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1 Introduction
Let E be a real Banach space with the norm ‖ · ‖ and the dual space E∗. The value of
x∗ ∈ E∗ at y ∈ E is denoted by 〈y,x∗〉 and the normalized duality mapping J from E into
E∗ is defined by

J (x) =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖∥∥x∗∥∥,‖x‖ = ∥∥x∗∥∥}

, ∀x ∈ E.

Recall that a (possibly multivalued) operator A : D(A) ⊂ E → E with the domain D(A)
and the range R(A) in E is accretive if, for each xi ∈D(A) and yi ∈ Axi (i = , ), there exists
a j ∈ J (x – x) such that 〈y – y, j〉 ≥ . (Here J is the normalized duality mapping.) In
a Hilbert space, an accretive operator is also called a monotone operator. The set of zeros
of A is denoted by A–, that is,

A– :=
{
z ∈ D(A) :  ∈ Az

}
.

If A– �= ∅, then the inclusion  ∈ Ax is solvable.
Iterative methods have extensively been studied over the last forty years for construc-

tions of zeros of accretive operators (see, e.g., [–]). In particular, in order to find a zero
of a monotone operator, Rockafellar [] introduced a powerful and successful algorithm
in a Hilbert spaceH , which is recognized as the Rockafellar proximal point algorithm: For
any initial point x ∈H , a sequence {xn} is generated by

xn+ = Jrn (xn + en), ∀n≥ ,
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where Jr = (I + rA)– for all r >  is the resolvent of A and {en} is an error sequence in H .
Bruck [] proposed the following in a Hilbert space H : For any fixed point u ∈H ,

xn+ = Jrn (u), ∀n≥ .

In , Güler [] gave an example showing that Rockafellar’s proximal algorithm does
not converge strongly. Solodov and Svaitor [] in  proposed a modified proximal
point algorithmwhich converges strongly to a solution of the equation  ∈ Ax by using the
projection method. In , Kamimura and Takahashi [–] introduced the following
iterative algorithms of Halpern type [] andMann type [] in Hilbert spaces and Banach
spaces: For any initial point x,

xn+ = αnx + ( – αn)Jrnxn, xn+ = αnx + ( – αn)Jrnxn + en, ∀n≥ 

and

xn+ = αnxn + ( – αn)Jrnxn, xn+ = αnxn + ( – αn)Jrnxn + en, ∀n≥ ,

where {αn} ⊂ (, ), {rn} ⊂ (,∞), and {en} is an error sequence, and obtained strong and
weak convergence of sequences generated by these algorithms.
Xu [] in  and Song and Yang [] in  obtained the strong convergence of the

regularizationmethod for Rockafellar’s proximal point algorithm in aHilbert spaceH : For
any initial point x ∈H

xn+ = Jrn
(
αnu + ( – αn)xn + en

)
, ∀n≥ ,

where {αn} ⊂ (, ), {en} ⊂ H and {rn} ⊂ (,∞).
In , as in [], Zhang and Song [] considered the following Rockafellar-type it-

erative algorithm (.) and Halpern-type iterative algorithm (.) for finding a zero of an
accretive operator A in a uniformly convex Banach space E with a weakly continuous du-
ality mapping Jϕ with gauge function ϕ or with a uniformly Gâteaux differentiable norm:
For any initial point x ∈ E and fixed point u ∈ E,

xn+ = βnxn + ( – βn)Jrn
(
αnu + ( – αn)xn

)
, ∀n≥  (.)

and

xn+ = αnu + βnxn + ( – αn – βn)Jrnxn, ∀n≥ , (.)

where the sequences {αn}, {βn} ⊂ (, ) and {rn} ⊂ (,∞) satisfy the conditions:
(i) limn→∞ αn = ; (ii)

∑∞
n= αn = ∞; (iii) lim supn→∞ βn < ; and (iv) lim infn→∞ rn > .

In particular, in order to obtain strong convergence of the sequence generated by (.) to
a zero of an accretive operator A, they utilized the well-known inequality in uniformly
convex Banach spaces (see Xu []). The results of Zhang and Song [] in a Banach
space with a uniformly Gâteaux differentiable norm and the corresponding results of
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Song [] are mutually complementary since Zhang and Song [] assumed uniform con-
vexity on the space instead of reflexivity on the space in Song [] and relaxed the con-
ditions  < lim infn→∞ βn ≤ lim supn→∞ βn <  and lim infn→∞ rn > , limn→∞ rn

rn+
=  on

sequences {βn} and {rn} in Song []. Yu [] filled the gaps in the result of Zhang and
Song [] for the Halpern-type iterative algorithm (.) by utilizing the result on the se-
quence of real numbers in [], which is of fundamental importance for the techniques
of analysis. Also, Zhang and Song [] studied the Rockafellar-type iterative algorithm
(.) in a uniformly convex Banach space with a weakly continuous normalized duality
mapping J or with a uniformly Gâteaux differentiable norm.
In this paper, motivated by the above mentioned results, we consider viscosity iterative

methods for the Rockafellar-type iterative algorithm (.) and Halpern-type iterative algo-
rithm (.). By using a new method different from ones in [, ] which recover the gaps
in [] as in [], we establish results on strong convergence of the sequences generated
by the proposed iterative methods to a zero of an accretive operator A, which solves a cer-
tain variational inequality in a uniformly convex Banach space having a weakly continuous
duality mapping Jϕ with gauge function ϕ or having a uniformly Gâteaux differentiable
norm. Our results improve, develop and complement the corresponding results of Song
[], Zhang and Song [], Yu [] and Song et al. [] as well as many existing ones.

2 Preliminaries and lemmas
Let E be a real Banach space with the norm ‖ · ‖ and let E∗ be its dual. When {xn} is a
sequence in E, then xn → x (resp., xn ⇀ x, xn

∗
⇀ x) will denote strong (resp., weak, weak∗)

convergence of the sequence {xn} to x.
Recall that a mapping f : E → E is said to be contractive mapping on E if there exists a

constant k ∈ (, ) such that ‖f (x) – f (y)‖ ≤ k‖x – y‖, ∀x, y ∈ E. An accretive operator A is
said to satisfy the range condition ifD(A) ⊂ R(I + rA) for all r > , where I is an identity op-
erator of E andD(A) denotes the closure of the domainD(A) ofA. An accretive operatorA
is calledm-accretive if R(I + rA) = E for each r > . IfA is an accretive operator which satis-
fies the range condition, then we can define, for each r > , amapping Jr : R(I + rA) →D(A)
defined by Jr = (I + rA)–, which is called the resolvent of A. We know that Jr is nonexpan-
sive (i.e., ‖Jrx – Jry‖ ≤ ‖x – y‖, ∀x, y ∈ R(I + rA)) and A– = F(Jr) = {x ∈ D(Jr) : Jrx = x} for
all r > . Moreover, for r > , t >  and x ∈ E,

Jrx = Jt
(
t
r
x +

(
 –

t
r

)
Jrx

)
, (.)

which is referred to as the resolvent identity (see [, ] where more details on accretive
operators can be found).
The norm of E is said to be Gâteaux differentiable if

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y in its unit sphere S = {x ∈ E : ‖x‖ = }. Such an E is called a smooth
Banach space. The norm is said to be uniformly Gâteaux differentiable if for y ∈ S, the
limit is attained uniformly for x ∈ S.
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A Banach space E is said to be uniformly convex if for all ε ∈ [, ], there exists δε > 
such that

‖x‖ = ‖y‖ =  implies
‖x + y‖


<  – δε whenever ‖x – y‖ ≥ ε.

Let l >  andM >  be two fixed real numbers. Then a Banach space is uniformly convex if
and only if there exists a continuous strictly increasing convex function g : [,∞)→ [,∞)
with g() =  such that

∥∥λx + ( – λ)y
∥∥l ≤ λ‖x‖l + ( – λ)‖y‖l –ωl(λ)g

(‖x – y‖) (.)

for all x, y ∈ BM() = {x ∈ E : ‖x‖ ≤ M}, where ωl(λ) = λl( – λ) + λ( – λ)l . For more detail,
see Xu [].
By a gauge function we mean a continuous strictly increasing function ϕ defined on

R
+ := [,∞) such that ϕ() =  and limr→∞ ϕ(r) = ∞. The mapping Jϕ : E → E∗ defined

by

Jϕ(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖‖f ‖,‖f ‖ = ϕ

(‖x‖)}, ∀x ∈ E

is called the duality mapping with gauge function ϕ. In particular, the duality mapping
with gauge function ϕ(t) = t denoted by J , is referred to as the normalized duality map-
ping. The following property of duality mapping is well known []:

Jϕ(λx) = signλ

(
ϕ(|λ| · ‖x‖)

‖x‖
)
J (x), ∀x ∈ E \ ,λ ∈R, (.)

whereR is the set of all real numbers; in particular,J (–x) = –J (x), ∀x ∈ E. It is well known
that E is smooth if and only if the normalized duality mappingJ is single-valued, and that
in a Hilbert space H , the normalized duality mapping J is the identity.
We say that a Banach space E has a weakly continuous duality mapping if there exists a

gauge function ϕ such that the duality mapping Jϕ is single-valued and continuous from
the weak topology to the weak∗ topology, that is, for any {xn} ∈ E with xn ⇀ x, Jϕ(xn)

∗
⇀

Jϕ(x). For example, every lp space ( < p < ∞) has a weakly continuous duality mapping
with gauge function ϕ(t) = tp– [].
Let LIM be a continuous linear functional on l∞ and (a,a, . . .) ∈ l∞.Wewrite LIMn(an)

instead of LIM((a,a, . . .)). LIM is said to be a Banach limit if LIM satisfies ‖LIM‖ =
LIMn() =  and LIMn(an+) = LIMn(an) for all (a,a, . . .) ∈ l∞. If LIM is a Banach limit,
the following are well known []:

(i) for all n≥ , an ≤ cn implies LIMn(an) ≤ LIMn(cn),
(ii) LIMn(an+N ) = LIMn(an) for any fixed positive integer N ,
(iii) lim infn→∞ an ≤ LIMn(an) ≤ lim supn→∞ an for all (a,a, . . .) ∈ l∞.
We need the following lemmas for the proofs of our main results.

Lemma . [, ] Let E be a real Banach space and ϕ be a continuous strictly increasing
function on R

+ such that ϕ() =  and limr→∞ ϕ(r) = ∞. Define


(t) =
∫ t


ϕ(τ )dτ , ∀t ∈R

+.
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Then the following inequalities hold:


(kt)≤ k
(t),  < k < ,



(‖x + y‖) ≤ 


(‖x‖) + 〈
y, jϕ(x + y)

〉
, ∀x, y ∈ E,

where jϕ(x + y) ∈ Jϕ(x + y). In particular, if E is smooth, then one has

‖x + y‖ ≤ ‖x‖ + 
〈
y,J (x + y)

〉
, ∀x, y ∈ E.

Lemma . [] Let a ∈ R be a real number and let a sequence {an} ∈ l∞ satisfy the
condition LIMn(an) ≤ a for all Banach limit LIM. If lim supn→∞(an+ – an) ≤ , then
lim supn→∞ an ≤ a.

Lemma . [] Let {sn} be a sequence of non-negative real numbers satisfying

sn+ ≤ ( – λn)sn + λnδn, ∀n≥ ,

where {λn} and {δn} satisfy the following conditions:
(i) {λn} ⊂ [, ] and

∑∞
n= λn = ∞;

(ii) lim supn→∞ δn ≤  or
∑∞

n= λnδn < ∞.
Then limn→∞ sn = .

Also, we will use the next lemma which is of fundamental importance for our proof.

Lemma . [] Let {sn} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {sni} of {sn} such that sni < sni+ for all i ≥ . For
every n≥ n, define the sequence of integers {τ (n)} by

τ (n) :=max{k ≤ n : sk < sk+}.

Then {τ (n)}n≥n is a nondecreasing sequence verifying

lim
n→∞ τ (n) = ∞

and, for all n ≥ n, the following two estimates hold:

sτ (n) ≤ sτ (n)+, sn ≤ sτ (n)+.

3 Main results
In this section, we study the convergence of the following two iterative algorithms: For an
initial value x ∈ C,

xn+ = βnxn + ( – βn)Jrn
(
αnf (xn) + ( – αn)xn

)
, ∀n≥  (.)

and

xn+ = αnf (xn) + βnxn + ( – αn – βn)Jrnxn, ∀n≥ . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/255
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Throughout this section, it is assumed that A : D(A) ⊂ E → E is an accretive operator
satisfying the range condition with A– �= ∅; C is a nonempty closed convex subset of E
such that D(A) ⊂ C ⊂ ⋂

r> R(I + rA); f : C → C is a contractive mapping with a constant
k ∈ (, ); and {αn}, {βn} ⊂ (, ) and {rn} ⊂ (,∞) are sequences satisfying the conditions:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞;

(C)  ≤ βn ≤ a <  for some a;
(C) lim infn→∞ rn > .
We need the following result for the existence of solutions of a certain variational in-

equality.

Theorem J [, ] Let E be a reflexive Banach space with a weakly continuous duality
mapping Jϕ with gauge function ϕ. Let C be a nonempty closed convex subset of E, let
T : C → C be a nonexpansive mapping with F(T) �= ∅ and f : C → C be a contractive
mapping with a constant k ∈ (, ). For t ∈ (, ), let {xt} be the unique solution in C to the
equation xt = tf (xt) + (– t)Txt . Then {xt} converges as t → + strongly to a point q in F(T),
which solves the variational inequality

〈
(I – f )(q),Jϕ(q – p)

〉 ≤ , ∀p ∈ F(T).

Using Theorem J, we have the following result.

Theorem . Let E be a reflexive Banach space having a weakly continuous duality
mapping Jϕ with gauge function ϕ. Let {xn} be a sequence generated by (.) and yn =
αnf (xn) + ( – αn)xn for all n ≥ . Let LIM be a Banach limit. If limn→∞ ‖yn – Jrnyn‖ = ,
then

LIMn
(〈
(I – f )(q),Jϕ(q – xn)

〉) ≤ ,

where q := limt→+ xt with xt being defined by xt = tf (xt) + ( – t)Jrxt for each r > .

Proof Let xt be defined by xt = tf (xt) + ( – t)Jrxt for  < t <  and r > . Then, since
A– �= ∅, {xt} is bounded. In fact, for p ∈ A– = F(Jr) for r > , we have

‖xt – p‖ ≤ t
∥∥f (xt) – p

∥∥ + ( – t)‖Jrxt – Jrnp‖
≤ t

∥∥f (xt) – p
∥∥ + ( – t)‖xt – p‖.

This gives that

‖xt – p‖ ≤ ∥∥f (xt) – p
∥∥ ≤ ∥∥f (xt) – f (p)

∥∥ +
∥∥f (p) – P

∥∥
≤ k‖xt – p‖ + ∥∥f (p) – p

∥∥.
Thus

‖xt – p‖ ≤ 
 – k

∥∥f (p) – p
∥∥, t ∈ (, ),

http://www.journalofinequalitiesandapplications.com/content/2013/1/255
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and hence {xt} is bounded. Also, by Theorem J, {xt} converges as t → + strongly to a
point in F(Jr) = A–, which is denoted by q := limt→+ xt .
First we show that {xn} and {yn} are bounded. Since A– �= ∅, we take p ∈ A– = F(Jr)

for all r > . From (.) and the nonexpansivity of Jrn for all n, we have

‖xn+ – p‖
≤ βn‖xn – p‖ + ( – βn)‖Jrnyn – p‖
≤ βn‖xn – p‖ + ( – βn)

∥∥αnf (xn) + ( – αn)xn – p
∥∥

≤ βn‖xn – p‖ + ( – βn)
[
αn

∥∥f (xn) – f (p)
∥∥ + ( – αn)‖xn – p‖ + αn

∥∥f (p) – p
∥∥]

≤ βn‖xn – p‖ + ( – βn)
[
αnk‖xn – p‖ + ( – αn)‖xn – p‖ + αn

∥∥f (p) – p
∥∥]

=
(
 – ( – βn)( – k)αn

)‖xn – p‖ + ( – βn)( – k)αn
‖f (p) – p‖

 – k

≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – k

}

· · ·

≤ max

{
‖x – p‖, ‖f (p) – p‖

 – k

}
.

Hence {xn} is bounded. Also, for p ∈ A–, we get

‖yn – p‖ ≤ αn
∥∥f (xn) – f (p)

∥∥ + ( – αn)‖xn – p‖ + αn
∥∥f (p) – p

∥∥
≤ αnk‖xn – p‖ + ( – αn)‖xn – p‖ + αn

∥∥f (p) – p
∥∥

=
(
 – ( – k)αn

)‖xn – p‖ + ( – k)αn
‖f (p) – p‖

 – k

≤ max

{
‖xn – p‖, ‖f (p) – p‖

 – k

}

and so {yn} is bounded. Moreover, since ‖Jrnyn – p‖ ≤ ‖yn – p‖, it follows that {Jrnyn} is
bounded. Also, {f (xn)} is bounded. As a consequence, with the control condition (C), we
get

‖yn – xn‖ = αn
∥∥f (xn) – xn

∥∥ ≤ αn
(∥∥f (xn)∥∥ + ‖xn‖

) →  (n→ ∞). (.)

Since limn→∞ ‖yn – Jrnyn‖ = , by (.) and (.), we obtain

lim
n→∞‖xn – Jrnyn‖ ≤ lim

n→∞
(‖xn – yn‖ + ‖yn – Jrnyn‖

)
=  (.)

and

lim
n→∞‖xn+ – Jrnyn‖ = lim

n→∞βn‖xn – Jrnyn‖ ≤ lim
n→∞a‖xn – Jrnyn‖ = . (.)

Now, we show that LIMn(〈(I – f )(q),Jϕ(q– xn)〉) ≤ , where q = limt→+ xt with xt being
defined by xt = tf (xt) + ( – t)Jrxt for each r > . Indeed, it follows that

xt – xn+ = ( – t)(Jrxt – xn+) + t
(
f (xt) – xn+

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/255
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Applying Lemma ., we have



(‖xt – xn+‖

) ≤ 

(
( – t)‖Jrxt – xn+‖

)
+ t

〈
f (xt) – xn+,Jϕ(xt – xn+)

〉
. (.)

Along with using the resolvent identity (.), noting

‖Jryn – Jrnyn‖ =
∥∥∥∥Jr

(
r
rn
yn +

(
 –

r
rn

)
Jrnyn

)
– Jryn

∥∥∥∥
≤

∣∣∣∣ – r
rn

∣∣∣∣‖yn – Jrnyn‖

≤
∣∣∣∣ – r

rn

∣∣∣∣(‖yn – xn‖ + ‖xn – Jrnyn‖
)
,

we observe also that

‖Jrxt – xn+‖ ≤ ‖Jrxt – Jrxn‖ + ‖Jrxn – Jryn‖ + ‖Jryn – Jrnyn‖ + ‖Jrnyn – xn+‖
≤ ‖xt – xn‖ + ‖xn – yn‖

+
∣∣∣∣ – r

rn

∣∣∣∣(‖yn – xn‖ + ‖xn – Jrnyn‖
)
+ ‖Jrnyn – xn+‖

= ‖xt – xn‖ + εn,

where εn = ( + | – r
rn |)‖xn – yn‖ + | – r

rn |‖xn – Jrnyn‖ + ‖xn+ – Jrnyn‖ →  as n → ∞ (by
(.), (.) and (.)), and

〈
f (xt) – xn+,Jϕ(xt – xn+)

〉
=

〈
f (xt) – xt ,Jϕ(xt – xn+)

〉
+ ‖xt – xn+‖ϕ

(‖xt – xn+‖
)
.

Thus it follows from (.) that



(‖xt – xn+‖

) ≤ 

(
( – t)

(‖xt – xn‖
))
+ ( – t)‖εn‖ϕ

(‖xt – xn+‖
)

+ t
(〈
f (xt) – xt ,Jϕ(xt – xn+)

〉
+ ‖xt – xn+‖ϕ

(‖xt – xn+‖
))
. (.)

Applying the Banach limit LIM to (.), we have

LIMn
(



(‖xt – xn+‖
)) ≤ LIMn

(



(
( – t)

(‖xt – xn‖
)))

+ ( – t)LIMn
(‖εn‖ϕ(‖xt – xn+‖

))
+ tLIMn

(〈
f (xt) – xt ,Jϕ(xt – xn+)

〉)
+ tLIMn

(‖xt – xn+‖ϕ
(‖xt – xn+‖

))
. (.)

Hence, noting limn→∞ εn =  and applying the property LIMn(an+) = LIMn(an) of the
Banach limit LIM to (.), we obtain

LIMn
(〈
xt – f (xt),Jϕ(xt – xn)

〉)

≤ 
t
LIMn

(



(
( – t)‖xt – xn‖

)
–


(‖xt – xn‖
))

+ LIMn
(‖xt – xn‖ϕ

(‖xt – xn‖
))

http://www.journalofinequalitiesandapplications.com/content/2013/1/255
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= –

t
LIMn

(∫ ‖xt–xn‖

(–t)‖xt–xn‖
ϕ(τ )dτ

)
+ LIMn

(‖xt – xn‖ϕ
(‖xt – xn‖

))

= LIMn
(‖xt – xn‖

(
ϕ
(‖xt – xn‖

)
– ϕ(θn)

))
(.)

for some τn satisfying ( – t)‖xt – xn‖ ≤ θn ≤ ‖xt – xn‖. Since ϕ is uniformly continuous on
compact intervals on R

+ and

‖xt – xn‖ – θn ≤ t‖xt – xn‖

≤ t
(


 – k

∥∥f (p) – p
∥∥ + ‖x – p‖

)
→  (t → ),

we conclude from (.) and q = limt→+ xt that

LIMn
(〈
(I – f )(q),Jϕ(q – xn)

〉) ≤ lim sup
t→

LIMn
(〈
xt – f (xt),Jϕ(xt – xn)

〉)

≤ lim sup
t→

LIMn
(‖xt – xn‖

(
ϕ
(‖xt – xn‖

)
– ϕ(θn)

))

≤ .

This completes the proof. �

By using Theorem ., we establish the strong convergence of the Rockafellar-type iter-
ative algorithm (.).

Theorem. Let E be a uniformly convex Banach space having a weakly continuous dual-
ity mapping Jϕ with gauge function ϕ. Then the sequence {xn} generated by (.) converges
strongly to q ∈ A–, where q is the unique solution of the variational inequality

〈
(I – f )(q),Jϕ(q – p)

〉 ≤ , ∀p ∈ A–. (.)

Proof First, we note that by Theorem J, there exists a solution q of a variational inequality

〈
(I – f )(q),Jϕ(q – p)

〉 ≤ , ∀p ∈ A–,

where q = limt→+ xt ∈ A– with xt being defined by xt = tf (xt) + ( – t)Jrxt for each r > 
and  < t < . From now, we put yn = αnf (xn) + ( – αn)xn for all n≥ .
We know that ‖xn – p‖ ≤ max{‖x – p‖, 

–k ‖f (p) – p‖} for all n≥  and all p ∈ A– and
{xn}, {yn}, {f (xn)} and {Jrnyn} are bounded by the proof of Theorem ..
First, by using arguments similar to those of [] with u = f (xn) and the inequality (.)

(l = , λ = 
 ), we have

‖xn+ – q‖ ≤ ‖xn – q‖ + αn
∥∥f (xn) – q

∥∥ – ( – βn)


g
(‖yn – Jrnyn‖

)
,

where g : [,∞)→ [,∞) is a continuous strictly increasing convex function in (.). From
the condition (C), it follows that ( – βn) ≥ ( – a) >  for all n≥  and

( – a)


g
(‖yn – Jrnyn‖

)
– αn

∥∥f (xn) – q
∥∥ ≤ ‖xn – q‖ – ‖xn+ – q‖. (.)
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In order to prove that limn→∞ ‖xn–q‖ = , we consider two possible cases as in the proof
of Yu [].
Case . Assume that {‖xn – q‖} is a monotone sequence. In other words, for n large

enough, {‖xn – q‖} is either nondecreasing or nonincreasing. Hence {‖xn – q‖} converges
(since {‖xn – q‖} is bounded). Thus, by (.) we obtain

lim
n→∞ g

(‖yn – Jrnyn‖
)
= .

Thus, from the property of the function g in (.), it follows that

lim
n→∞‖yn – Jrnyn‖ = .

Now, we proceed with the following steps.
Step . We know from (.) that limn→∞ ‖xn+ – xn‖ = .
Step . We show that lim supn→∞〈(I – f )(q),Jϕ(q – xn)〉 ≤ . To this end, put

an :=
〈
(I – f )(q),Jϕ(q – xn)

〉
, n ≥ .

Then Theorem . implies that LIMn(an) ≤  for any Banach limit LIM. Since {xn} is
bounded, there exists a subsequence {xnj} of {xn} such that

lim sup
n→∞

(an+ – an) = lim
j→∞(anj+ – anj )

and xnj ⇀ z ∈ E. This implies that xnj+ ⇀ z since {xn} is weakly asymptotically regular by
Step . From the weak continuity of a duality mapping Jϕ , we have

w- lim
j→∞Jϕ(q – xnj+) = w- lim

j→∞Jϕ(q – xnj ) = Jϕ(q – z)

and so

lim sup
n→∞

(an+ – an) = lim
j→∞

〈
(I – f )(q),Jϕ(q – xnj+) –Jϕ(q – xnj )

〉
= .

Then Lemma . implies that lim supn→∞ an ≤ , that is,

lim sup
n→∞

〈
(I – f )(q),Jϕ(q – xn)

〉 ≤ .

Step . We show that lim supn→∞〈(I – f )(q),Jϕ(q – yn)〉 ≤ . In fact, let {yni} be a subse-
quence of {yn} such that yni ⇀ v ∈ E and

lim sup
n→∞

〈
(I – f )(q),Jϕ(q – yn)

〉
= lim

i→∞
〈
(I – f )(q),J (q – yni )

〉
.

Since limn→∞ ‖xn – yn‖ =  by (.) in the proof of Theorem ., we have also xni ⇀ v.
From the weak continuity of Jϕ , it follows that

w- lim
i→∞Jϕ(q – yni ) = w- lim

i→∞Jϕ(q – xni ) = Jϕ(q – v).
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Hence, by Step , we have

lim sup
n→∞

〈
(I – f )(q),Jϕ(q – yn)

〉

= lim
i→∞

〈
(I – f )(q),Jϕ(q – yni ) –Jϕ(q – xni )

〉
+ lim

i→∞
〈
(I – f )(q),Jϕ(q – xni )

〉

= lim
i→∞

〈
(I – f )(q),Jϕ(q – xni )

〉

≤ lim sup
n→∞

〈
(I – f )(q),Jϕ(q – xn)

〉 ≤ .

Step . We show that limn→∞ ‖xn – q‖ = . Indeed, by using (.), we obtain

‖xn+ – q‖ϕ(‖xn+ – q‖) =
〈
βn(xn – q) + ( – βn)(Jrnyn – q),Jϕ(xn+ – q)

〉
≤ βn‖xn – q‖ϕ(‖xn+ – q‖) + ( – βn)‖yn – q‖ϕ(‖xn+ – q‖)

and so

‖xn+ – q‖ ≤ βn‖xn – q‖ + ( – βn)‖yn – q‖. (.)

Since

yn – q = αn
(
f (xn) – f (q)

)
+ αn

(
f (q) – q

)
+ ( – αn)(xn – q),

by Lemma ., we also get



(‖yn – q‖) ≤ 


(
αn

∥∥f (xn) – f (q)
∥∥ + ( – αn)‖xn – q‖) + αn

〈
f (q) – q,Jϕ(yn – q)

〉
≤ 


(
αnk‖xn – q‖ + ( – αn)‖xn – q‖) + αn

〈
f (q) – q,Jϕ(yn – q)

〉
≤ (

 – ( – k)αn
)



(‖xn – q‖) + αn
〈
f (q) – q,Jϕ(yn – q)

〉
. (.)

As a consequence, since 
 in Lemma . is an increasing convex function with 
() = ,
by (.) and (.), we have



(‖xn+ – q‖) ≤ 


(
βn‖xn – q‖ + ( – βn)‖yn – q‖)

≤ βn

(‖xn – q‖) + ( – βn)


(‖yn – q‖)
≤ βn


(‖xn – q‖) + ( – βn)
(
 – ( – k)αn

)



(‖xn – q‖)
+ ( – βn)αn

〈
f (q) – q,Jϕ(yn – q)

〉
=

(
 – ( – βn)( – k)αn

)



(‖xn – q‖)
+ ( – βn)αn

〈
f (q) – q,Jϕ(yn – q)

〉
. (.)

Put

λn = ( – βn)( – k)αn and δn =


 – k
〈
(I – f )(q),Jϕ(q – yn)

〉
.
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From the conditions (C)-(C) and Step , it follows that λn → ,
∑∞

n= λn = ∞ and
lim supn→∞ δn ≤ . Since (.) reduces to



(‖xn+ – q‖) ≤ ( – λn)


(‖xn – q‖) + λnδn,

from Lemma ., we conclude that limn→∞ 
(‖xn – q‖) =  and limn→∞ ‖xn – q‖ = .
Case . Assume that {‖xn – q‖} is not a monotone sequence. Then, we can define a

sequence of integers {τ (n)} for all n ≥ n (for some n large enough) by

τ (n) :=max
{
k ∈N : k ≤ n,‖xk – q‖ < ‖xk+ – q‖}.

Clearly, {τ (n)} is a nondecreasing sequence such that τ (n) → ∞ as n→ ∞ and

‖xτ (n) – q‖ ≤ ‖xτ (n)+ – q‖

for all n ≥ n. In this case, we derive from (.) that

lim
n→∞ g

(‖yτ (n) – Jrτ (n)yτ (n)‖
)
= .

So, by the property of the function g in (.), we have

‖yτ (n) – Jrτ (n)yτ (n)‖ = .

From (.), (.) and (.), we also have

lim
n→∞‖xτ (n) – yτ (n)‖ = ,

lim
n→∞‖xτ (n) – Jrτ (n)yτ (n)‖ = 

and

lim
n→∞‖xτ (n)+ – Jrτ (n)yτ (n)‖ = .

By using the same argument as inTheorem.with {xτ (n)}, {yτ (n)} and {Jrτ (n)yτ (n)}, we obtain

LIMn
(〈
(I – f )(q),Jϕ(q – xτ (n))

〉) ≤ .

Moreover, by using the same argument as in Step -Step  of Case  with {xτ (n)}, {yτ (n)} and
{Jrτ (n)yτ (n)}, we obtain the following:

Step ′ limn→∞ ‖xτ (n)+ – xτ (n)‖ = ;
Step ′ lim supn→∞〈(I – f )(q),Jϕ(q – xτ (n))〉 ≤ ;
Step ′ lim supn→∞〈(I – f )(q),Jϕ(q – yτ (n))〉 ≤ ;
Step ′ limn→∞ 
(‖xτ (n) – q‖) =  and limn→∞ 
(‖xτ (n)+ – q‖) = . Hence

lim
n→∞‖xτ (n) – q‖ =  and lim

n→∞‖xτ (n)+ – q‖ = .
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From Lemma ., we have

‖xn – q‖ ≤ ‖xτ (n)+ – q‖.

Therefore, limn→∞ ‖xn – q‖ = . This completes the proof. �

By taking βn =  in Theorem ., we obtain the following result, which is an extension
of Corollary . of Zhang and Song [] to the viscosity iteration method.

Corollary . Let E be a uniformly convex Banach space having a weakly continuous du-
ality mapping Jϕ with gauge function ϕ. Let {xn} be a sequence generated by

xn+ = Jrn
(
αnf (xn) + ( – αn)xn

)
, ∀n≥ .

Then {xn} converges strongly to q ∈ A–, where q is the unique solution of the variational
inequality (.).

Theorem . Let E be a uniformly convex Banach space having a uniformly Gâteaux dif-
ferentiable norm. Then the sequence {xn} generated by (.) converges strongly to q ∈ A–,
where q is the unique solution of the variational inequality

〈
(I – f )(q),J (q – p)

〉 ≤ , ∀p ∈ A–. (.)

Proof We also note that by [], there exists a solution q of the variational inequality

〈
(I – f )(q),J (q – p)

〉 ≤ , ∀p ∈ A–,

where q = limt→+ xt ∈ A– with xt being defined by xt = tf (xt) + ( – t)Jrxt for each r > 
and  < t < . From now, we put yn = αnf (xn) + ( – αn)xn for n ≥ .
We also know that {xn}, {yn}, {Jrnxn} and {f (xn)} are bounded by the proof of Theorem..
As in the proof of Theorem ., we divide the proof into several steps. We only include

the differences.
Step . By considering two cases as in the proof of Theorem ., we have that

limn→∞ ‖yn – Jrnyn‖ =  and limn→∞ ‖yτ (n) – Jrτ (n)yτ (n)‖ = , where τ (n) is as in Case 
in the proof of Theorem ..
Step . () In the case when limn→∞ ‖yn – Jrnyn‖ = , we show that

lim sup
n→∞

〈
(I – f )(q),J (q – yn)

〉 ≤ .

To prove this, let a subsequence {ynj} of {yn} be such that

lim sup
n→∞

〈
(I – f )(q),J (q – yn)

〉
= lim

j→∞
〈
(I – f )(q),J (q – ynj )

〉

and ynj ⇀ z for some z ∈ E. Since

xt – yn = ( – t)(Jrxt – yn) + t
(
f (xt) – yn

)
,
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by Lemma ., we have

‖xt – yn‖ ≤ ( – t)‖Jrxt – yn‖ + t
〈
f (xt) – yn,J (xt – yn)

〉
.

Along with using the resolvent identity (.), noting

‖Jryn – Jrnyn‖ =
∥∥∥∥Jr

(
r
rn
yn +

(
 –

r
rn

)
Jrnyn

)
– Jryn

∥∥∥∥
≤

∣∣∣∣ – r
rn

∣∣∣∣‖yn – Jrnyn‖,

we observe also that

‖Jrxt – yn‖ ≤ ‖Jrxt – Jryn‖ + ‖Jryn – Jrnyn‖ + ‖Jrnyn – yn‖

≤ ‖xt – yn‖ +
(
 +

∣∣∣∣ – r
rn

∣∣∣∣
)

‖yn – Jrnyn‖

= ‖xt – yn‖ + εn,

where εn = (+ |– r
rn |)(‖yn– Jrnyn‖) →  as n→ ∞ (by Step  and condition (C)). Putting

aj(t) = ( – t)εnj
(
‖xt – ynj‖ + εnj

) →  (j → ∞)

and using Lemma ., we obtain

‖xt – ynj‖ ≤ ( – t)‖Jrxt – ynj‖ + t
〈
f (xt) – ynj ,J (xt – ynj )

〉
≤ ( – t)

(‖Jrxt – Jrynj‖ + ‖Jrynj – ynj‖
)

+ t
〈
f (xt) – xt ,J (xt – ynj )

〉
+ t‖xt – ynj‖

≤ ( – t)‖xt – ynj‖ + aj(t)

+ t
〈
f (xt) – xt ,J (xt – ynj )

〉
+ t‖xt – ynj‖.

The last inequality implies

〈
xt – f (xt),J (xt – ynj )

〉 ≤ t

‖xt – ynj‖ +


t
aj(t).

It follows that

lim
j→∞

〈
xt – f (xt),J (xt – ynj )

〉 ≤ t

M, (.)

where M >  is a constant such that M ≥ ‖xt – yn‖ for all n ≥  and t ∈ (, ). Taking
the lim sup as t →  in (.) and noticing the fact that the two limits are interchangeable
due to the fact that J is uniformly continuous on bounded subsets of E from the strong
topology of E to the weak∗ topology of E∗, we have

lim sup
n→∞

〈
(I – f )(q),J (q – yn)

〉
= lim

j→∞
〈
(I – f )(q),J (q – ynj )

〉 ≤ .
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() In the case when limn→∞ ‖yτ (n) – Jrτ (n)yτ (n)‖ = , by using the same argument with
{yτ (n)} and {Jrτ (n)yτ (n)}, we also have lim supn→∞〈(I – f )(q),J (q – yτ (n))〉 ≤ .
Step . () In the case when limn→∞ ‖yn – Jrnyn‖ = , we conclude limn→∞ ‖xn – q‖ = .

Indeed, by using (.) and applying Lemma ., we obtain

‖xn+ – q‖

=
〈
βn(xn – q) + ( – βn)(Jrnyn – q),J (xn+ – q)

〉
≤ βn‖xn – q‖‖xn+ – q‖ + ( – βn)‖yn – q‖‖xn+ – q‖

≤ βn
‖xn – q‖ + ‖xn+ – q‖


+ ( – βn)

‖yn – q‖ + ‖xn+ – q‖


and

‖yn – q‖

=
〈
αnf (xn) + ( – αn)xn – p,J (yn – q)

〉
=

〈
αn

(
f (xn) – f (q)

)
+ ( – αn)(xn – q) + αn

(
f (q) – q

)
,J (yn – q)

〉
≤ (

αnk‖xn – q‖ + ( – αn)‖xn – q‖)‖yn – q‖ + αn
〈
f (q) – q,J (yn – q)

〉

=
(
 – ( – k)αn

)‖xn – q‖ + ‖yn – q‖


+ αn
〈
f (q) – q,J (yn – q)

〉
.

Thus

‖xn+ – q‖ ≤ βn‖xn – q‖ + ( – βn)‖yn – q‖ (.)

and

‖yn – q‖ ≤
(
 –

( – k)αn

 + ( – k)αn

)
‖xn – q‖

+
αn

 + ( – k)αn

〈
f (q) – q,J (yn – q)

〉
. (.)

Combining (.) and (.) yields

‖xn+ – q‖ ≤ βn‖xn – q‖ + ( – βn)
(
 –

( – k)αn

 + ( – k)αn

)
‖xn – q‖

+
( – βn)αn

 + ( – k)αn

〈
f (q) – q,J (yn – q)

〉

=
(
 – ( – βn)

( – k)αn

 + ( – k)αn

)
‖xn – q‖

+ ( – βn)
( – k)αn

( + ( – k)αn)( – k)
〈
f (q) – q,J (yn – q)

〉
. (.)

Put

λn = ( – βn)
( – k)αn

 + ( – k)αn
and δn =


 – k

〈
(I – f )(q),J (q – yn)

〉
.
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From the conditions (C)-(C) and () of Step , it follows that λn → ,
∑∞

n= λn = ∞ and
lim supn→∞ δn ≤ . Since (.) reduces to

‖xn+ – q‖ ≤ ( – λn)‖xn – q‖ + λnδn,

from Lemma ., we conclude that limn→∞ ‖xn – q‖ = .
() In the case when limn→∞ ‖yτ (n) – Jrτ (n)yτ (n)‖ = , by using the same argument with

{xτ (n)}, {yτ (n)} and {Jrτ (n)yτ (n)} and () of Step , we can obtain

lim
n→∞‖xτ (n) – q‖ =  and lim

n→∞‖xτ (n)+ – q‖ = .

From Lemma ., we have

‖xn – q‖ ≤ ‖xτ (n)+ – q‖.

Therefore, limn→∞ ‖xn – q‖ = . This completes the proof. �

By taking βn = , we also have the following.

Corollary . Let E be a uniformly convex Banach space having a uniformly Gâteaux
differentiable norm. Let {xn} be a sequence generated by

xn+ = Jrn
(
αnf (xn) + ( – αn)xn

)
, ∀n≥ .

Then {xn} converges strongly to q ∈ A–, where q is the unique solution of the variational
inequality (.).

Corollary . Let H be a Hilbert space. Assume that A : D(A) ⊂ H → H is a monotone
operator satisfying the range condition with A– �= ∅ and that C is a nonempty closed
convex subset of H such that D(A) ⊂ C ⊂ ⋂

r> R(I + rA). Let {xn} be a sequence generated
by (.). Then {xn} converges strongly to q ∈ A–, where q is the unique solution of the
variational inequality

〈
(I – f )(q),q – p

〉 ≤ , ∀p ∈ A–. (.)

By taking βn =  in Corollary ., we also have the following.

Corollary . Let H be a Hilbert space. Assume that A : D(A) ⊂ H → H is a maximal
monotone operator with A– �= ∅. Let {xn} be a sequence generated by

xn+ = Jrn
(
αnf (xn) + ( – αn)xn

)
, ∀n≥ .

Then {xn} converges strongly to q ∈ A–, where q is the unique solution of the variational
inequality (.).

Proof Since A is maximal monotone, A is monotone and satisfies the range condition
D(A) ⊂H = R(I+rA) for all r > . PuttingC =H in Corollary ., we can obtain the desired
result. �
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By using arguments similar to those in the proofs of Theorems ., . and . and [],
we can obtain the following theorems for the Halpern-type iterative algorithm (.).

Theorem . Let E be a reflexive Banach space having a weakly continuous duality map-
ping Jϕ with gauge function ϕ. Let {xn} be a sequence generated by (.) and LIM be a
Banach limit. If limn→∞ ‖xn – Jrnxn‖ = , then

LIMn
(〈
(I – f )(q),Jϕ(q – xn)

〉) ≤ ,

where q := limt→+ xt with xt being defined by xt = tf (xt) + ( – t)Jrxt for each r > .

Theorem. Let E be a uniformly convex Banach space having a weakly continuous dual-
ity mapping Jϕ with gauge function ϕ. Then the sequence {xn} generated by (.) converges
strongly to q ∈ A–, where q is the unique solution of the variational inequality (.).

Theorem . Let E be a uniformly convex Banach space having a uniformly Gâteaux
differentiable norm. Then the sequence {xn} generated by (.) converges strongly to q ∈
A–, where q is the unique solution of the variational inequality (.).

Corollary . Let H be a Hilbert space. Assume that A : D(A) ⊂ H → H is a maximal
monotone operator with A– �= ∅. Let {xn} be a sequence generated by (.). Then {xn}
converges strongly to q ∈ A–, where q is the unique solution of the variational inequality
(.).

Remark .
() Theorem . improves and develops Theorem . of Zhang and Song [] in the

following aspects.
(a) The following gaps, which authors in [] overlooked, are corrected: there exist

two subsequences {zni} and {znj} of {zn} satisfying



( – βni )g

(‖zni – Jrnzni‖
) ≤ αni‖u – p‖, ∀i≥ 

and



( – βnj )g

(‖znj – Jrnj znj‖
)
> αnj‖u – p‖, ∀j ≥ ,

where xn+ = βnxn + ( – βn)Jrnzn, zn = αnu + ( – αn)xn and p ∈ A–.
(b) The case of an iterative scheme zn = αnu + ( – αn)xn in [, Theorem .] is

extended to the case of a viscosity iterative scheme yn = αnf (xn) + ( – αn)xn,
where f : C → C is a contractive mapping with a constant k ∈ (, ).

(c) We utilize the weakly continuous duality mapping Jϕ with gauge function ϕ

instead of the weakly continuous normalized duality mapping J in
[, Theorem .].

() Theorem . extends Theorem . of Zhang and Song [] to the viscosity iterative
method together with our proof, which corrects the gap in the proof of [].
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() Theorem . and Theorem . improve Theorem . and Theorem . of Yu [],
which were given without proofs, to the case of the viscosity iterative method
together with our proofs. Theorem . also develops and complements
Theorem . of Song []. In particular, the limit point q ∈ A– of the sequence
{xn} in Theorem . is the unique solution of the variational inequality (.) in
comparison with [, Theorem .].

() Theorem . and Theorem . extend Theorems . and . of Zhang and Song []
and Theorem . and Theorem . of Yu [] to the viscosity iterative method.

() Corollaries . and . improve the corresponding results of Zhang and Song []
and Song et al. []. Corollary . also develops the corresponding results of Xu []
and Song and Yang [].

() As in [, , ], we can replace the contractive mapping f in our algorithms by the
weakly contractive mapping g (recall that a mapping g : C → C is said to be weakly
contractive [] if ‖g(x) – g(y)‖ ≤ ‖x – y‖ –ψ(‖x – y‖), ∀x, y ∈ C, where
ψ : [, +∞)→ [, +∞) is a continuous and strictly increasing function such that ψ

is positive on (,∞) and ψ() = ).
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