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Abstract
Let Ta[Y0] be the set of marked once-holed tori which allows a holomorphic
mapping into a given Riemann surface Y0 with marked handle. We compare it with
the subset T∞[Y0] of marked once-holed tori X such that there is a holomorphic
mapping f : X → Y0 for which the cardinal numbers of f –1(p), p ∈ Y0, are bounded. We
show that while T∞[Y0] is a proper subset of Ta[Y0] apart from a few exceptions, their
critical extremal lengths are identical.
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1 Introduction
Let R be a Riemann surface of positive genus. By amark of handle of Rwemean an ordered
pair χ = {a,b} of simple loops a and b on R whose geometric intersection number a × b
is equal to one. The pair Y = (R,χ ) is called a Riemann surface with marked handle.
Let Y ′ = (R′,χ ′) be another Riemann surface with marked handle, where χ ′ = {a′,b′}. If

f : R → R′ is holomorphic andmaps a and b onto loops freely homotopic to a′ and b′ on R′,
respectively, thenwe say that f is a holomorphicmapping of Y into Y ′ and use the notation
f : Y → Y ′. If, in addition, f : R→ R′ is conformal, that is, if f : R→ R′ is holomorphic and
injective, then f : Y → Y ′ is called conformal.
A noncompact Riemann surface of genus one with exactly one boundary component

is called a once-holed torus. A marked once-holed torus means a once-holed torus with
marked handle. Let T denote the set of marked once-holed tori, where two marked once-
holed tori are identified with each other if there is a conformal mapping of one onto the
other. It is a three-dimensional real analytic manifold with boundary (see [, §]).
For later use, we introduce some notations. Let H stand for the upper half-plane: H =

{z ∈ C | Im z > }. For τ ∈ H, let Gτ denote the additive group generated by  and τ . Then
Tτ :=C/Gτ is a torus, that is, a compact Riemann surface of genus one. The two oriented
segments [, ] and [, τ ] are projected onto simple loops aτ and bτ forming a mark χτ

of handle of Tτ . Set Xτ = (Tτ ,χτ ). For l ∈ [, ), we define T (l)
τ = Tτ \ πτ ([, l]), where πτ :

C → Tτ is the natural projection. Then T (l)
τ is a once-holed torus. We choose a mark χ (l)

τ

of handle of T (l)
τ so that the inclusion mapping of T (l)

τ into Tτ is a conformal mapping of
X(l)

τ := (T (l)
τ ,χ (l)

τ ) into Xτ . The correspondence (τ , l) �→ X(l)
τ defines a bijection of H× [, )
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onto T (see, for example, []). In other words, every marked once-holed torus is realized
as a horizontal slit domain of a torus with marked handle, or a marked torus, uniquely up
to conformal automorphisms of the marked torus.
Let Y be a Riemann surface with marked handle. We are interested in the set Ta[Y]

of marked once-holed tori X for which there is a holomorphic mapping of X into Y. It
possesses an interesting quantitative property. In [] (see also []) we have established that
there is a nonnegative number λa[Y] such that

(i) if Im τ � /λa[Y], then X(l)
τ /∈ Ta[Y] for any l, while

(ii) if Im τ < /λa[Y], then X(l)
τ ∈ Ta[Y] for some l,

where / = +∞. If Y is amarked torus, thenTa[Y] = T and hence λa[Y] = .Otherwise,
λa[Y] >  by [, Theorem  and Proposition ].
In this article we compare Ta[Y] with the set T∞[Y] of marked once-holed tori X such

that there is a holomorphic mapping f : X → Y for which the supremum d(f ) of the car-
dinal numbers of f –(p), p ∈ R, is finite. As is shown in [], it possesses a property similar
to that of Ta[Y]: There is a nonnegative number λ∞[Y] such that

(i) if Im τ � /λ∞[Y], then X(l)
τ /∈ T∞[Y] for any l, while

(ii) if Im τ < /λ∞[Y], then X(l)
τ ∈ T∞[Y] for some l.

Since

T∞[Y] ⊂ Ta[Y],

we have

λ∞[Y]� λa[Y]. ()

We first establish the following theorem.

Theorem  If Y is not a marked torus or a marked once-holed torus, then T∞[Y] is a
proper subset of Ta[Y].

Nevertheless, the sign of equality actually holds in ().

Theorem  For any marked Riemann surface Y, the equality λ∞[Y] = λa[Y] holds.

The proofs of Theorems  and  will be given in the next section.

2 Proofs
Webegin with the proof of Theorem . Let Y = (R,χ), where χ = {a,b}, be a Riemann
surface with marked handle which is not a marked torus or a marked once-holed torus.
We consider the loops a and b as elements of the fundamental group π(R) of R. Let
R̃ be the covering Riemann surface of R corresponding to the subgroup 〈a,b〉 of π(R)
generated by a and b. Since R is not a torus, R̃ is a once-holed torus.We choose amark
χ̃ = {ã, b̃} of handle of R̃ so that the natural projection π : R̃ → R is a holomorphic
mapping of the marked once-holed torus Ỹ := (R̃, χ̃) onto Y. Then Ỹ is an element of
Ta[Y].
Let f be an arbitrary holomorphic mapping of Ỹ into Y. Since it maps ã and b̃ onto

loops freely homotopic to a and b, respectively, it is lifted to a holomorphicmapping f̃ of
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Ỹ into itself satisfying π ◦ f̃ = f . By Huber [, Satz II] (see also Marden-Richards-Rodin
[, Theorem ]), we infer that f̃ is a conformal automorphism of Ỹ. Since R is not a torus
or a once-holed torus, we conclude that d(f ) = d(π) = ∞ and hence Ỹ /∈ T∞[Y]. This
completes the proof of Theorem .
For the proof of Theorem , we make a remark. Let X = (T ,χ ), where χ = {a,b}, be a

marked once-holed torus. Then the extremal length λ(X) of the free homotopy class of a
is called the basic extremal length of X. Note that λ(X(l)

τ ) = / Im τ (see [, Proposition ]).
Now, take an arbitrary τ ∈ H with Im τ < /λa[Y]. Then, for some l ∈ [, ), there is

a holomorphic mapping f of X(l)
τ into Y. Recall that T (l)

τ is the horizontal slit domain
Tτ \ πτ ([, l]) of the torus Tτ . Choose a canonical exhaustion {Sn} of T (l)

τ so that each
Sn is a once-holed torus including the loops in χ (l)

τ . Since the inclusion mapping Sn →
T (l)

τ is a conformal mapping of the marked once-holed torus Wn := (Sn,χ (l)
τ ) into X(l)

τ , the
restriction fn of f to Sn is a holomorphicmapping ofWn into Y. As Sn is relatively compact
in T (l)

n , we know that d(fn) < ∞. Consequently,Wn belongs to T∞[Y].
To estimate the basic extremal length of Wn, take an arbitrary positive number ε less

than Im τ /. Let Hε be the horizontal strip {z ∈ C | ε < Im z < Im τ – ε}. Since {Sn} is in-
creasing with

⋃
n Sn = T (l)

τ , for all sufficiently large n, the subdomain Sn includes the ring
domain πτ (Hε). It follows that

Im τ – ε <


λ(Wn)
� 

λ∞[Y]
,

which implies that

Im τ � 
λ∞[Y]

.

As τ was an arbitrary point of H satisfying Im τ < /λa[Y], we deduce that


λa[Y]

� 
λ∞[Y]

,

or

λ∞[Y]� λa[Y].

Theorem  has been proved.

3 Topological relations between Ta[Y0] and T∞[Y0]
The arguments in the proof of Theorem  easily lead us to the following theorem.

Theorem  The closure of T∞[Y] is identical with Ta[Y].

Proof We begin with recalling a global coordinate system on the space T of marked once-
holed tori. Let X = (T ,χ ) be a marked once-holed torus, where χ = {a,b}. Observe that
χ̇ := {b,a–} is amark of handle ofT . Also, if c is a simple loop homotopic to ab–, then χ̈ :=
{c,a} is anothermark of handle ofT . Set Ẋ = (T , χ̇ ) and Ẍ = (T , χ̈ ). Then the basic extremal
lengths of X, Ẋ and Ẍ define a global coordinate system on T. In fact, we introduce a real
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analytic structure into T so that the mapping � : X �→ (λ(X),λ(Ẋ),λ(Ẍ)) is a real analytic
diffeomorphism of T into R

 (see []).
Now, let X = (T ,χ ) be an arbitrary element of Ta[Y]. Take a canonical exhaustion {Sn}

of T for which each Sn is a once-holed torus including the loops in χ , and setWn = (Sn,χ ).
Since X = X(l)

τ for some τ ∈ H and l ∈ [, ), the proof of Theorem  shows that the ba-
sic extremal length λ(Wn) tends to λ(X) as n → ∞. By changing marks of handles, we
infer that {λ(Ẇn)} and {λ(Ẅn)} converge to λ(Ẋ) and λ(Ẍ), respectively, and hence that
�(Wn) → �(X) as n → ∞. Since each Wn belongs to T∞[Y], the marked once-holed
torus X belongs to the closure T∞[Y] of T∞[Y]. We thus obtain Ta[Y] ⊂ T∞[Y]. Be-
cause Ta[Y] is closed and includes T∞[Y], we conclude that T∞[Y] = Ta[Y]. �

Since T∞[Y] and Ta[Y] are (noncompact) domains with Lipschitz boundary by [],
we see that Theorem  is an improvement of Theorem . Also, we obtain the following
corollary.

Corollary  The interiors of T∞[Y] and Ta[Y] coincide with each other.

If Y is a marked torus, then Ta[Y] is identical with T (see []). Hence so is T∞[Y] by
Corollary .
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