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Abstract

In this paper, we consider the weighted Bloch-type spaces Bﬁ‘)ﬂ (B,) witha >0and

B > 0inthe unit ball of C". We present some basic properties of the spaces B(‘f,’ﬁ(IB%n),
then we consider the Toeplitz operator Tﬁ’ﬁ;‘” acting between B%PB,,) spaces, where
Juis a positive Borel measure in the unit ball B,. Moreover, we characterize complex
measures u for which the Toeplitz operator Tf{‘ﬂ;w is bounded or compact on

B B,).
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1 Introduction
We start here with some terminology, notations and definitions of various classes of ana-
lytic functions defined on the unit ball of C".

Let B, be the unit ball of the #-dimensional complex Euclidean space C”. The boundary
of B, is denoted by S,, and is called the unit sphere in C”. Occasionally, we will also need
the closed unit ball B,. We denote the class of all holomorphic functions on the unit ball
B, by H(B,). The ball centered at z € C" with radius r is denoted by B(z,r). For o > -1,

let dv,(z) = ¢, (1 - |z|*)* dv, where dv is the normalized Lebesgue volume measure on B,
I'(n+a+l)
n'T(a+1)
measure on S, is denoted by do. Once again, we normalize o so that ¢,(S,) = 1. For any

and ¢, = (where I" denotes the gamma function) so that v,(B,) = 1. The surface

Z=(21,22,...,2n), W = (W1, Wa,...,w,) € C", the inner product is defined by

n
(z,w) = Z ZkWk.
k=1

For every point a € B,,, the Mobius transformation ¢, : B, — B, is defined by

QDa(Z) _ a_Pa(Z)_SaQa(Z)’ ZGBH,
1-(z,a)

where S, = /1 - [a]?, Py(z) = 222 p; = 0 and Q, = I — P,. The map ¢, has the following

lal?

properties that ¢,(0) = a, pa(a) = 0, g, = ¢;! and

(1-1a*) - (z,w))
1-(za)1-(aw)
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where z and w are arbitrary points in B,,. In particular,

(1-la*)1 - [z*)
L e

For f € H(B,), the holomorphic gradient of f at z is defined by
a a ad
@ - (1@ @i 0)

and the radial derivative of f at z is defined by

R (2) = (Vf,2) Z 75— az
/)

Similarly, the Mobius invariant complex gradient of f at z is defined by

Vf(2) = V(f 0 ¢,)(0).

For « > 0, a function f € H(B,) is said to belong to the a-Bloch spaces B*(B,,) if (see [1])

bo(f)(B,) = sup |Vf(2)|(1- |z*)" < co.

zeB,

The little Bloch space B (B,) consists of all f € B*(B,,) such that

Izl\lm \Vf z)| (1 — |z| )
With the norm ||f||g« = |f(0)| + by (f)(B,,), we know that 5%(B,,) becomes a Banach space
and Bj (B,,) is its closed subspace (see [1 ]). For o = 1, the spaces B'(B,) and B} (B,,) become
the Bloch and the little Bloch space, respectively (see, for example, [2—5]). Zhu in [5] says

that the norm ||f|| g, is equivalent to

[f(0)| + sup|,‘ﬁf(z |(1— |z| )

2€By,

For a > -1 and 0 < p < 0o, the weighted Bergman space A%(B,,) consists of holomorphic
functions f € L (B, dv,) such that

1 = fB f@)]” dva () < oo,

that is, A5 (B,,) = L”(B,,, dv,) N H(B,). When the weight & = 0, we simply write A?(B,,) for
Af)’(IB%,,). In the special case when p = 2, A2(B,,) is a Hilbert space. It is well known that for
a > -1, the Bergman kernel of A2(B,) is given by

1

K%(z,w) = —(1 v

z,weB,.
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For o > -1, a complex measure p is such that

/B o)

The general Bergman projection P, is the orthogonal projection of the measure p from
L?(B,,dv,) into A%(B,,) defined by

_ 2\« d
P@ =, [ u“&w(w):c& [ u—&

_ <Z,W>)"+O‘+1 (z, w))n+a+1 :

< Q.

/ (1-|w*)* du(W)’ =

n

The general Bergman projection of the function f is

Pof(z) = cq fw)(1 = [wP)* dv(w) = f(w)dva (w)

B, (1— (z,w))r+esl “ Jg, (L= (z,w))mrest’

Let w: (0,1] — (0, 00) be a right-continuous and nondecreasing function. For a complex
measure i, > -1, 8 > 0,and f € L'(B,, dv,.p), define weighted general Toeplitz operator
as follows:

TPf(@) = Carp (1 [wP)*Bf (w)

T 1ol = wl) Js, (L= (gwyyecst )

= Ca+p f(W) d/lfoﬁﬂ(w)
(1~ WP~ [wl) Ji, L= (z,w))reesPe’

Thus Py (1)(z) = Tg'ﬂ“"(l)(z), where 1 stands for a constant function.

Toeplitz operators have been studied extensively on the Bergman spaces by many au-
thors. For references, see [6] and [7]. Boundedness and compactness of the general
Toeplitz operators T}y on the a-Bloch B*(D) spaces have been investigated in [8] on the
unit disk D for 0 < o < 0o. Also, in [9], the authors extended the general Toeplitz operator
Tj, to B*(B,) with 1 < « < 2. Recently, in [10], the general Toeplitz operators T} on the
analytic Besov B, (ID) spaces with 1 < p < oo have been investigated. Under a prerequisite
condition, the authors characterized a complex measure p on the unit disk for which T/‘j is
bounded or compact on the Besov space B,(ID). For more studies on the Toeplitz operator,
we refer to [11-17].

In this paper, we consider the weighted Bloch-type spaces B%#(B,,) with@ > 0 and 8 > 0
in the unit ball of C”. We prove a certain integral representation theorem that is used to
determine the degree of growth of the functions in the space B%#(B,). It is also proved
that the space Bff)’ﬁ (B,) is a Banach space for each weight « > 0, 8 > 0, and the Banach
dual of the Bergman space AlY(B,,) is Bg’ﬁ (B,,) for each « > 1, B > 0. Further, we extend the
Toeplitz operator Tz’ﬁ;‘” to B%#(B,) in the unit ball of C” and completely characterize the
positive Borel measure p such that Tl‘f’ﬂ “ is bounded or compact in B%#(B,,) spaces with
a+pB>1.

Throughout the paper, we say that the expressions A and B are equivalent, and write A &~
B whenever there exist positive constants C; and C; such that C;A < B < C;A. As usual,
the letter C denotes a positive constant, possibly different on each occurrence. Hereafter,
o stands for a right-continuous and nondecreasing function.
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Theorem 1.1 (see [5, Theorem 1.12]) Suppose b is real and s > —1. Then the integrals

. do(2)
[”(z)‘/sn =@y “<P

and

Jos(z) = fB A-WwPrdvw)

: I1-(z,w) |n+1+s+b ’

have the following asymptotic properties.
(1) Ifb <O, then I(z) and ], 5(z) are both bounded in B,,.
(2) Ifb=0, then

1
Iy(z) ~ I5(z) ~log ——— as|z] - 17"
1- |z

(3) Ifb>0, then
Iy(z) ~ Js(z) ~ (1 - |Z|2)7h as|z| > 178

Lemma 1.1 (see [5, Lemma 3.3]) Suppose y is a real constant and g € L'(B,,,dv). If

g(w) dv(w)

u(@) = (1-|pa@|")” s (1—(z,w))’

€ Bm

then

’%u(z)’§ﬁ|y|(1—|z|2)%/ M, vz e B,.
By |1—(z,w)|"*2

Let B(-,-) be the Bergman metric on B,. Denote the Bergman metric ball at w¥) by
Bw",r)={zeB,: B(w?,z) <r}, where w € B, and r > 0.

Lemma 1.2 (see [5, Theorem 2.23]) For fixed r > 0, there is a sequence {w"} € B,, such
that:
. U;:lB(W(/},I”) =B,;
« there is a positive integer N such that each z € B, is contained in at most N of the sets
Bw%,2r).

The following characterization of Carleson measures can be found in [6], or in [5].
A positive Borel measure p on the unit ball B, is said to be a Carleson measure for the
Bergman space A% (B,,) if

]B @I dva@) = Clf g, ¥ € ALB.

It is well known that a positive Borel measure p is a Carleson measure if and only if there
is a positive constant C such that

(B, 7))
o W(Bwo,)

wlle
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where {w?} is the sequence in Lemma 1.2. If . satisfies that

n(BwW,r)
Jirgo v(BW®, 7))

)

then p is called a vanishing Carleson measure.
For a given reasonable function w : (0,1] — (0, 00), the weighted Bloch space 5,, of sev-
eral complex variables is defined as the set of all analytic functions f on B, satisfying

(1-1z)*|Vf(2)| < Co(1-|z]), zeB,, wherea € (0,00),

for some fixed C = Cr > 0. In the special case where w = 1, B, reduces to the classical Bloch
space B in C". This class of functions extends and generalizes the well known Bloch space.
Now, we define the space B, g,,(B,) in the unit ball B,. For « > 0 and 8 > 0, a function
f € H(B,) is said to belong to the («, B; w)-Bloch space By g,,(B,) if

_ 2\a+p
ba,ﬂ;w(f)(]E ) (1 |Z| )

n) = a,szlngn (1 _ |(Pa(Z)|2)ﬁa)(1 — | |) |Vf(Z)‘ < 0Q.

The little («, B; w)-Bloch space By, ;0,0 (B,) is a subspace of By, g,,(B,,) consisting of all f €
By, g0 (By) such that

i (1- |z )‘“'S
mm
lal—1- zl—>1- (1 - |@a(2)[*)P (1

| Vf(z)| =0

If B =0, w(1 - |z|]) =1, then we get the «-Bloch space B*(B,) and the little «-Bloch space
Bi(B,). If o(1-|z|) =1, =1 and B = 0, then we get the classical Bloch space B(B,) and
Bo(B,,). These classes extend the weighted Bloch spaces defined in [18] to the setting of
several complex variables.

The logarithmic (o, B; w)-Bloch space EB‘Z)”‘L} (B,) is the space of holomorphic functions
f such that

(1 - |zt 2
b (1~ lga(2) 2Pl — 2]) (1“ 1- |z|2>|vf (@) <o

Correspondingly, the little logarithmic («, 8; w)-Bloch space £BZ’£ (B,,) is a subspace of
LB%F(B,,) consisting of all functions f such that

(1-|z*)**? (1

A - 1= e @Rl = [2) )’Vf @)]=0

If (1 - |z]) =1 and B = 0, then we get the logarithmic -Bloch space LB%(B,) and the
little logarithmic a-Bloch space LBg(B,). If o(1 - |z|]) =1, « =1 and 8 = 0, then we get the
logarithmic Bloch space LB(B,) and LBy(B,,) (see [19]).

2 Holomorphic (o, 8; ®)-Bloch space in the unit ball

In this section, we study the general («, 8; w)-Bloch space B%#(B,,) in the unit ball of C" by
giving some characterizations of («, 8; w)-Bloch space, then we present several auxiliary
results, which play important roles in the proofs of our main results.
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Lemma 2.1 Leta, € (0,00) and f € Bg'ﬁ (B,,). Suppose that

/1 w(l - t|z|)|z| dt
o ([1-g2z2)x+p

Then

@ = [FO] + Wl g s,

Proof LetzeB,,0<t<landf e Bg’ﬁ(]B%,,). By the definition of Bg’ﬂ(IB,,) and |z| > %, we
have that

o-s(3)|-

/; 1(Vf(tz) z)dt’

2

< f e %

L1 - |ga(t2) PP o1 - tz))
< ba,ﬁ;w(f)/ (1 _ t2|Z|2)a+‘3 |Z|dt

(1~ [a)Por(l - t]2])
< by g dt.
< bap (ff 1= (ma) P (- 2Py

Since (1-|a]) < |1 - (¢z,a)| and (1 — ¢|z|) < |1 - (tz,a)|, a,z € B,,, we get

}/(z) -f(g)

U (1- Pl - [z)
= b“’ﬂ“"(f)/o a0 t)P (- 2Py A
w(1 - t|z])|z| dt
(1_t2|z|2)a+ﬂ

< b, (1) /

from which the result follows. g

Theorem 2.1 Foreach 0 <a,B <00,y >-1andf € H(B,). Then the following conditions
are equivalent:
(i) f € B2 (B);
(i) The function MZ—)I;:?M |Rf ()| is bounded in B,,;
(ili) There exists a function g € L°(B,) such that

flz)=(1- |¢z(w){2)ﬁw(1 - |w|)/ gw)dv, (w) , z€B,.
B, (1

_ <z’w>)n+a+ﬁ+y
Proof By the Cauchy-Schwarz inequality in C”, we have
% (@)] < 121 V/(2)] <|Vf(@)|.

This proves that (i) = (ii).
If (ii) holds, then the function

_ Catpry (1- |z|2)a+f} SJ{f(z)
8= ¢, (1—|gw)2)P(l - wl) (f(z) Thratpe y)

Page 6 of 21
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is bounded in B,,. For z € B,, consider the holomorphic function

[ gwWA - le.wW)P) 0l - [w|)dv, (W)
F(z) = /n 1-(z, w))n+a+/3+y

S L

- B, (1— (z,w))r+a+b+y n+oa+pB+y

) dVa+ﬂ+y (w).

As in the proof of Theorem 7.1 in [5], we have F = f.
This shows that (ii) implies (iii). That (iii) implies (i) follows from differentiating under
the integral sign and then applying Theorem 1.12 in [5]. d

Theorem 2.2 Foreacha >0,8>0,a+B8>0ands=a+ B —-1.Ifs> -1, then the Banach
dual of AL(B,) can be identified with Bg'ﬁ (B,) (with equivalent norms) under the following
integral pairing:

(f,8)s= | f@g@dv(a), feA(B,)geBy B, (2)

By

Proof 1t is easy to see that 1 — (& + B) + s > —1. If g € B*#(B,,), then by Theorem 2.1, there
exists a function # € L*°(B,,) such that

_ 1 h(W) dvl—(a+ﬁ)+s(w)
A=l W)~ Iwl) Jp, Q- (zw))1s

g(z)

, z,wWweDB,,

and [|Alleo < Cligll s ®,)’ where C is a positive constant independent of g. By Fubini’s
theorem,

(f’g>s = 5 f(Z)@(l - |Z|2) dvl—(a+f5)+s(z)
= Cl—(a+B)+s f(Z)WdU(Z)
By
Applying Lemma 2.15 in [5] for all f € A}(B,), we have

fB @] dv(@) < Iflasgs, -

Combining this, we see that
[£.2)5] < Whlloc I llar @,y < Cligl st s, If a1,

Conversely, if F is a bounded linear functional on A}(B,,) and f € AL(B,), then

forO<r<1.

fr(2)

: 1 [ Srw)dvy(w)
A= Te WPVl = W) Js, (1= (2, w) s

It is easy to verify (using the homogeneous expansion of the kernel function) that

1
F= [ e T ] LA
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Define a function g on B, by

gw) =

1
E, )
[(1 — (z,w))"#1+5(1 = |, (W)|2)P (1 — IWI)}

Then
F(f) = A; Fw)gow dvy(w) = (f2)s.

It remains for us to show that g € B%#.
We interchange differentiation and the application of F, which can be justified by using

the homogeneous expansion of the kernel. The result is

— 1
mg(w) = (}’l +1+ S)Fz|:(1 _ <z’w))n+1+s(1 _ |(pz(w)|2)/3(1)(1 - |W|):|

Since F is bounded on A!(B,,), we have

CIF] dv(w)

N .
e = Pl WD) Js, T arw e

An application of Theorem 1.1 for s + 1 = « + 8 then shows that

’iﬁg ‘ C||F||
T 1=z P (1 - e (W) 2P (1 - W)
This shows that g € B%#(B,,) and completes the proof of the theorem. O

Lemma?2.2 I[fn>1,a+p8>; therzf € B>F(B,,) if and only if the function

(e
1= lew@PPoll - 2)

Vf ()]
is bounded in B,,.

Proof Recall from Lemma 2.14 in [5] that

(1-12P)|Vf@)| < [Vf@)], zeB,.
So, the boundedness of
(- |z|2)‘“ﬁ-1
i@t —i /@)
implies that of
1-— 2\a+f
(1-izP) o

1~ low(@) )l - |z|)
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On the other hand, if f € B%#(B,,), then by Theorem 2.1,

gw)dv(w)

5, (1—<Z,W>)n+a+ﬂ, ZEBVU

@) = (1-|pw@|*) (1~ |2])

where g is a function in L*(B,,). Now we let f(z) = h(z)u(z), where h(z) = (1 - |pw(z)|?)? x
(1 - |z|) and

o= [ E

_ <Z, w>)n+a+ﬂ ‘

An application of Lemma 1.1 gives

[Vuz)| < n+a+BIV2(1- |z

i CETUR—
B

1 )
. |1 _ (Z’w)|n+a+ﬁ+7

Since g(z) is bounded, by Theorem 1.1 we have

/ gwydv(w) (1- |z|2)%—(01+/3)'
B

. |1 _ (z,w>|n+a+ﬁ+%

So,
Vu(@)| < c(1-z2)" 7.

It is easy to check that %h(z) =V(hoe,)0)=0.
Using the product rule, we have

Vf(2)| < |Vh@)||u(@)| + |h@)||Vulz)| < |VA)||u)]

and we have

gw)dv(w)

97@| <n+a+pIVE(1-12P) (- |¢a(z)|2)’3/

1
By |l _ (Z, W) |n+a+,3+7

forallz e B,.

Hence,
(1 _ |z|2)ot+,3—1 -
Y: Vf(2)|
1= lpw(@) P ol -|z))
is bounded in B,,. This completes the proof. d

Lemma2.3 Let0 <o+ <2.Let ) be any real number satisfying the following properties:
e 0<A<a+Bif0<a+B<];
e O<A<lifa+B=1
ca+f-1<A<lifl<a+B=<2.

Then, for all z,w € B,, a holomorphic function f € B%?(B,) if and only if

(1= 1z @ = [wh)* P [f(z) - f (W) <o

o L= @ PPo(l—|z)  [z—w] ®

Page 9 of 21
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Proof Let f € B%#(B,,). By a similar proof to the one for Theorem 3.1 in [20], we have

[f(z) —f(w)| = ﬁ|z—w|/0 |Vf(tz - (1-t)w)|dt

for any z, w € B,, with z # w. We know that

- (1—|z?)**?
Wlegra) ™ 20 G purran @k
Thus, there is a constant C > 0 such that
If (z) —f(w)] '(1-|galtz— (1 - D))ol - |tz - (1 - t)w))
= W, | (A-liz— (- W) a
Since (1 -|z|) < |1 - (w,z)| and
1-|tz+A-0w| =1 |z + (1 -w| > 1 |w| + (Iw| - |zl)z,
we get
g (- WP (L - |tz - (1 - t)w]*)?
(1_ |g0w(tz—(1—t)w)| ) - 11— (tz—(1-t)w,w)|?8
_ A= wP)Pa -z - 1 -tw*)
= (1~ [w])?F
_ WP Jez - (- owP)?
- (1—|wl)f
_(-lz-(-nwP)?
- 1 - [w])?
Thus
If (z) —f (W) ! 1
—_— C o, d .
Z-w - 'V”Bwﬂﬂﬂ‘v/o T Iwl+ (wl — 120w & @
If |z| = |a], then
[f (z) - f(w)] ! 1 Clf Nl gt s,
S =Wy [ o S e O

Now suppose |z| # |[w]| as in [21], there is a constant C > 0 such that this integral in (4) is
dominated by

C
(L= [2P) (L= W)

Combining with (5), we get that whenever z # w,

I@-fwl _ W,

z-wl = (= (2P (A= W)
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This proves the necessity. The proof of the sufficiency condition is much akin to the cor-

responding one in [21], so the proof is omitted. d

Proposition 2.1 Suppose f € B4 (B,) and 1 <o + B < 2. Let A be any real number satis-
fying:

e O<A<lifa+B=1

ca+f-1<A<lifl<a+B <2
Then

(1 - [22)228 41 (1 — [w )" |f (2) — f(w)|
e, (L= 1w (@ P)Par(l - [2])[1 — (w, z) 2eP-CiD |z — P, (w) — S,Qu(W)]

S Cllf”BZ’ﬂ(Bn)' (6)

Proof Letz =0 in (3), then we have

a+p— 0)-
(1-w[?)*? AW < Chupo(f)(B,), weB,\{0).

Now, replacing f by f o ¢, we get

(1= pup)r e “"W(O)';'f ol _ o Fop)Br) ue B0}, (7)

Since

’

9(f 0 pw)@)| = |VF (0w (@)

by Lemma 2.2, we obtain that

N (1_ |w|2)a+ﬁ—1 -
sl 0B S W G gt Y )
(1= [w)+F

[Vf (pu(@)]

su
e, (L~ [9u(@)[)Par(l - |2])

sup (1= W) P11 = |pu(2) )P
zweB, (1= low(2)2) P11 - low(2)?)f (1 - |z])

V£ (ow(@)].

Then

(1 - [w])e+#
besialf 0 0B = Wl o) (1, ey Tt = )

_ Whigr,
= (L= 22y

Letting u = ¢ (z) and w #z in (7), we obtain

(@) —fw) - Wt
[pw (@l ~ 21~ [pu(@)2)=FT = (1= [z

Page 11 of 21
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Since
1= oo = SN )
and
z—P,(W) - 5,Q:(W)
P(W) = w2 .
Consequently,

(1= 2?2211 = W) P f(2) - f (W)
o(1 = |Z))(A ~ @z (W)|2)* 1 ~ (w, z) [2@ A=A [z — Py(w) — §,Q (W)

< Clf ot 0

3 Boundedness of general Toeplitz operators
In this section, we study the boundedness of general Toeplitz operators acting on the
weighted Bloch-type spaces B%#(B,) in the unit ball of C".

Theorem 3.1 Let (1 be a positive Borel measure on B,,. Then we have
() ifa+ B =1, then TP is bounded on BLP (B,,) if and only if Py,p 1, (1t) € LB, (B,)
and | is a Carleson measure;
(2) ifa =B =1, then TP is bounded on BLF (B,) if and only if
Pyip-1,0(1) € B,(B,) N ,CBE)(IB%”) and | is a Carleson measure;
(3) ifa>1, B> 1, then TOP is bounded on BLF (B,) if and only if
Poip-1,0() € Bg’ﬁ (B,,) and w is a Carleson measure.

Proof Since the Banach dual of A!(B,,) is BZ"S (B,) under the pairing (2), to prove the
boundedness of Tl‘f’ﬂ;‘“, it suffices to show that

I, T3P @), | < Clf e, gl g s,
forall f € A'(B,) and g € B%#(B,,), where C is a positive constant that does not depend on

forg.
For s =« + § — 1, by Fubini’s theorem, we get

. Ti"g), = / S@ T g(@) dvi(z)
B,
= Ca+ﬁ—1/]; f(z)g(z)(1- |Z|2)O(+,371 du(z).
Using the operator Py, g,,, we have

(f, Tz;ﬁ?‘”gh = Ca+p-1 A (zwio — Pa+ﬂ;w)(f§)(z)(1 - |z|2)a+ﬁ_l du(z)

+ Courp-1 \/]B Pa+ﬂ;w(f§)(z) (1 - |z|2)01+f3*1 d/,L(Z)

=L+
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I

TPt and [ is the identity operator. Also,

where I ., =

(Iz,w;w - Potﬂ‘i;w)(fg)(z)

_ f(2)g(2)

A= lgaw) 2P aoll - w))

_ Carp Fw)gw)(1 - [w|?)o+F p

Al Pl = W) Js, = @wpredd @)
- Carp
T (1= lg W) 2Pl - |w])
(g(2) - gW))f (W)(1 - [w|?)+F
d .
x fm 0= w1~ [y Pl —wp) *

By Proposition 2.1, we have

1] = caip1

/ (Izwa) oz+ﬂ w)(f_)(z)(l_ |Z|2)0H.ﬁ_1 du(z)

2(@) — gW)f (W)L — [w]?)*F (1 — [z]2)2+F1
= Carpllarp /B /B W) (= WP - ) L @)
P /B Fow)(1= [wp?)**

(g(z) — gW))(1 — [z[?)**F ! ‘
du(z)d
* /IB 1= (z,w))rer b1 — |@ (W) [2)P (1 - [w]) wz)dv(w)

< Ca+ﬂ—lcoz+/3/B )| (1 - IwP?)*

(1 - |22+ BI71(1 — [w|2) @+ B4 (2) — f(w)]

8 /B 11— (w,z)|2+A)-2hD) |z — P, (w) - S,Q,(W)|
|z — Pp(W) — S,Q(W)|(1 — |z|?)~(@+F)

11— (z, w) [~ 2421 — | g, (W)|2)P (1 - [w])

(1 [z~ P
< C/ gl 8 g, (W) (1 = IWI?) f 1= (@) g A dviw).

dpu(z) dv(w)

Since p is a Carleson measure, taking A — (o + B8) > —1, then as in [9] or in [22, Proposi-
tion 1.4.10], for fixed r > 0, we get

— 2\ —(+B)
/B (1-1z]*) du(z)

’ |1 _ (Z, w>|n—(a+ﬁ)+zx+1

dv(z) < C.

i 1(B@",r) (1 [z

= B }")) Bz ) |1 ( >|n—(a+ﬂ)+2k+1

Therefore,

111 = Cllf L, gl g,
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Next considering I, we have

L] = carp1

/B P (fD@) (1 - 122" du(z)

dv(w)dp(z)

// (W)g(W)l—IWIZ)“”s(l |z|2)* A1
B, /B, (

= GurpLCurp W) B (1 — (g, (w)[2)Pao(l — [w])

<aus [ (1= |w|2)°“" oW

Ca+p-1 a- |z|2)°‘+/3—1 dﬂ(z)) p
((1—|(pz( )| ) ( —|W|) By |1—<Z,w>|n+a+ﬁ+1 \)(W)

<c /B 1 lLato, (1~ IWI2)**” |gw)] QP (w) dv(w),

where

e Carpt (1 [212)* dyu(z)
Q) ( |w|>/ o

(1 -lg(W)[2)Po(1 - — (z,w)|rrearB

As in [9], by simple calculation, we have

L RP ()W), (®)
n+uo

Qzﬂﬂ’(w) = Pa+ﬂ—l;w(ﬂ)(w) + +p

It is easy to see that
1) ifa+ B =1and Py,y_1 () € LB%P(B,), then

1-wl?) QP "’(w)(ln ) € L®(B,);

2
1—|wp
(2) ifa= B=1 Pot+a—1;w(/¢¢) € Ba)(]Bn) NLB- (,()2(]]33,,), then

(1 IwP) Q2 (w) € L*(B,)

and

(1= w?)* QP (w) <1n : ) € L®(B,);

2
- |w|?
(3) ifa>1, B>1,and Pyry_10(1t) € B— 0*P(B,), then
(1= 1wP) " QP (w) € L*(B,).

This implies that || < C|V||A1(Bn)||g||6a’ﬁ(3 ) Hence, Tl‘j'ﬁ?“’ is a bounded operator on
Bff)'ﬁ(IB%n) witha >0, 8 > 0.

Conversely, suppose that Tl‘j’ﬁ;"’ is a bounded operator on B%#(B,,). Take

(1-|wP)

W fort > 0.

Jw(z) =
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It is clear that ||fy|l41s,) < C. On the other hand, take

(1 _ |w|2)n+2+t—(a+ﬁ)

(1 _ (Z, w>)n+t+1

gw(z) = ; ow(z)=1 and a)(l— |z|) =1 fort>0.

Then, we have ||gy|| 5P E,) S C. Therefore

o\ n+2+26—(a+B) A - |z)*# 1 du(z)
|(f, ng)si = Caﬂ‘}—l(l —|wl ) /n I1- (z’w)|2(n+t+1)

< C TP | W, 6wl e, < C-

Thus,

_ 2\a+p-1
(1_|w|2)n+2+2t—(a+ﬂ)/ 1-1z?) du(z) <C

Blw,r) |1 _ (Z, w>|2(n+t+1) =
for every w € B,,. This implies that

HBw, 7)) _
weB, \)(B(W, 7’)) '

Hence u is a Carleson measure on B,,.
From the proof of the sufficient condition, we find that there exists a constant C such

that
1l = Guug| [ W1 ) g0 Q) )
By,
< Clflar, gl gt g, -
This implies that

g w)| (1= 1wP)* < Cligll s -

If « + B =1, we have

lgw) QP w)| (1= IwP?) < Cligl gos -

Take gy, (z) = In %; ¢w(z) =1and (1 — |z|) = 1. It is clear that ||gy| £B,,®, < C. Taking

1-(z,w
z =w, then

2
o, B0 2
@ wl(1- ) (o ) <
From (8) we have Py, 5_1() € LB,(B,). Let @ = B =1, we have

lgw) QP (w)|(1 - (W) < Cligl o s, -

Take gy (z) = —+— +In 1—(2Tw); ow(z) =1and w(1 - |z|) =1. It is clear that

1-(z,w)

lgwll 5, @ncB2 @, < C-
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Taking z = w, then

lgw) QP (w)| (1 - [wf?)?

( L 2 )yazvﬁ<w>\(1—|w|2)2

+
I— w2 1-|wf?

2
= |Q;’iﬂw(w)|(1 - |w|2) n |Qzﬂw(W)|(1 _ |w|2)2 <ln _)

1-|wl|?

<C.

By (8), then Pa+ﬁ—1;w(,u) € ﬁBi)(Bn) and Py p-10(1) € B,(B,,).
When «, B > 1, taking g,,(z) = (1 — (z,w))'~@*#), we have llgwll gt g, < C.
From Lemma 2.1, we get

|Qﬁ'ﬂ;w(w)|(l - IWIZ)M/3 <C forweB,.

By (8) it is obvious that Py, 5 1., (1) € B¥#(B,,).
This completes the proof of Theorem 3.1. d

4 Compactness of general Toeplitz operators
In this section, we study the compactness of Toeplitz operators on the weighted Bloch-
type spaces B%#(B,,) in the unit ball of C". We need the following lemma.

Lemma 4.1 Let 0 <@ <00, 0 < B < 00 and Tﬁ'ﬁ;” be a bounded linear operator from
B (B,) into B2 (B,). When 0 <a <1,0 < B <1and o + B <1, then TP is compact
if and only if

lim | T5Pf | g s, = O

whenever (f;) is a bounded sequence in B%#(B,) that converges to 0 uniformly on B,.
Proof This lemma can be proved by Montel’s theorem and Lemma 2.1. d

Theorem 4.1 Let u be a positive Borel measure on B,,. We have the following:
(1) ifa+B=1,then Tl‘f’ﬁ;’” is compact on B2F (B,,) if and only if Py, p_1,0(1t) € LBo(By)
and | is a vanishing Carleson measure;
(2) ifa=pB=1,then T}‘j’ﬁ;‘" is compact on B&P(B,,) if and only if
Pyip-1,0(11) € Buyo(B,,) N EBZ;O(BM) and . is a vanishing Carleson measure;
(3) ifa>1,B>1,then Tl‘j'ﬁ;“’ is compact on B%F (B,,) if and only if Py,p-1(11) € Bj);ﬁ(]B%n)

and | is a vanishing Carleson measure.

Proof For a + B > 1, let (g) be a sequence in B%f(B,) satisfying ||g,»||3a,ﬁ(]B = land g
converges to 0 uniformly as j — oo on B,.. Suppose f € A(B,). By duality, we have that
T*F* is compact on B2 (B,,) if and only if

lim  sup |<f, T/‘j’ﬁ;‘”(g,»)>| =0.

=% £l 41 g, <1
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Similarly, as in the proof of Theorem 3.1 for s =« + 8 — 1, we have

(f, T%P0g) = cyup /B F@g@ (1 [2P)*" duw)

a+p-1

= Cat+/3—1/[B [(Iz,w;w - Pat+/3;w)(f§/‘)](z)(1 - |Z|2) d/’L(Z)

+ Curpn / Pusplf)@) (1 - 12P)"" dpu(z)
By

=h+h.

For fixed 0 < ¢ < 1, since w is a vanishing Carleson measure, there exists 0 < n < 1 such that

1-w 2\A—(ac+p)
(1-[z12)" f (Ve
B, 11— (Z, w)|+2+1-(@th)

where 1B, = {z € C",|z| < n} and A — (o + B) > —1. For a positive constant 0 < § < 1, as in

the proof of Theorem 3.1, by Proposition 2.1, we obtain

/1l

dv(w)du(z)

Co+p-1Ca+p

/ (g(z) — g(W)f (W)(L — [w|?)*+B (L — [z[?)+F-
B, JB, (11— (W) (1= gy (z)|)Pw( - |z|)

Co+p-1Ca+p

f Fw) (1= W)™
By

5 / (g/(z) — g(w)(1 — |z[?)**+F1
B, (1= (2, W) (1 — gy (2)2)Pw(l - |z|)

du(z) dv(w)‘

= Co+p-1Ca+p |f(W)|(1 - |"V|2)0H,}3
By \oB

/ lgi(2) — gi(w)I (1 - |z/*)**F!
B

du(z)d
L 11= (z, W) |"*+1(1 — | @y (z)|2)P (1 - |z|) wu(z) dv(w)

*+ Coy+p-1Ca+p /IB lf(w)| (1 - |w|2)“+ﬁ
0By

|g](z) —g](w)|(1 _ |Z|2)a+ﬁ—l
d d
<, T e Ty 04

= L1 + L2.
Since g; — 0 as j — 0o on compact subsets of B, we can choose j big enough so that
[f(w)|(1 - |w|2)°t+/3 <e&.

Therefore,

1(2) — g (W)[(1 - [2?)+F!
d d
fo= gcfmn / = w1 e @ P = ) “H@ W)

= SC”gj”Bzvﬂ(B”)'
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Now, taking § such that 1 - [(1 — 17)"*1“]% <§ <1, then

oA ( _ |Z|2)A—(a+ﬂ)
hsqmﬂwwmmmmmqw)ﬁu o) [ () dv(w)

A (1_ |Z|2))‘ (a+p)
< C[];n\mn V(W)|(1—|W| ) «én\nlﬂén 1= (z,w) [ 2r-@h) du(z)dv(w)

" (1~ [22)-1?
+C o5, V(W)’(l — [w] ) B, 11— (z,w) |n+2A+1—(a+ﬁ) dM(Z) dU(W)

1-8*
< Ce \/]B;W\BIBH V(W)| d\)(W) + C/ V m dV(W)

< Celfllars,)-
Hence |/;| < Ce, where C does not depend on f(z), and so

lim  sup |h|=0
=% Il 15, <1

Thus, TP is compact on B% (B,,) if and only if

lim  sup |2]=0
g ”f“Al(]By,)Sl

Again, as in the proof of Theorem 3.1, we have
bl <C /B 1 Loy (1~ W12) " )| Q275 (w) v ().

From (8) it is easy to see that
(1) ifa + B =1and Pysa-10(1) € LBEH(B,), then

2
. 2 o, B0 -0
|v1v1|131(1 —|w]| )Qﬂﬂ (w) <ln - |w|2> =0;
(2) ifa =B =1, Para-tiw(t) € Buo(B,) N LB ,(B,), then
. _ 2 o, B0 —
lvlvllr_r)ll(l lw*) Q%7 (w) =0
and

. 2\2 o, B0 2 _0N.
lvlvllllll(l— Iwl?) Q% (w)(ln 71—|w|2> =0;

(3) ifa>1,B8>1,and Pyrg_1,0(1) € BZ;’S(B"), then

lim (1 [wi?)**” QuF(w) = 0

lw|—1
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Combined with gi — 0 as j — 0o on compact subsets of B,,, we have

lim sup |)z]=0.
= f 15,y <1

Therefore,
]1_1520 | T3 g 5@, = O

which implies that Tl‘f'ﬁ;"’ is a compact operator.
Next assume that Tl‘f'ﬁ;’” is a compact operator on B%#(B,). Again, as in the proof of
Theorem 3.1, we take

(1-|wP)

W fort > 0.

Jw(z) =

We know that ||f|l41,) < C. On the other hand, take

(1 _ |w|2)n+2+t—(oz+ﬂ)

(1= (zw)y

gw(z) = ; ow(z)=1 and a)(l— |z|) =1 fort>0.

Then ||gw||BZ,ﬁ(Bn) < C and gy — 0 uniformly on compact subsets of B,,, as |w| — 1,

1. T %),|

@ 1- |z 1 du(z
=Ca+/3_1(1— |w|2)n+2+2t (a+B) ( | | ) M( )

B, |1 _ <Z,W>|2(n+t+1)

< Cllfwllais,| TZ'ﬂgw [ BB (B,)"

From Lemma 4.1, we have
. o, B0 —
lerllrgl el | T, gW”Bg'ﬂ(JBn) =0, Vweb,

This implies that p is a vanishing Carleson measure on B,,.
Next let

(1—|w>)**?
(1 _ (z, w))n+a+;‘3+1 :

Jw(z) =

Then, we have ||fyll41,) < C. Let {g/} be a bounded sequence in B%#(B,) that converges
to zero uniformly as j — oo on B,,. By the compactness of Tl‘i"’s?‘“, we have

0= lim /3 = lim c,. / @ (1-127) gD (2)dv(2)
— 00 B,

j—oo

(1 - 122 gi(2) Q" (z)
B, (1 _ (z,w>)n+a+ﬂ+1

dv(z)

= /]irglo Ca+B (1 - |W|2)(X+/S

= Tim (1 - [w|?)* " gi(w) Q" ().

J—=> 00
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When o + 8 =1, taking

2 2 1 \!
g“&):(ml-wn“o) Q“l_wwﬁ> i @)=l and ol-fz)=1

with [w| > %’ we have Pa+ﬁ—1;w(//‘) € LBo(By).
When « = 8 =1, taking

1—|w|? . 2
Q- (@w)  1-(mw)

gw(z) = pw(z)=1 and a)(l - |z|) =1,

we have Py, p_1,,(1) € CBi(IBS,,) N B,B,).
Finally, when o, 8 > 1, take

1w

1= (z,w))P’ pw(@=1 and o(l-|z])=1

8w (Z) =

Then, it is obvious that Py, g_1,,(1) € Bz‘)’ﬁ (B,).
This completes the proof of Theorem 4.1.

O

Remark 4.1 It is still an open problem to study the properties of radial Toeplitz operators

on the studied spaces of this paper. For more information on radial Toeplitz operators, we

refer to [23, 24].
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