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Abstract
In this paper we show that the subgraph F3 is disconnected and that for all integers
m, we find all integers a and b such that (9m2 – 4)a2 + 4 and 5b2 ± 4 are square. It
turns out that the set of numbers b comprises the Fibonacci numbers.

Keywords: modular group; suborbital graph; disconnectedness; Fibonacci numbers

1 Introduction
Let Q̂ = Q ∪ {∞} be the extended rationals, let Γ be the modular group acting on Q̂ as
with the upper half-planeH = {z ∈C : Im z > }:

g =

(
a b
c d

)
: z =

x
y

→ az + b
cz + d

=
ax + by
cx + dy

,

where a, b, c, and d are rational integers, and let Γ  denote the group consisting of the
cubes of the elements g of Γ , which is the group {g ∈ Γ : ab + cd ≡ (mod)}; see [].
Jones et al. [] used the notion of the imprimitive action [–] for a Γ -invariant equiva-

lence relation induced on Q̂ by the congruence subgroup Γ(n) = {g ∈ Γ : c≡ (modn)} to
obtain some suborbital graphs and examined their connectedness and forest properties.
In [], a Γ -invariant equivalence relation is introduced by using the subgroup Γ 

 (n) =
{g ∈ Γ  : c≡ (modn)} to obtain suborbital graphs F

u,n. There, the connectivity properties
of all subgraphs F

u,n other than F
, = F are examined.

In this paper we show that the subgraph F is disconnected and give some results, which
seem important from the point of view of number theory.

2 Preliminaries
Since Γ  = {g : g ∈ Γ }, it is easily seen that the elements of Γ  are ones of the forms( a b

c d

)
,
( a b
c d

)
, and

( a b
c d

)
where a, b, c, and d �≡ (mod) in the third matrix. Furthermore,

Γ ∞ < Γ 
 (n) ≤ Γ  for each positive integer n, where Γ ∞ is the stabilizer of ∞ generated by

the element
(  
 

)
, and second inclusion is strict if n > .

Since the group Γ  is transitive on Q̂ in [], any reduced fraction r
s in Q̂ equals g(∞) for

some g ∈ Γ . Similar to that of [], we get the following Γ -invariant equivalence relation
on Q̂ by Γ 

 (n) as
r
s ∼ x

y if and only if g–h ∈ Γ 
 (n), where g =

( r *
s *

)
and h is similar. Fur-

thermore, the above equivalence relation is imprimitive, which means that it is different
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from the identity relation (a ∼ b if and only if a = b) and the universal relation (a ∼ b for
all a,b ∈ Q̂).
From the above definedΓ -invariant equivalence relation,we can verify that r

s ∼ x
y if and

only if ry–sx ≡ (modn). The equivalence classes are called blocks, and a block containing
the rational x

y is denoted by [ xy ].
Although the equivalence relations are resulting almost the same as in [], the subgraph

F, in [] is easily shown to be connected, but here we will see that the subgraph F
, is

disconnected. So, using different subgroups changes the characters of the subgraphs.

3 Subgraphs F3u,n
The group Γ  acts on Q̂ × Q̂ through g : (α,β) → (g(α), g(β)). The orbits are called sub-
orbital. From the suborbital O(α,β) containing (α,β), we can form the suborbital graph
G(α,β) whose vertices are the elements of Q̂ and the edges are the pairs (a,b) ∈O(α,β),
which we denote by a → b and represent as hyperbolic geodesics inH.
Since Γ  acts transitively on Q̂, every suborbital contains a pair (∞, un ) for some u

n in Q̂,
n ≥ , (u,n) = . In this case, we denote the suborbital graph by G

u,n for short. From now
on, we assume that n > .
As Γ  permutes the blocks transitively, all subgraphs corresponding to the blocks are

isomorphic, as in []. Therefore, we will only consider the subgraph F
u,n ofG

u,n whose ver-
tices form the block [∞] = { xy ∈ Q̂ | y ≡ (modn)}. The following two results were proved
in [].

Theorem  F
u,n = F

u′ ,n′ if and only if n = n′ and u≡ u′(modn).

Theorem  r
s → x

y is an edge in F (= F
,) if and only if

. if r ≡ (mod), then y≡ ±s(mod) and ry – sx = ±, or
. if s≡ (mod), then x ≡ ±r(mod), and ry – sx = ±, or
. if r, s �≡ (mod), then x �≡ ±r(mod), y �≡ ±s(mod) and ry – sx = ±.

We can easily get the following lemmas.

Lemma  r
s → x

y is in F if and only if x
y → r

s is in F.

Lemma  [] No edges of F cross inH.

4 Disconnectedness of F3

Definition  For m ∈ N and m ≥ , let v, v, . . . , vm be a finite sequence of vertices of F.
Then the configuration v → v → ·· · → vm is called a finite path in F. A subgraph ∧
of F is called connected if every two vertices x and y of ∧ are connected by a finite path
in F. Otherwise, we call ∧ disconnected.

Now we give one of our main theorems.

Theorem  The graph F is disconnected.

We prove Theorem  after giving some theorems, propositions and lemmas as follows.
By Theorem , it is easily seen that the graph F is periodic with period . That is, if

a → b is in F, then a + m → b + m is in F for all m ∈ Z, and therefore, for some m,

http://www.journalofinequalitiesandapplications.com/content/2013/1/283
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Figure 1 The subgraph F3.

a+m or b+m (not both) is∞ or both a+m and b+m are in the interval [, ]. Therefore
we can only use the interval [, ] for our calculations as in Figure .
It is clear that T =

(  –
 –

)
is in Γ  and the corresponding transformation T(z) = z–

z– is
strictly increasing on [, ] ∩Q. Furthermore, it is easily seen that Tm(∞) → Tm(  ) is an
edge in F for all non-negative integers m. From this, we get, as an example, a finite path
in F as ∞ → 

 → 
 → 

 .

Lemma  Let T be as above, then the sequence {Tm()} is strictly monotone increasing and
T(  ) → T(  ) → T(  ) → ·· · → Tm(  )→ ·· · is an infinite path in F in increasing order.

Proof The conclusion follows from Theorem  and from the fact that T(z) = z–
z– is strictly

increasing on [, )∩Q. �

Lemma  Let a and b be in N and let  ≤ a
b <

–
√


 , then a
b < T( ab ) <

–
√


 .

Proof From a
b < –

√


 we get a – b < –
√
b. Then squaring gives the inequality –a +

ab < –ab + b. That is, a
b < –a+b

–a+b = T( ab ). On the other hand, a – ab + b > , then
it is easily seen that (a – b) < (a – b). As a

b < , then taking square roots gives√
(a – b) > a – b. This shows that T( ab ) <

–
√


 . �

Proposition  Let T be as above and  ≤ a
b <

–
√


 . Then a
b → T( ab ) is an edge in F if and

only if there exists a natural number u such that u = b +  and a = b–
√
b+
 .

Proof Let a
b → T( ab ) be an edge in F. Then, by using Theorem  and Lemma , we get

a –ab+b –  = . Since a
b <

–
√


 , we have a = b–
√
b+
 . This concludes that

√
b + 

is an integer u.

Conversely, it is clear to see M =
( –b+

√
b+
 b

–b b+
√
b+


)
is in Γ  and that M(  ) =

a
b and

M(  ) = T( ab ). Therefore, by the definition of edges of F, the configuration a
b → T( ab ) is an

edge in F. �

Theorem  The positive rational number x
y is in {Tm(  ) :m ∈ N} = A if and only if there

exists a natural number u such that y +  = u and x = y–
√

y+
 .
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Proof From Proposition , the ‘if ’ part is clear.

Conversely, we show that under the hypothesis, xy is in the setA. SinceT
m(  ) =

y–
√

y+

y

for any m ∈ N, limm→∞ Tm(  ) =
–

√


 . As  ≤ x
y <

–
√


 , if x
y is not in A, there exists k ∈ N

such that Tk(  ) <
x
y < Tk+(  ). From this, we get

Tk
(



)
=

a–
√
a+

a

<
y–

√
y+

y

<  +
a

a – a–
√
a+


=
a–v

a

<
y–u

y

<
a+v


a+v


.

We know that
y–u

y → T(

y–u

y ) = + y

y– y–u


is an edge in F. From Lemma  it must be that

T(
y–u

y ) =

y+u


y+u


<
a+v


a+v


. This gives the inequality vy < au. But, from
a–v

a <

y–u

y , we arrive at

the inequality vy > au, a contradiction. This concludes the proof of the theorem. �

Corollary  
 →  + 

 →  + 
 →  + 


T–→ ·· · T–→  + an

bn
T–→  + bn

bn–an
T–→ ·· · is an infinite

path in F, and all vertices of the path are smaller than –
√


 , and the natural numbers
x and y in the vertex  + x

y are such that x +  and y +  are square. Furthermore,

an =
bn–

√
bn+

 and limn→∞( + an
bn ) =

–
√


 , where T is as above.

Proof Lemma  and Theorem  conclude the proof. �

If we follow the way of the above, we arrive at the following two results without proofs.

Theorem  Let T =
( – 
– 

)
and –

√


 < a
b ≤ . Then –

√


 < T( ab ) <
a
b and a

b → T( ab ) is an
edge in F if and only if b –  is a square and a = b–

√
b–
 .

Corollary   T–→  = + 


T–→ + 


T–→ + 


T–→ ·· · T–→ + an
bn

T–→ + bn
bn–an

T–→ ·· · is an infinite
path in F in decreasing order such that all vertices of the path are greater than –

√


 , and
the natural numbers x and y in the vertex + x

y are such that x
 – and y – are squares.

Furthermore, an =
bn–

√
bn–

 and limn→∞( + an
bn ) =

–
√


 , where T is as above.

Theorem  Let k be a natural number and let the vertices v, v, . . . , vk in [, ] of F be
such that at least one is smaller and one is greater than –

√


 . Then the path ∞ → v →
v → ·· · → vk does not occur in F.

Proof If the above situation occurs, since –
√


 is not a vertex in F, there exists  ≤ m < k
such that vm < –

√


 < vm+ and vm → vm+ is an edge in F.
Since the sequences of the vertices in Corollary  and Corollary  converge to –

√


 ,
Lemma  gives that there exist naturalsm and n such that

Tm
(



)
= vm → vm+ = Tn

(



)
.

Suppose first that n >m. Then, multiplying by T–m and using Theorem , we have 
 →

Tn–m(  ) =
b–

√
b–

b for some b ∈ N. Therefore, from Theorem , we get b = . That is,


 → 

 is an edge in F, a contradiction.
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Figure 2 A path in F3.

Suppose now thatm > n. Then, again multiplying by T–n, we have Tm–n(  ) → 
 . In this

case, Tm–n(  )≥ . But, in any case, Tm–n(  ) <
–

√


 , a contradiction.
Finally, let m = n. Then 

 → 
 must be an edge in F, a contradiction. These complete

the proof. �

Let S = T– =
(  –
 –

)
. Then likewise we do before we give the following five results with-

out a proof.

Lemma  Let ≤ a
b <

+
√


 . Then a
b < S( ab ) <

+
√


 . Furthermore, a
b → S( ab ) is an edge in F

if and only if
√
b –  is a natural number and a = b+

√
b–
 .

Corollary   =  – 


S–→  – 


S–→  – 


S–→ ·· · S–→  –
b–

√
b–

b

S–→ ·· · is an infinite path in
F in increasing order, as seen Figure , and the limit of the sequence of vertices is +

√


 .

Lemma  Let +
√


 < a
b ≤ . Then +

√


 < S( ab ) <
a
b . Furthermore, a

b → S( ab ) is an edge in

F if and only if b +  is a square and a = b+
√
b+
 .

Lemma   – 


S–→  – 


S–→  – 


S–→ ·· · S–→  –
b–

√
b+

b

S–→ ·· · is an infinite path in F in
decreasing order, and the limit of the sequence of vertices is +

√


 .

Theorem  Let k be a natural number and let the vertices v, v, . . . , vk , in [, ], of F be
such that at least one is smaller and one is greater than +

√


 . Then v → v → ·· · → vk →
∞ does not occur in F.

Proof We conclude the proof as in Theorem . �

Proof of Theorem  Theorems  and  conclude that the vertices of F in ( –
√


 , +
√


 ) are
not connected to the vertex ∞. That is, the graph F is disconnected. �

We finally give one of our main results as follows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/283
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Theorem  For all natural numbers m, the natural numbers b that make the number
(m – )b +  square are , , m, m – , m(m – ) – m, . . . ,a,b, mb – a, . . . .

Proof For the proof, we only use, as above, the interval [, ]. It is clear that the matrix
M =

( – m+
– m+

)
is in Γ . Theorem  gives that 

 → M(  ) =
m+
m is an edge in F. Since the

transformation M(x) = –x+m+
–x+m+ is an increasing function on [, ] and 

 < M(  ) =
m+
m ,

we can easily see that, for all k ∈ N, Mk(  ) <Mk+(  ). That is, the sequence {Mk()} is an
increasing sequence. Furthermore,Mk() = [; m, m, m, . . . , m︸ ︷︷ ︸

k times

], or

Mk() =  +


m –


m –


m – · · · – 
m

.

And more, limk→∞ Mk() = m+–
√
m–

 . So, for all k ∈ N, Mk() < m+–
√
m–

 . If a
b <

m+–
√
m–

 we can easily see that T( ab ) <
m+–

√
m–

 , and furthermore, if a
b → T( ab ) =

–a+(m+)b
–a+(m+)b is an edge in F, then, by Theorem , a – (m+)b+ (m+)b –  = . Solving

the equation, we have a = (m+)b–
√

(m–)b+
 , where we get the sign ‘–’ since for all k ∈

N, Mk() < m+–
√
m–

 . Because a is an integer,
√
(m – )b +  must be an integer.

According to Theorem , for all k ∈N,Mk(  ) →Mk+(  ) is an edge in F. Therefore




M–→M
(



)
M–→M

(



)
M–→ ·· · M–→

(
a
b

)
M–→M

(
a
b

)
M–→ ·· ·

is an infinite path γ in F. All denominators of vertices a
b of γ make (m –)b + square.

We can rewrite γ as

 +



→  +

m

→  +
m

m – 
→  +

m – 
m(m – ) – m

→ ·· · →  +
a′

b′

→  +
b′

mb′ – a′ → · · · .

And we conclude that the numbers , , m, m – , m(m – ) – m, . . . ,a,b, mb –
a, . . . make (m – )b +  square.
Let us now show the only non-negative integers b such that (m – )b +  is square.
Conversely, suppose that there is a natural number t such that (m – )t +  is square.

Then a
b

=
(m+)t–

√
(m–)t+

t is smaller than m+–

√
m–

 and, fromTheorem , we get that
a
b

→ T( ab ) is an edge in F. Suppose, for some k ∈N,Mk(  ) <
a
b

<Mk+(  ). Lemma  says
that Tm(  ) <

a
b

< Tm+( ab ) <Mk+(  ). Therefore, for some y,

Mk
(



)
=  +

my–
√

(m–)y+

y

<
a
b

=  +
mt–

√
(m–)t+

t

→ T
(
a
b

)
=  +

t

mt – mt–
√

(m–)t+


<Mk+
(



)

=  +
y

my – my–
√

(m–)y+


.
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From the first inequality, we conclude that t
√
(m – )y +  > y

√
(m – )y + . From

the second inequality, we just have t
√
(m – )y +  < y

√
(m – )y + , a contradic-

tion. Consequently, a
b

must be in the set {Mk(  ) : k ∈ N}. This completes the proof of the
theorem. �

From Corollaries  and , we get the following without a proof.

Corollary  The non-negative integers b such that b + is square are , , , , , , ,
. . . ,a,b, b – a, . . . .

Corollary  The non-negative integers b making b –  square are , , , , , , . . . ,a,
b, b – a, . . . .

From Corollaries  and , we conclude the following important corollary.

Corollary  Let {an} and {bn} be the sequences (, , , . . . ,a,b, b–a, . . .) and (, , , . . . , c,
d, d – c, . . .), respectively. Then the sequence (a,b,a,b, . . . ,an,bn, . . .) is the Fibonacci
sequence.

Proof Let us see that an +bn = an+ and bn+an+ = bn+ for all n inN by induction. Suppose
that the assertion is true up to the natural number k. Let us show that ak+ + bk+ = ak+.
Since ak+ = ak –ak– and bk+ = bk –bk–, ak+ +bk+ = (ak +bk) – (ak– +bk–) = ak+ –
ak = ak+. The other is similar. �
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