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1 Introduction andmain results
Problems of n-widths in the approximation theory have by now been studied in depth.
A great deal of classical problems have been solved, and interesting new developments
have appeared. For example, the problems of probabilistic, average and stochastic widths,
which can reflect the behavior of function on the whole class and give information about
the measure of the elements in the class that can be approximated to this or that de-
gree, are the problems of this kind. For the results related to the probabilistic, aver-
age and stochastic widths, the reader may be referred to Sul’din [, ], Traub et al. [],
Maiorov [–], Mathé [–], Sun [, ], and Ritter []. The new developments in
this direction can be found in Fang’s papers [–]. Moreover, Carl and Pajor []
proved an inequality with respect to the Gelfand numbers of an operator u from �N

into a Hilbert space, from which one can immediately derive the inequality related to
the Kolmogorov numbers by the known duality. In this article we continue the previous
works and prove the estimates of probabilistic widths of the diagonal operators from R

m

onto �mq .
First, we recall some useful concepts. Let W be a bounded subset of a normed linear

space X with the norm ‖ · ‖X , and FN be an N-dimensional subspace of X. The quantity

e(W ,FN ,X) = sup
x∈W

e(x,FN ,X),

where

e(x,FN ,X) = inf
y∈FN

‖x – y‖X
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is called the deviation ofW from FN . It shows how well the ‘worst’ elements ofW can be
approximated by FN . The number

dN (W ,X) = inf
FN

e(W ,FN ,X) = inf
FN

sup
x∈W

inf
y∈FN

‖x – y‖X ,

where FN runs through all possible linear subspaces of X of dimension at mostN , is called
the Kolmogorov’s N-width ofW in X. Assume thatW contains a Borel field B consisting
of open subsets ofW and equipped with a probabilistic measure μ defined on B. That is,
μ is a σ -additive nonnegative function on B, and μ(W ) = . Let δ ∈ [, ] be an arbitrary
number. The corresponding probabilistic Kolmogorov’s (N , δ)-width of a set W with a
measure μ in the space X is defined by

dN ,δ(W ,μ,X) = inf
Gδ

dN (W\G,X), ()

where Gδ runs through all possible subsets in B with measure μ(Gδ) ≤ δ. The p-average
Kolmogorov’s N-width is defined by

d(a)
N (W ,μ,X)p = inf

FN

(∫
W
e(x,FN ,X)p dμ(x)

)/p

,  < p <∞, ()

where FN in () runs over all linear subspaces of X of dimension at most N . Let �mp be an
m-dimensional normed space of vectors x = (x, . . . ,xm) ∈R

m, with a norm

‖x‖�mp =

⎧⎨
⎩(

∑m
i= |xi|p)/p,  ≤ p < ∞,

max≤i≤m |xi|, p = ∞.

Consider in R
m the standard Gaussian measure v = vm, which is defined as

v(G) = (π )–m/
∫
G
exp

(
–


‖x‖

)
dx,

where G is any Borel subset in R
m. Obviously, v(Rm) = .

Denote by Bm
p (ρ) = {x ∈ �mp : ‖x‖p ≤ ρ} the ball of radius ρ in �mp . Let Bm

p = Bm
p ().

Let N = , , . . . , δ ∈ [, ) be arbitrary and Tm be a linear invertible operator from
R

m onto �mq . We define the probabilistic (N , δ)-width of the operator acting in space Rm

equipped with the Gaussian measure v in �mq -norm:

dN ,δ
(
Tm :Rm → �mq , v

)
= inf

G
inf
LN

e
(
Tm

(
R

m\G)
,LN ,�mq

)
,

where v(G) < δ, dimLN ≤ N .
Maiorov in [] proved the following result.

Theorem A [] For m > N , δ ∈ (, /],  ≤ q ≤ , then

dN ,δ
(
R

m,�mq , v
) �m


q–



√
m + ln(/δ).

In [], Carl and Pajor proved the following result with respect to Gelfand numbers of
an operator with values in a Hilbert space.
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Theorem B [] Let T be an operator from �m into a Hilbert space H . Then

dN (T) ≤ C
(
log(mN + )

N

)/

‖T‖

for  ≤ N ≤ m,m = , , . . . , where C >  is a universal constant.

Detailed facts about the usual widths, such as the Kolmogorov’s N-widths and N th
Gelfand numbers (or Gelfand N-widths) of T were given in the books [–].

Remark 
(a) Theorem A shows the asymptotic expression of the probabilistic widths of the

identity embedding from R
m into �mq ,  ≤ q ≤ .

(b) Theorem B gives the upper estimate of Gelfand numbers of operators from �m into
a Hilbert space, and some of its striking applications in the geometry of Banach
spaces and Rademacher processes can be found in []. By the dual relation, it is
easy to obtain the similar upper estimate of the Kolmogorov’s N-widths dN (T) of
operators from �m into �m∞, i.e.,

dN (T)≤ C
(
log(mN + )

N

)/

‖T‖.

(c) Motivated by Theorems A and B, in general cases, here we investigate the
asymptotic estimate of probabilistic widths for diagonal operators from R

m onto �mq ,
 ≤ q ≤ ∞.

Now we are in a position to formulate our main results.

Theorem  For m >N , δ ∈ (, /], then

dN ,δ
(
Tm :Rm → �m∞, v

) ≤ C‖Tm‖
√(

 + (/N) ln(/δ)
)
ln(em/N).

Theorem  For m > N , δ ∈ (, /], then

dN ,δ
(
Tm :Rm → �m , v

) ≥ C′‖Tm‖√m + ln(/δ).

2 Proof of main results
In order to prove Theorems  and , we also need some auxiliary assertions.

Lemma  Let δ ∈ (,
√
/eπ ], and let Tm be a bounded linear invertible operator from R

m

onto �m∞. Then, for any vector z ∈R
m,

v
(
x :

∣∣(Tmx, z)
∣∣ ≥ ‖Tm‖√ln(/δ)‖z‖

) ≤ δ.

Proof First, assume that Tm is a diagonal operator of Rm, i.e., Tmx = (λixi)mi=, for any
x ∈R

m. Without loss of generality, assume that the sequence of the absolute of eigen-
values λi, i = , . . . ,m, is arranged non-increasingly, i.e., |λ| ≥ |λ| ≥ · · · ≥ |λm| > . It is

http://www.journalofinequalitiesandapplications.com/content/2013/1/277
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known that

‖Tm‖ = max
≤i≤m

|λi| = |λ|.

Since v is invariant with respect to orthogonal transformation of Rm, it suffices to prove
the lemma for the vector z∗ = (‖z‖, , . . . , ). Let ε ∈ (, e–] be arbitrary. We have

v
(
x :

∣∣(Tmx, z∗)∣∣ ≥ ‖Tm‖√ln(/ε)‖z‖
)

= v
(
x :

∣∣λx
∣∣‖z‖ ≥ |λ|

√
ln(/ε)‖z‖

)
= v

(
x : |x| ≥

√
ln(/ε)

)
=

√
π

∫ ∞
√
(/) ln(/ε)

exp
(
–t

)
dt ≤

(
ε
π

)/

. ()

Here we use the inequality

∫ ∞

u
exp

(
–t

)
dt <


u

exp
(
–u

)
, u ≥ √


.

From () we obtain the assertion of the lemma by δ =
√
ε/π .

Next, assume that Tm is a symmetric transformation of Rm, then there is an orthogonal
matrix U of order m such that the matrix UTmUT is a diagonal matrix. Since the Gaus-
sian measure is invariant for orthogonal transformation, the result holds for symmetric
transformation Tm.
Finally, assume that Tm is a general invertible linear transformation from R

m onto R
m,

then there are two matrices U and S such that Tm =US, where U is an orthogonal matrix
and S is a positive definite symmetric matrix. As the same reason above, the result holds
for the transformation Tm.
Thus Lemma  is proved. �

The following inequality will be used (see []). For any integers N andm withm >N ≥
, there exists a subspace H of Rm of dimension dimH ≥ m –N such that for any x ∈H ,

‖x‖ ≤ c
(
ln(em/N)

N

)/

‖x‖, ()

where c is an absolute constant.
Let G ⊂R

m be a set. We introduce in R
m another norm for the operator Tm :Rm → �m∞:

‖x‖G = sup
y∈Rm\G

∣∣(Tmy,x)
∣∣.

Lemma  For any δ ∈ (, /] and an arbitrary operator Tm from R
m onto �m∞, there exists

a subset G =Gδ of Rm with measure v(G)≤ δ such that

sup
z∈Bm ∩H

‖z‖G ≤ c‖Tm‖
(

N

ln
exp(aN)

δ
ln

em
N

)/

,

where a and c are absolute constants.
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Proof Let k = [(N + )/ ln(em/N)] and consider the k–-net

S =
{
(s/k, . . . , sm/k) : s, . . . , sm ∈ Z, |s| + · · · + |sm| ≤ k

}

for the Bm
 in �m∞-norm. Using the inequality

(m
�

) ≤ ( em
�
)�, we estimate the cardinality of S:

cardS ≤
k∑

�=

�

(
m + �

�

)
≤

k∑
�=

�

(
em
�

)�

≤
(
em
k

)k

≤ eaN , ()

where a is some absolute constant.
Consider the polyhedronQ = Bm

 ∩ k–Bm∞. LetQ′ be the set of extremal points ofQ. The
set Q′ consists of vectors with k coordinates equal to ±k– and the remaining coordinates
zero. This implies that Q′ ⊂ S, and hence cardQ′ ≤ exp(aN).
Let ε = δ/ exp(aN). In R

m we consider the set G =
⋃

s∈S Gs, where

Gs =
{
y ∈R

m :
∣∣(Tmy, s)

∣∣ ≥ ‖Tm‖√ln(/ε)‖s‖
}
.

Let z ∈ Bm
 ∩ H be any point, and s ∈ S be a point closest to z in �m∞-norm. Then z = s + t

for some t ∈Q. From Lemma ,

‖z‖G ≤ ‖s‖G + ‖t‖G ≤ ‖Tm‖√ln(/ε)‖s‖ + ‖t‖G. ()

Using the definition of Q, we have ‖t‖ ≤ ‖t‖‖t‖∞ ≤ k–. From this and the definition of
Q′ and G,

‖t‖G ≤ max
t∈Q′ ‖t‖G ≤ max

t∈S∩Q
‖t‖G

≤ ‖Tm‖√ln(/ε) max
t∈S∩Q

‖t‖ ≤ ‖Tm‖
√
k– ln(/ε).

Therefore from (),

‖z‖G ≤ ‖Tm‖√ln(/ε)
(‖z‖ + ‖t‖

)
+ ‖t‖G

≤ ‖Tm‖√ln(/ε)
(‖z‖ + k–/

)
. ()

Since z ∈ H , it follows from the inequalities () and () that

‖z‖G ≤ c‖Tm‖
√
k– ln(/ε) ≤ c‖Tm‖√(/N) ln(/ε) ln(em/N).

Using Lemma  and the inequality (), we can estimate the measure of G:

v(G)≤
∑
s∈S

v(Gs) ≤ ε cardS ≤ ε exp(aN) = δ.

Thus, Lemma  is proved. �
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Proof of Theorem  Using the duality in R
m and Lemma , we have

sup
x∈Rm\G

inf
y∈H⊥

‖Tmx – y‖∞ = sup
x∈Rm\G

sup
z∈H∩Bm

∣∣(Tmx, z)
∣∣

= sup
z∈H∩Bm

‖z‖G ≤ c‖Tm‖√(/N) ln(/ε) ln(em/N)

= c‖Tm‖
√
(/N) ln

(
exp(aN)/δ

)
ln(em/N),

where H⊥ is the orthogonal complement of H and dimH⊥ ≤ N . The proof of Theorem 
is completed. �

Let us proceed to the proof of Theorem . For this, we first prove four lemmas. We
introduce a definition. For arbitrary ε > , the ε-cardinality of a subset K of �m is defined
to be

Nε(K) =min
{
N : z, . . . , zN ∈R

m, e
(
K , {z, . . . , zN }) ≤ ε

}
,

where

e
(
K , {z, . . . , zN }) = sup

x∈K
min

i=,...,N
‖x – zi‖

is the deviation of K from the set {z, . . . , zN } in �m .
Let λ be a Lebesgue measure in R, normalized by the condition λ(B) = , where B = Bm

 .
We consider Kolmogorov’s (N , δ)-width of the ball B with measure λ in the �m -norm:

dN ,δ ≡ dN ,δ
(
Tm : B→ �m ,λ

)
= inf

G
inf
L
e
(
Tm(B\G),L,�m

)
,

where the Tm is as above, the infima are over all possible subsetsG ⊂ B of measure λ(G) ≤
δ and all subspaces L ⊂R

m with dimL ≤ N .

Lemma  Suppose that D ⊂ B is an arbitrary subset with measure λ(D)≤ δ. Then, for any
ε > dN ,δ ,

Nε

(
Tm(B\D)) ≤

(
 +

‖Tm‖
ε – dN ,δ

)m

.

Proof Let h >  be any number, and let H be any subspace of R with dimH ≤ N such that

e
(
Tm(B\D),H ,�m

)
– h≤ dN ,δ . ()

Let ε′ = ε – dN ,δ . We consider the set Q = (Tm(B\D)) ∩ H . Let Qε′ = {z, . . . , zN } be the
maximal subset of Q such that ‖zi – zj‖ ≥ ε′ for all i �= j. Clearly, by maximality Qε′ is a
ε′-net of Q for ‖ · ‖. The balls zi + (ε′/)Bm

 are disjoint and all contained in Q + (ε′/)Bm
 .

Therefore, taking volumes we can obtain

N∑
i=

vol
(
zi +

(
ε′/

)
Bm

) ≤ vol

(
Q +

(
ε′/

)
Bm

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/277
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Hence, we have

N · (ε′/
)
vol

(
Bm

) ≤ vol

(
Q +

(
ε′/

)
Bm

)
. ()

By Q = (Tm(B\D))∩H ⊂ Tm(B)⊂ Tm(Bm
 ) ⊂ ‖Tm‖(Bm

 ) and (), we have

N
(
ε′/

)m
vol

(
Bm

) ≤ (

‖Tm‖ + (
ε′/

))m
vol

(
Bm

)
,

that is,

N ≤
(
 +

‖Tm‖
ε′

)m

. ()

Now, we need to establish e(Tm(B\D), {z, . . . , zN })≤ ε. Since t ∈Q ⊂H , we have from ()

sup
x∈Tm(B\D)

min
t∈Q ‖x – t‖ ≤ sup

x∈Tm(B\D)
min
t∈Q min

h∈H
(‖x – h‖ + ‖h – t‖

)
≤ sup

x∈Tm(B\D)
min
t∈Q ‖x – h‖ + sup

x∈Tm(B\D)
min
t∈Q min

h∈H
‖h – t‖

≤ dN ,δ + h. ()

From the inequality (), the definition of Qε′ and (), it follows that

e
(
Tm(B\D), {z, . . . , zN }) = sup

x∈Tm(B\D)
min

i=,...,N
‖x – zi‖

≤ sup
x∈Tm(B\D)

min
i=,...,N

min
t∈Q

(‖x – t‖ + ‖t – zi‖
)

≤ sup
x∈Tm(B\D)

min
t∈Q

(
‖x – t‖ + min

i=,...,N
‖t – zi‖

)
= sup

x∈Tm(B\D)
min
t∈Q ‖x – t‖ + ε′

≤ dN ,δ + h + ε′

= ε + h.

Consequently, letting h→ , we get that e(Tm(B\D), {z, . . . , zN }) ≤ ε, which together with
() completes the proof of Lemma . �

From the relation (see [])

vol
(
Bm
p
)
=

[
	(/p + )

]m/	(m/p + ),  ≤ p≤ ∞,

the balls Bm
p satisfy the inequalities

(
c′pm

)–m/p < vol
(
Bm
p
)
<

(
c′′pm

)–m/p, ()

where 	 is the Euler 	-function, and c′p, c′′p depend only on p.
To estimate Nε(Tm(B\D)) from below, we now need another auxiliary result.

http://www.journalofinequalitiesandapplications.com/content/2013/1/277
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Lemma  If Tm is a diagonal operator from R
m onto �m , then

∣∣det(Tm)
∣∣ =

∣∣∣∣∣
m∏
i=

λi(Tm)

∣∣∣∣∣ �
(‖Tm‖√

m

)m

,

where λi(Tm), i = , . . . ,m, are non-zero eigenvalues of the operator Tm rearranged as usual
so that |λi(Tm)| is non-increasing and each eigenvalue is repeated according to its multi-
plicity.

Proof It is known that

‖Tm‖ =
( m∑

i=

(
λi(Tm)

))/

.

Accordingly,

√
m

∣∣λm(Tm)
∣∣ ≤ ‖Tm‖ ≤ √

m
∣∣λ(Tm)

∣∣.
Obviously,

∣∣λm(Tm)
∣∣m ≤

∣∣∣∣∣
m∏
i=

λi(Tm)

∣∣∣∣∣ ≤ ∣∣λm(T)
∣∣m,

from which the result of Lemma  follows immediately. �

Lemma  If δ ∈ [, ] and λ(D)≤ δ, then

Nε

(
Tm(B\D)) ≥ 


( – δ)

(
c‖Tm‖/ε)m.

Proof We first establish the inequality

Nε

(
Tm(B\D)) ≥ 


λ(Tm(B\D))
λ(Bm

 (ε))
. ()

Indeed, suppose that () does not hold. Then, for N = Nε(Tm(B\D)) and some set of
points z∗

 , . . . , z∗
N , by

ε ≥ sup
x∈Tm(B\D)

min
i=,...,N

∥∥x – z∗
i
∥∥


≥ 
λ(Tm(B\D))

∫
Tm(B\D)

min
i

∥∥x – z∗
i
∥∥
λ(dx)

≥ 
λ(Tm(B\D))

∫
Tm(B\D)\⋃N

i=(z
∗
i +B

m
 (ε))

min
i

∥∥x – z∗
i
∥∥
λ(dx)

≥ 
λ(Tm(B\D)) (ε)λ

(
Tm(B\D)

∖ N⋃
i=

(
z∗
i + Bm

 (ε)
))

= ε
λ(Tm(B\D)) –N · λ(Bm

 (ε))
λ(Tm(B\D))

http://www.journalofinequalitiesandapplications.com/content/2013/1/277
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= ε
(
 –N · λ(Bm

 (ε))
λ(Tm(B\D))

)

≥ ε · 

=


ε,

we have obtained a contradiction.
In the sequel, we may as well assume that Tm is a diagonal operator from R

m onto �m .
Using the inequality (), () and Lemma , we have

Nε

(
Tm(B\D)) ≥ 


λ(Tm(B\D))
λ(Bm

 (ε))

=



|det(Tm)|λ(B\D)
λ(Bm

 (ε))

≥ 

c
(‖Tm‖√

m

)m

( – δ)
vol(B)

vol(Bm
 (ε))

≥ 


(
c‖Tm‖√

m

)m

( – δ)
(
c

√
m

ε

)m

=


( – δ)

(
c‖Tm‖

ε

)m

.

Next, assume that Tm is a symmetric transformation of Rm, then there is an orthogonal
matrixU of orderm such that thematrixUTmUT is a diagonal matrix. Since the Lebesgue
measure is invariant for orthogonal transformation, the result holds for symmetric trans-
formation Tm.
Finally, in the general case,Tm is a general invertible linear transformation fromR

m onto
�m , then there are two matrices U and S such that Tm = US, where U is an orthogonal
matrix and S is a positive definite symmetric matrix. As the same reason above, the result
holds for the transformation Tm.
Thus, we complete the proof of Lemma . �

Lemma  If δ ∈ [, /], then

dN ,δ
(
Tm : B → �m ,λ

) ≥ c‖Tm‖.

Proof From Lemma  and Lemma , we get

c
(
 +

‖Tm‖
ε – dN ,δ

)m

≥ Nε

(
Tm(B\D)) ≥ 


( – δ)

(
c‖Tm‖

ε

)m

≥ 


(
c‖Tm‖

ε

)m

. ()

Let ε = dN ,δ . Taking the logarithm of the inequality (), we get the inequality

dN ,δ
(
Tm : B → �m ,λ

) ≥ c‖Tm‖

for some constants c and c and N withm ≥ cN . Lemma  is proved. �

Proof of Theorem  According to Lemma , for any δ ∈ [, /] and any subspace L ⊂R
m

with dimL ≤ N , there is a set K ⊂ B with Lebesgue measure λ(K) > δ such that

e
(
Tmx,L,�m

) ≥ c‖Tm‖ ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/277


Zhou and Li Journal of Inequalities and Applications 2013, 2013:277 Page 10 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/277

for any element x ∈ K . On the unit sphere Sm– = {x ∈ R
m : ‖x‖ = }, we consider the

subset K ′ = {x/‖x‖ : x ∈ K}.
Let λSm– be a Lebesgue measure on the sphere Sm–. We prove that

λSm–
(
K ′) > δλSm–

(
Sm–). ()

Indeed, assume that

λSm–
(
K ′) ≤ δλSm–

(
Sm–).

We introduce in R
m a polar system of coordinates (r, s), where r ≥  and s ∈ Sm–, and

consider in B the cone

C =
{
(r, s) :  ≤ r ≤ , s ∈ K ′}.

Then

λ(K) ≤ λ(C) =


vol(B)

∫ 


rm– dr

∫
K ′

λSm– (ds)

≤ δ

vol(B)

∫ 


rm– dr

∫
Sm–

λSm– (ds) = δ.

We have obtained a contradiction.
Consider the set Kt = {(r, s) : r ≥ t, s ∈ K ′}, t ≥ . Using the inequality (), we estimate

the Gaussian measure of Kt :

v(Kt) = (π )–m/
∫
Kt

exp

(
–


‖u‖

)
(du)

= (π )–m/
∫ ∞

t
rm– exp

(
–
r



)
dr

∫
K ′

λSm– (ds)

≥ (π )–m/δ

∫ ∞

t
rm– exp

(
–
r



)
dr

∫
Sm–

λSm– (ds)

= δv
(
x : ‖x‖ ≥ t

)
. ()

A direct computation shows that for t ≥ √
m,

v
(‖x‖ ≥ t

) ≥ exp
(
–t

)
and v

(‖x‖ ≥ √
m

) ≥ c > ,

where c is some absolute constant. It follows from this and () that for t = max{√m,√
ln(/δ)} and for any δ ∈ (, c],

v(Kt ) ≥ δ · v(‖x‖ >max
{√

m,
√
ln(/δ)

})
> δ. ()

For any element y = rs ∈ Kt , we have from ()

e
(
Tmy,L,�m

)
= re

(
Tms,L,�m

) ≥ cr‖Tm‖ ≥ c‖Tm‖max
{√

m,
√
ln(/δ)

}
≥ c


‖Tm‖√m + ln(/δ). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/277


Zhou and Li Journal of Inequalities and Applications 2013, 2013:277 Page 11 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/277

Since L is an arbitrary subspace with dimL ≤ N , it follows from () and () that

dN ,δ
(
Tm :Rm → �m , v

) ≥ c


‖Tm‖√m + ln(/δ).

Theorem  is a direct consequence of this. �
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