j)

)
, det

(
x(j)

)
=

rj∏
i=

λi
(
x(j)

)
and

∥∥x(j)∥∥F =

√√√√ rj∑
i=

λ
i
(
x(j)

)
, j = , . . . ,N .

()

Then, in V we have

tr(x) =
N∑
j=

tr
(
x(j)

)
, det(x) =

N∏
j=

det
(
x(j)

)
and ‖x‖F =

√√√√ N∑
j=

∥∥x(j)∥∥
F . ()
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Furthermore, we define

λmax(v) =max
{
λi

(
x(j)

)
: j = , . . . ,N , ≤ i≤ rj

}
()

and

λmin(v) =min
{
λi

(
x(j)

)
: j = , . . . ,N , ≤ i≤ rj

}
. ()

It follows from (), (), and () that

∣∣λmax(x)
∣∣ ≤ ‖x‖F and

∣∣λmin(x)
∣∣ ≤ ‖x‖F . ()

Furthermore, we have the following important result.

Lemma . (Lemma  in []) Let x, s ∈ V . Then

λmin(x) – ‖s‖F ≤ λmin(x + s) ≤ λmax(x + s)≤ λmax(x) + ‖s‖F .

Before ending this section, we need to consider the separable spectral functions in-
duced by the univariate functions. Let f : D → R be a univariate function on the open
set D ⊆ R that is differentiable or even continuously differentiable if necessary. Let x(j) =∑rj

i= λi(x(j))c
(j)
i be the spectral decomposition of x(j) ∈ Vj with respect to the Jordan frame

c(j) , . . . , c
(j)
rj for each j, j = , . . . ,N . Then we define the real -valued separable spectral func-

tion F(x(j)) : Vj → R and the vector-valued separable spectral function G : Vj → Vj by

F
(
x(j)

)
:=

rj∑
i=

f
(
λi

(
x(j)

))
and G(x) :=

rj∑
i=

f
(
λi

(
x(j)

))
c(j)i , j = , . . . ,N , ()

respectively. The first derivative DxF(x(j)) of the function F(x(j)) and the first derivative
DxG(x(j)) of the function G(x(j)) are given by

DxF
(
x(j)

)
=

rj∑
i=

f ′(λ(j)
i

)
c(j)i ()

and

DxG
(
x(j)

)
=

rj∑
i=

f ′(λ(j)
i

)
V (j)
ii +

∑
i<mj

λ
(j)
i =λ

(j)
mj

f ′(λ(j)
i

)
V (j)
imj

+
∑
i<mj

λ
(j)
i �=λ

(j)
mj

f (λ(j)
i ) – f (λ(j)

mj )

λ
(j)
i – λ

(j)
mj

V (j)
imj

, ()

respectively, where λ
(j)
i = λi(x(j)), λ

(j)
mj = λmj (x(j)), and V (j)

imj
,  ≤ i ≤ mj ≤ r, are orthogonal

projection operators that appear in the Peirce decomposition of Vj with respect to the
Jordan frame c(j) , . . . , c

(j)
rj .

The above results, as well as amore general treatment of spectral functions, their deriva-
tives and various properties can be found in [, ].
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Now, the separable spectral functions can be adjusted to theCartesian product structure
V as follows:

F(x) =
N∑
j=

F
(
x(j)

)
and G(x) =

(
G

(
x()

)
, . . . ,G

(
x(N)))T . ()

It follows directly from () and () that

DxF(x) =
(
DxF

(
x()

)
, . . . ,DxF

(
x(N)))T and

DxG(x) =
(
DxG

(
x()

)
, . . . ,DxG

(
x(N)))T . ()

3 Properties of the finite kernel (barrier) function
In this section, we provide and develop some useful properties of the finite kernel function
and the corresponding barrier function that are needed in the analysis of the algorithm.
For ease of reference, we give the first three derivatives of ψ(t) with respect to t as follows:

ψ ′(t) = t – eσ (–t), ψ ′′(t) =  + σ eσ (–t) and ψ ′′′(t) = –σ eσ (–t). ()

We can conclude that

ψ() = ψ ′() = , ψ ′′(t) > , t > ,

ψ ′′′(t) < , t >  and lim
t→∞ψ(t) = +∞.

()

It follows from () that ψ(t) is strictly convex and ψ ′′(t) is monotonically decreasing in
t ∈ (, +∞).
The property described below in Lemma . is exponential convexity, which has been

proven to be very useful in the analysis of kernel-based primal-dual IPMs (see, e.g.,
[, ]).

Lemma . (Lemma . in []) If t ≥ 
σ
and t ≥ 

σ
, then

ψ(
√
tt) ≤ 


(
ψ(t) +ψ(t)

)
.

Note that ψ(t) is exponentially convex, whenever t ≥ 
σ
. The following lemma makes

clear that when v belongs to the level set {v : �(v) ≤ L}, for some given L ≥ , the expo-
nential convexity is guaranteed and it is proved that the value of σ is large enough.

Lemma . (Lemma . in []) Let L ≥  and �(v) ≤ L. If σ ≥  +  log( + L), then
λmin(v)≥ 

σ .

Corresponding to the finite kernel function ψ(t) defined by (), we define the barrier
function on intK as follows:

�(v) :=�(x, s;μ) := tr
(
ψ(v)

)
. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/285
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It follows immediately from () and () that

�(v) = tr
(
ψ(v)

)
=

N∑
j=

tr
(
ψ

(
v(j)

))
=

N∑
j=

rj∑
i=

ψ
(
λi

(
v(j)

))
. ()

According to the properties of the finite kernel functionψ(t), we can conclude that�(v) is
nonnegative and strictly convex with respect to v�K  and vanishes at its global minimal
point v = e, i.e.,

�(v) =  ⇔ ψ(v) =  ⇔ ψ ′(v) =  ⇔ v = e.

Furthermore, we have, by (),

Dv�(v) =

( r∑
i=

ψ ′(λi
(
v()

))
c()i , . . . ,

rN∑
i=

ψ ′(λi
(
v(N)))c(N)

i

)T

= ψ ′(v). ()

This means that the derivative of the barrier function �(v) in essence coincides with the
vector-valued function ψ ′(v) defined by () and ().
As the consequence of Lemma ., we have the following theorem, which is indeed a

slight modification of Theorem .. in []. Thus, we omit its proof.

Theorem . Let x, s ∈ intK. If λmin(x) ≥ 
σ
and λmin(s)≥ 

σ
, then

�
((
P(x)/s

)/) ≤ 

(
�(x) +�(s)

)
.

Lemma . If t ≥ , then

ψ(t)≤  + σ


(t – ).

Proof From Taylor’s theorem and the fact that ψ ′′() =  + σ , the inequality is straightfor-
ward. �

Lemma . If t ≥ , then

tψ ′(t)≥ ψ(t).

Proof Defining f (t) := tψ ′(t) –ψ(t), we have f () =  and

f ′(t) = tψ ′′(t)≥ .

This implies the desired result. �

The following lemma can be directly obtained from Lemma . in [], which provides
the lower and upper bounds of the inverse function of the finite kernel function ψ(t) for
t ≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/285
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Lemma. Let 	 : [,∞)→ [,∞) be the inverse function of the finite kernel functionψ(t)
for t ≥ . If σ ≥ , then

√
 + s≤ 	(s) ≤

(
s +

 + σ

σ

) 

. ()

If σ ≥ , then

	(s)≤  +
√
s
(
s +

 + σ

σ

) 

. ()

For the analysis of the algorithm, we define the norm-based proximity measure δ(v) as
follows:

δ(v) :=


∥∥ψ ′(v)

∥∥
F . ()

It follows from () and () that

δ(v) =



√√√√ N∑
j=

rj∑
i=

ψ ′(λi
(
v(j)

)). ()

We can conclude that δ(v)≥  and δ(v) =  if and only if �(v) = .
Clearly, δ(v) and �(v) depend only on the eigenvalues λi(v(j)) of the symmetric cone v(j)

for each j, j = , . . . ,N . The following theorem gives a lower bound on δ(v) in terms of�(v),
which is precisely the same as its LO counterpart δ(v) (cf. Theorem . in []).

Theorem . If v ∈ intK, then

δ(v)≥ 

ψ ′(	(

�(v)
))
.

Corollary . If v ∈ intK and �(v)≥ , then

δ(v)≥ 


√
�(v).

Proof From () and the fact that �(v)≥  and σ ≥ , we have

	
(
�(v)

) ≤
(
�(v) +

 + σ

σ

) 
 ≤ (

�(v)
) 
 ≤ 

(
�(v)

) 
 .

Thus, we have, by Theorem . and Lemma .,

δ(v)≥ 

ψ ′(	(

�(v)
)) ≥ ψ(	(�(v)))

	(�(v))
=

�(v)
	(�(v))

≥ �(v)
(�(v)) 

=



√
�(v).

This completes the proof of the corollary. �

In what follows, we consider the derivatives of the function �(x(t)) with respect to t,
where x(t) = x + tu ∈ intK with t ∈ R and u ∈ V . For more details, we refer to [].

http://www.journalofinequalitiesandapplications.com/content/2013/1/285
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It follows from () and () that the spectral decomposition of x(t) with respect to the
Jordan frame {c() , . . . , c()r , . . . , c

(N)
 , . . . , c(N)

rN } can be defined by

x(t) =

( r∑
i=

λi
(
x(t)()

)
c()i , . . . ,

rN∑
i=

λi
(
x(t)(N))c(N)

i

)T

, ()

and the Pierce decomposition of u can be defined by

u =

( r∑
i=

u()i c()i +
∑
i<m

u()im
, . . . ,

rN∑
i=

u(N)
i c(N)

i +
∑
i<mN

u(N)
imN

)T

. ()

From (), after some elementary reductions, we can derive the first two derivatives of
the general function �(x(t)) with respect to t as follows:

Dt�
(
x(t)

)
=

N∑
j=

tr

( rj∑
i=

ψ ′(λi
(
x(t)(j)

))
c(j)i ◦ u(j)

)
()

and

D
t �

(
x(t)

)
=

N∑
j=

( rj∑
i=

ψ ′′(λ(j)
i

)(
u(j)i

) + ∑
i<mj

λ
(j)
i =λ

(j)
mj

ψ ′′(λ(j)
i

)
tr
((
u(j)imj

))

+
∑
i<mj

λ
(j)
i �=λ

(j)
mj

ψ ′(λ(j)
i ) –ψ ′(λ(j)

mj )

λ
(j)
i – λ

(j)
mj

tr
((
u(j)imj

))), ()

where λ
(j)
i = λi(x(t)(j)) and λ

(j)
mj = λmj (x(t)(j)).

Note that ψ ′′(t) is monotonically decreasing in t ∈ (, +∞). Under the assumption that
i <mj implies λi(x(t))≥ λmj (x(t)), we can conclude that

D
t �

(
x(t)

) ≤
N∑
j=

( rj∑
i=

ψ ′′(λ(j)
i

)(
u(j)i

) +∑
i<mj

ψ ′′(λ(j)
mj

)
tr
((
u(j)imj

))), ()

which bounds the second-order derivative of �(x(t)) with respect to t.

4 Interior-point algorithm for the Cartesian P∗(κ )-SCLCP
In this section, we first introduce the central path for the Cartesian P∗(κ)-SCLCP. Next,
we mainly derive the new search directions induced by the finite kernel function ψ(t).
Finally, we present the generic polynomial interior-point algorithm for the Cartesian
P∗(κ)-SCLCP.

4.1 The central path for the Cartesian P∗(κ )-SCLCP
Throughout the paper, we assume that the Cartesian P∗(κ)-SCLCP satisfies the interior-
point condition (IPC), i.e., there exists (x �K , s �K ) such that s =A(x) +q. For this

http://www.journalofinequalitiesandapplications.com/content/2013/1/285
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and other properties of the Cartesian P∗(κ)-SCLCP, we refer to []. Under the IPC holds,
by relaxing the complementarity slackness x� s =  with x� s = μe, we obtain the following
system:

(
A(x) – s
x � s

)
=

(
–q
μe

)
, x, s�K , ()

where μ >  is a parameter. The parameterized system () has a unique solution for
each μ > . This solution is denoted as (x(μ), s(μ)) and we call (x(μ), s(μ)) the μ-center
of the Cartesian P∗(κ)-SCLCP. The set of μ-centers (with μ running through all positive
real numbers) gives a homotopy path, which is called the central path of the Cartesian
P∗(κ)-SCLCP. If μ → , then the limit of the central path exists and since the limit points
satisfy the complementarity condition x� s = , the limit yields a solution for the Cartesian
P∗(κ)-SCLCP (see, e.g., []).

4.2 The new search directions for the Cartesian P∗(κ )-SCLCP
To obtain the search directions for the Cartesian P∗(κ)-SCLCP, the usual approach is to
use Newton’s method and to linearize the system (). In what follows, we briefly outline
the details.
For any strictly feasible x �K  and s �K , we want to find displacements �x and �s

such that
(
A(x +�x) – (s +�s)
(x +�x) � (s +�s)

)
=

(
–q
μe

)
. ()

Neglecting the term �x � �s on the left-hand side expression of the second equation, we
obtain the following Newton system for the search directions �x and �s:

(
A(�x) –�s

s � �x + x � �s

)
=

(


μe – x � s

)
. ()

Due to the fact that x and s do not operator commute in general, i.e., L(x)L(s) �= L(s)L(x),
this system does not always have a unique solution. It is well known that this difficulty can
be solved by applying a scaling scheme. This goes as follows.

Lemma . (Lemma  in []) Let u ∈ intK. Then

x � s = μe ⇔ P(u)x � P
(
u–

)
s = μe.

Now we replace the second equation of the system () by

P(u)(x +�x) � P
(
u–

)
(s +�s) = μe. ()

Applying Newton’s method again, and neglecting the term P(u)�x � P(u–)�s, we get

(
A(�x) –�s

P(u–)(s) � P(u)�x + P(u)(x) � P(u–)�s

)
=

(


μe – P(u)(x) � P(u–)(s)

)
. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/285
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By choosing u appropriately, this system can be used to define the commutative class
of search directions (see, e.g., []). In the literature the following three choices are well
known: u = s/, u = x/, and u = w–/, wherew is the NT-scaling point of x and s. The first
two choices lead to the so-called xs-direction and sx-direction, respectively. In this paper,
we consider the third choice that is called NT-scaling scheme and the resulting direction
is called NT search direction. This scaling scheme was first proposed by Nesterov and
Todd for self-scaled cones [, ] and then adapted by Faybusovich [, ] for symmetric
cones.

Lemma . (Lemma . in []) Let x, s ∈ intK. Then there exists a unique scaling point
w ∈ intK such that

x = P(w)s.

Moreover,

w = P(x)


(
P
(
x



)
s
)– 


[
= P

(
s–



)(
P
(
s


)
x
) 

]
.

As a consequence of the above lemma, there exists ṽ ∈ intK such that

ṽ = P(w)–

 x = P(w)


 s. ()

Note that P(w)  and its inverse P(w)– 
 are automorphisms of K (see, e.g., [, ]). This

leads to the definition of the following variance vector:

v :=
√
μ
P(w)–


 x

[
=

√
μ
P(w)


 s

]
. ()

Furthermore, we define

A := P(w)

AP(w)


 , dx :=

P(w)– 
 �x√
μ

and ds :=
P(w)  �s√

μ
. ()

The transformation A also has the Cartesian P∗(κ)-property (cf. Proposition . in []).
Using () and (), after some elementary reductions, we obtain the scaled Newton

system as follows:

(
A(dx) – ds
dx + ds

)
=

(


v– – v

)
. ()

Since the linear transformationA has the Cartesian P∗(κ)-property, the system () has a
unique solution [].
So far we have described the scheme that defines the classical NT-direction for the

Cartesian P∗(κ)-SCLCP. The approach in this paper differs only in one detail. Given the
finite kernel function ψ(t) defined by () and the associated vector-valued function ψ ′(v)
defined by () and (), we replace the right-hand side of the second equation in () by

http://www.journalofinequalitiesandapplications.com/content/2013/1/285
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–ψ ′(v), i.e., minus the derivative of the barrier function �(v). Thus we consider the fol-
lowing system:

(
A(dx) – ds
dx + ds

)
=

(


–ψ ′(v)

)
. ()

Since the system () has the samematrix of coefficients as the system (), also the system
() has a unique solution.a

The new search directions dx and ds are computed by solving (), thus �x and �s are
obtained from (). If (x, s) �= (x(μ), s(μ)), then (�x,�s) is nonzero. By taking a default step
size α along the search directions, we get the new iteration point (x+, s+) according to

x+ := x + α�x and s+ := s + α�s. ()

Furthermore, we can easily verify that

x � s = μe ⇔ v = e ⇔ ψ ′(v) = 

⇔ ψ(v) =  ⇔ �(v) = .
()

Hence, the value of �(v) can be considered as a measure for the distance between the
given iterate (x, s) and the μ-center (x(μ), s(μ)).

4.3 The generic interior-point algorithm for the Cartesian P∗(κ )-SCLCP
Define the τ -neighborhood of the central path as follows:

N (τ ) :=
{
(x, s) ∈ intK× intK : s =A(x) + q,�(v) ≤ τ

}
.

It is clear from the above description that the closeness of (x, s) to (x(μ), s(μ)) ismeasured
by the value of �(v), with τ >  as a threshold value. If �(v) ≤ τ , then we start a new
outer iteration by performing a μ-update, i.e., μ+ := ( – θ )μ; otherwise, we enter an inner
iteration by computing the search directions using () and () at the current iterateswith
respect to the current value of μ and apply () to get new iterates. If necessary, we repeat
the procedure until we find iterates that are in the τ -neighborhood of the central path.
Then μ is again reduced by the factor  – θ with  < θ < , and we apply inner iteration(s)
targeting at the newμ-centers, and so on. This process is repeated untilμ is small enough,
say until rμ < ε. At this stage, we have found a ε-approximate solution of the Cartesian
P∗(κ)-SCLCP.
The generic interior-point algorithm for the Cartesian P∗(κ)-SCLCP is now presented

as follows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/285
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Generic IPMs for the Cartesian P∗(κ)-SCLCP

Input:
A threshold parameter τ ≥ ;
an accuracy parameter ε > ;
a fixed barrier update parameter θ ,  < θ < ;
a strictly feasible (x, s) and μ := 〈x, s〉/r such that �(x, s;μ) ≤ τ .

begin
x := x; s := s; μ := μ;
while rμ ≥ ε do
begin

μ := ( – θ )μ;
while �(x, s;μ) > τ do
begin

solve system () and use () to obtain (�x,�s);
choose a default step size α;
update x := x + α�x, s := s + α�s;

end
end

end

5 Analysis of the algorithm
In this section, we first discuss the growth behavior of the barrier function during an outer
iteration. Next, we choose the default step size and obtain an upper bound for the decrease
of the barrier function during an inner iteration. Finally, we show that the default step size
yields sufficient decrease of the barrier function value during each inner iteration.

5.1 Growth behavior of the barrier function during an outer iteration
It should be mentioned that during the course of the algorithm the largest values of �(v)
occur just after the update of μ. So, next we derive an estimate for the effect of a μ-update
on the value of �(v).
It follows from () that

�(βv) =
N∑
j=

rj∑
i=

ψ
(
βλi

(
v(j)

))
,

which means that �(βv) depends only on the eigenvalues λi(v(j)) of the symmetric cone
v(j) for each j, j = , . . . ,N . The growth behavior of the proximity �(v) is precisely the same
as its LO counterpart �(βv) (cf. Theorem . in []).

Theorem . If v ∈K+ and β ≥ , then

�(βv)≤ rψ
(

β	

(
�(v)
r

))
.

Corollary . Let  < θ <  and v+ = v√
–θ

. If �(v)≤ τ , then

�(v+) ≤ rψ
(

	( τ
r )√

 – θ

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/285
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Proof With β = √
–θ

>  and �(v) ≤ τ , the corollary follows immediately from Theo-
rem .. �

5.2 Choice of the default step size
From () and (), after some elementary reductions, we have

x+ =
√

μP(w)

 (v + αdx) and s+ =

√
μP(w)–


 (v + αds). ()

Thus,

v+ :=
√
μ
P(w+)–


 x+ =

√
μ
P(w+)


 s+,

or equivalently,

v+ = P(w+)–

 P(w)


 (v + αdx) = P(w+)


 P(w)–


 (v + αds),

where, according to Lemma .,

w+ := P(x+)


((
P(x+)


 s+

)– 

)
.

To calculate the decrease of the barrier function �(v) during an inner iteration, it is
standard to consider the decrease as a function of α defined by

f (α) :=�(v+) –�(v).

Our aim is to find an upper bound for f (α) by using the exponential convexity of ψ(t), and
according to Lemma .. In order to do this, we assume for the moment that

λmin
(
v(j) + αd(j)

x
) ≥ 

σ
and λmin

(
v(j) + αd(j)

s
) ≥ 

σ
, j = , . . . ,N . ()

However, working with f (α) may not be easy because in general f (α) is not convex. Thus,
we are searching for the convex function f(α) that is an upper bound of f (α) and whose
derivatives are easier to calculate than those of f (α). The key element in this process is
replacing v+ with a similar element that will allow the use of exponential-convexity of the
barrier function. By Proposition .. in [], we have

v+ ∼ (
P(v + αdx)


 (v + αds)

) 


and therefore

�(v+) = �
((
P(v + αdx)


 (v + αds)

) 

)
.

Theorem . implies that

�(v+) ≤ 

(
�(v + αdx) +�(v + αds)

)
.
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Hence, we have

f (α)≤ f(α) :=


(
�(v + αdx) +�(v + αds)

)
–�(v),

whichmeans that f(α) gives an upper bound for the decrease of the barrier function�(v).
Furthermore, we can conclude that f () = f() = .
From (), we have

f ′
 (α) =




N∑
j=

(
tr
(
ψ ′(v(j) + αd(j)

x
) ◦ d(j)

x
)
+ tr

(
ψ ′(v(j) + αd(j)

s
) ◦ d(j)

s
))

=


(
tr
(
ψ ′(v + αdx) � dx

)
+ tr

(
ψ ′(v + αds) � ds

))
.

This gives, by () and (),

f ′
 () =



tr
(
ψ ′(v) � (dx + ds)

)
= –



tr
(
ψ ′(v) � ψ ′(v)

)
= –



∥∥ψ ′(v)

∥∥
F = –δ(v) < .

Hence, we can conclude that f ′
 (α) ismonotonically decreasing in a neighborhood of α = .

Furthermore, we have, by () and (),

f ′′
 (α) ≤ 



N∑
j=

( rj∑
i=

ψ ′′(λi
(
η(j)))(d(j)

xi
) +∑

i<mj

ψ ′′(λmj

(
η(j))) tr((d(j)

ximj

)))

+



N∑
j=

( rj∑
i=

ψ ′′(λi
(
γ (j)))(d(j)

si
) +∑

i<mj

ψ ′′(λmj

(
γ (j))) tr((d(j)

simj

))). ()

Contrary to the LO case, the vectors dx and ds are not necessarily orthogonal any more.
However, theCartesian P∗(κ)-property of SCLCP still allows us to find a good lower bound
of the inner product 〈dx,ds〉.
In order to facilitate discussion, we denote

δ := δ(v), δ+ :=
∑
ν∈J+

〈
d(ν)
x ,d(ν)

s
〉

and δ– := –
∑
ν∈J–

〈
d(ν)
x ,d(ν)

s
〉
. ()

Lemma . One has

〈dx,ds〉 ≥ –κδ.

Proof Since the linear transformationA has the Cartesian P∗(κ)-property, we have

( + κ)
∑

j∈I+(�x)

〈
�x(j),

[
A(�x)

](j)〉 + ∑
j∈I–(�x)

〈
�x(j),

[
A(�x)

](j)〉 ≥ , ()

where I+(�x) = {j : 〈�x(j), [A(�x)](j)〉 > } and I–(�x) = {j : 〈�x(j), [A(�x)](j)〉 < } are two
index sets. It follows from () and A(�x) = �s that 〈�x,�s〉 = μ〈dx,ds〉. This enables us
to rewrite () as

( + κ)
∑

j∈I+(�x)

〈
d(j)
x ,d(j)

s
〉
+

∑
j∈I–(�x)

〈
d(j)
x ,d(j)

s
〉 ≥ . ()
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Hence, it follows that

〈dx,ds〉 ≥ –κ
∑

j∈I+(�x)

〈
d(j)
x ,d(j)

s
〉
. ()

Using the arithmetic-geometric mean inequality 〈a,b〉 ≤ 
 〈a + b,a + b〉, we have

∑
j∈I+(�x)

〈
d(j)
x ,d(j)

s
〉 ≤ 


∑

j∈I+(�x)

∥∥d(j)
x + d(j)

s
∥∥
F ≤ 



N∑
j=

∥∥d(j)
x + d(j)

s
∥∥
F =




‖dx + ds‖F = δ.

Substitution of this inequality into () yields

〈dx,ds〉 ≥ –κδ.

This completes the proof of the lemma. �

The key steps in the analysis of the algorithmare based on the effort to findupper bounds
on ‖dx‖ and ‖ds‖ in terms of the proximity measure δ. The following lemma yields their
upper bounds.

Lemma . One has

‖dx‖F ≤ 
√
 + κδ and ‖ds‖F ≤ 

√
 + κδ.

Proof From Lemma ., we have

‖dx‖F + ‖ds‖F = ‖dx + ds‖ – 〈dx,ds〉 ≤ δ + κδ = ( + κ)δ. ()

This implies the inequalities in the statement of the lemma. �

Lemma . One has

f ′′
 (α)≤ ( + κ)δψ ′′(λmin(v) – α

√
 + κδ

)
.

Proof From Lemma . and Lemma ., we have

λi
(
(v + αdx)(j)

) ≥ λmin
(
(v + αdx)(j)

) ≥ λmin
(
v(j)

)
–

∥∥αd(j)
x

∥∥
F ≥ λmin

(
v(j)

)
– α

√
 + κδ,

λi
(
(v + αds)(j)

) ≥ λmin
(
(v + αds)(j)

) ≥ λmin
(
v(j)

)
–

∥∥αd(j)
s

∥∥
F ≥ λmin

(
v(j)

)
– α

√
 + κδ.

Let

d(j)
x =

rj∑
i=

d(j)
xi c

(j)
i +

∑
i<mj

d(j)
ximj

, j = , . . . ,N ,

be the Peirce decomposition of d(j)
x with respect to the Jordan frame {c(j) , . . . , c(j)rj }, and let

d(j)
s =

rj∑
i=

d(j)
si b

(j)
i +

∑
i<mj

d(j)
simj

, j = , . . . ,N ,
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be the Peirce decomposition of d(j)
s with respect to the Jordan frame {b(j) , . . . ,b(j)rj }. We have

‖dx‖F =
N∑
j=

∥∥d(j)
x

∥∥
F =

N∑
j=

〈
d(j)
x ,d(j)

x
〉
=

N∑
j=

( rj∑
i=

(
d(j)
xi

) +∑
i<mj

tr
((
d(j)
ximj

)))

and

‖ds‖F =
N∑
j=

∥∥d(j)
s

∥∥
F =

N∑
j=

〈
d(j)
s ,d(j)

s
〉
=

N∑
j=

( rj∑
i=

(
d(j)
si

) +∑
i<mj

tr
((
d(j)
simj

))).

Since ψ ′′(t) is monotonically decreasing in t ∈ (, +∞), we have, by (),

f ′′
 (α) ≤ 


ψ ′′(λmin(v) – α

√
 + κδ

) N∑
j=

( rj∑
i=

(
d(j)
xi

) +∑
i<mj

tr
((
d(j)
ximj

)))

+


ψ ′′(λmin(v) – α

√
 + κδ

) N∑
j=

( rj∑
i=

(
d(j)
si

) +∑
i<mj

tr
((
d(j)
simj

)))

≤ 

ψ ′′(λmin(v) – α

√
 + κδ

)(‖dx‖F + ‖ds‖F
)

≤ ( + κ)δψ ′′(vmin – α
√
 + κδ).

The last inequality holds due to the fact that (). This completes the proof of the lemma.
�

From this point on, the analysis of the algorithm follows almost completely the similar
analyses in [, ]with straightforwardmodifications that take into account theCartesian
P∗(κ)-property. Therefore, the intermediate results are omitted and only main results are
mentioned without the proofs.
In particular, the step size α satisfies the following condition:

α ≥ 
( + κ)ψ ′′(ρ(Lδ))

. ()

It follows from () and the definition of ρ that

α ≥ 
( + κ)( + σ eσ (–t))

, t ∈
[

σ
, 

]
and eσ (–t) – t = δ. ()

Using the second equation of (), we have

eσ (–t) = t + δ ≤  + δ.

It follows from Corollary . and �(v)≥  that

δ ≥ 


√
�(v)≥ 


.
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Hence, we have

α ≥ 
σ ( + κ)( + eσ (–t))

≥ 
σ ( + κ)( + δ)

≥ 
σδ( + κ)

.

In the sequel, we use the notation

α̃ =


σδ( + κ)
, ()

and we will use α̃ as the default step size. It is obvious that α ≥ α̃.
Now, to validate the above analysis, we need to show that α̃ satisfies (). In fact, from

Lemmas ., ., . and (), we have

λmin(v + α̃dx) ≥ λmin(v) – α̃‖dx‖ ≥ 
σ

–


σδ( + κ)

√
 + κδ

≥ 
σ

–

σ

≥ 
σ

≥ 
σ

and

λmin(v + α̃ds) ≥ λmin(v) – α̃‖ds‖ ≥ 
σ

–


σδ( + κ)

√
 + κδ

≥ 
σ

–

σ

≥ 
σ

≥ 
σ
.

5.3 Decrease of the value of�(v) during an inner iteration
In what follows, we will show that the barrier function �(v) in each inner iteration with
the default step size α̃, as defined by (), is decreasing. For this, we need the following
technical result.

Lemma . (Lemma . in []) Let h(t) be a twice differentiable convex function with
h() = , h′() <  and let h(t) attain its (global) minimum at t∗ > . If h′′(t) is increasing
for t ∈ [, t∗], then

h(t) ≤ th′()


, ≤ t ≤ t∗.

As a consequence of Lemma . and the fact that f (α) ≤ f(α), which is a twice dif-
ferentiable convex function with f() = , and f ′

 () = –δ < , we can easily prove the
following lemma.

Lemma . If the step size α is such that α ≤ α̃, then

f (α)≤ –αδ.

The following theorem states the results which show that the default step size () yields
sufficient decrease of the barrier function value during each inner iteration.
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Theorem . One has

f (α̃) ≤ –
(�(v)) 

σ ( + κ)
.

Proof From Lemma ., Corollary . and (), we have

f (α̃) ≤ –α̃δ = –


σδ( + κ)
δ = –

δ

σ ( + κ)
≤ –

(�(v)) 
σ ( + κ)

.

This completes the proof of the theorem. �

6 Complexity of the algorithm
In this section, we first derive an upper bound for the number of the iteration bounds by
our algorithm. Then we obtain the iteration bounds that match the currently best known
iteration bounds for large- and small-update methods, respectively.

6.1 Iteration bound for a large-update method
For the analysis of the iterations of the algorithm, we need to count how many inner it-
erations are required to return to the situation where �(v) ≤ τ . We denote the value of
�(v) after the μ-update as �, the subsequent values in the same outer iteration are de-
noted as�k , k = , . . . ,K , where K denotes the total number of inner iterations in the outer
iteration. According to the decrease of f (α̃), we get

�k+ ≤ �k – β(�k)–γ , k = , , . . . ,K – , ()

where β = 
σ (+κ) and γ = 

 .

Lemma . (Lemma  in []) Suppose that t, t, . . . , tK is a sequence of positive numbers
such that

tk+ ≤ tk – βt–γ

k , k = , , . . . ,K – ,

where β >  and  < γ ≤ . Then K ≤ � tγ
βγ

�.

Combining Lemma . and (), we can easily verify the following main result.

Theorem . One has

K ≤ σ ( + κ)(�)

 .

By applying Corollary ., (), and the fact that ψ(t)≤ t
 when t ≥ , we have

� ≤ rψ
(

	( τ
r )√

 – θ

)
≤ rψ

(√
τ
r + +σ

σ√
 – θ

)
≤ r

( – θ )

(
τ
r

+
 + σ

σ

)
.

From the above expression with θ = �() and τ =O(r), and also applying Lemma ., we
can conclude that σ =O(log r).
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The number of outer iterations is bounded above by 
θ
log r

ε
(cf. Lemma �. in []). By

multiplying the number of outer iterations and the number of inner iterations, we get an
upper bound for the total number of iterations, namely

σ ( + κ)
θ

√
r

( – θ )

(
τ
r

+
 + σ

σ

)
log

r
ε
.

After some elementary reductions, we have the following theorem, which gives the cur-
rently best known iteration bound for the large-update method.

Theorem . For the large-update method, which is characterized by θ = �() and τ =
O(r), then the algorithm requires at most

O
(
( + κ)

√
r log r log

r
ε

)

iterations. The output gives a ε-approximate solution of the Cartesian P∗(κ)-SCLCP.

6.2 Iteration bound for a small-update method
It is not hard to show that if the above analysis is used for a small-update method, the
iteration bound would not be as good as it can be for these types of methods. For the
analysis of the iteration bound of a small-update method, we need to estimate the upper
bound of � more accurately. It should be noted that the following analysis only holds for
σ ≥ .
By applying Corollary ., (), Lemma ., and the fact that –

√
 – θ = θ

+
√
–θ

≤ θ , we
have

� ≤ rψ
(

	( τ
r )√

 – θ

)

≤ rψ
( +

√
τ
r (

τ
r + +σ

σ
) √

 – θ

)

≤ r( + σ )


( +
√

τ
r (

τ
r + +σ

σ
) √

 – θ
– 

)

≤  + σ

( – θ )

(
θ
√
r +

√
τ

(
τ
r

+
 + σ

σ

) 

)

.

From the above expression with θ = �( √
r ) and τ =O(), and also applying Lemma ., we

can conclude that σ =O(). It follows fromTheorem. that the total number of iterations
is bounded above by

σ
√
 + σ ( + κ)

θ
√
( – θ )

(
θ
√
r +

√
τ

(
τ
r

+
 + σ

σ

) 

)
log

r
ε
.

After some elementary reductions, we have the following theorem, which gives the cur-
rently best known iteration bound for a small-update method.
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Theorem . For a small-update method, which is characterized by θ = �( √
r ) and τ =

O(), then the algorithm requires at most

O
(
( + κ)

√
r log

r
ε

)

iterations. The output gives a ε-approximate solution of the Cartesian P∗(κ)-SCLCP.

7 Conclusions and remarks
In this paper, we have shown that primal-dual IPMs for LO [] and P∗(κ)-LCP []
based on the finite barrier can be extended to the context of the Cartesian P∗(κ)-SCLCP.
The iteration bounds for large- and small-update methods are obtained, namely O(( +
κ)

√
r log r log r

ε
) and O(( + κ)

√
r log r

ε
), respectively. In both cases, we were able to

match the best known iteration bounds for these types of methods. Moreover, this
unifies the analysis for the P∗(κ)-LCP, the Cartesian P∗(κ)-SOCLCP, and the Cartesian
P∗(κ)-SDLCP.
Some interesting topics for further research remain. One possible topic is to investigate

whether it is possible to replace NT-scaling scheme by some other scaling schemes and
still obtain polynomial-time iteration bounds. Another worthwhile direction for further
research may be the development of infeasible kernel-based IPMs for SCLCP.
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Endnote
a It may be worth mentioning that if we use the kernel function of the classical logarithmic barrier function, i.e.,

ψ (t) = 1
2 (t

2 – 1) – log t, then ψ ′(t) = t – t–1 , whence –ψ ′(v) = v–1 – v, and hence system (52) then coincides with the
classical system (51).
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