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Abstract
Let E be a real Banach space and let D be a nonempty closed convex subset of E, let
T : D → D be a continuous weak generalized ϕ-hemicontractive mapping. The
existence theorem of a fixed point of a weak generalized ϕ-pseudocontractive
mapping is obtained. And we also prove that implicit Mann and Ishikawa iterations
converge strongly to the unique fixed point of T . Our results extend the
corresponding results of Xiang (Nonlinear Anal. 70(6): 2277-2279, 2009).
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1 Introduction
Throughout the paper we assume that E is an arbitrary real Banach space and E* is its dual
space. Let D be a nonempty closed convex subset of E and let F(T) = {x ∈ D : Tx = x} �= ∅
be a fixed point set of T . We denote that the normalized duality mapping J : E → E* is
defined by

J(x) =
{
f ∈ E* : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. We denote the single-valued normal-
ized duality mapping by j.

Definition . [] Let T :D →D be a mapping.
T is said to be strongly pseudocontractive if there exists a constant k ∈ (, ) such that

for any x, y ∈ D, there exists j(x – y) ∈ J(x – y) satisfying

〈
Tx – Ty, j(x – y)

〉 ≤ k‖x – y‖. (.)

T is called φ-strongly pseudocontractive if there exists a strictly increasing continu-
ous function φ : [, +∞) → [, +∞) with φ() =  such that for any x, y ∈ D, there exists
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j(x – y) ∈ J(x – y) satisfying

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – φ
(‖x – y‖)‖x – y‖. (.)

T is called generalized �-pseudocontractive if there exists a strictly increasing contin-
uous function � : [, +∞) → [, +∞) with �() =  such that for any x, y ∈ D, there exists
j(x – y) ∈ J(x – y) satisfying

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ –�
(‖x – y‖). (.)

Furthermore, if the inequalities (.), (.) and (.) hold for any x ∈ D and y ∈ F(T), then
the corresponding mapping T is called strongly hemicontractive, φ-strongly hemicon-
tractive and generalized �-hemicontractive, respectively. Clearly, the generalized �-
hemicontractive mappings not only include strongly hemicontractive and φ-strongly
hemicontractive mappings, but also strongly pseudocontractive, φ-strongly pseudocon-
tractive and �-pseudocontractive mappings. Thus, the class of generalized �-hemicon-
tractive mappings is the most general in the class of above pseudocontractive mappings,
i.e., {strongly hemicontractive mappings set} ⊂ {φ-strongly hemicontractive mappings
set} ⊂ {generalized �-hemicontractive mappings set}. The converse is not true in gen-
eral. The counterexamples are as follows. (See [].)

Example . Let E = R be a real numbers space with the usual norm and D = [,+∞).
Define T :D →D by

Tx =
x

 + x
, ∀x ∈D.

Observe thatT has a fixedpoint q =  ∈D. Defineφ : [, +∞) → [, +∞) byφ(t) = t
+t . And

φ is a strictly increasing function with φ() = . Then T is a φ-strongly hemicontractive
mapping. Indeed, for all x ∈D, q ∈ F(T), we have

〈
Tx – Tq, j(x – q)

〉
=

〈
x

 + x
– , j(x – )

〉

=
〈

x

 + x
,x

〉

=
x

 + x

= |x – q| – |x – q|
 + |x – q| · |x – q|

= |x – q| – φ
(|x – q|) · |x – q|. (.)

Hence, T is a φ-strongly hemicontractive mapping. But T is not a strongly hemicontrac-
tive mapping.
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Example . Let E = R be a real numbers space with the usual norm and D = [,+∞).
Define T :D →D by

Tx =
x

 + x
, ∀x ∈D.

Then T has a fixed point q =  ∈ D. Define � : [, +∞) → [, +∞) by �(t) = t
+t . Then �

is a strictly increasing function with �() = . For all x ∈D, q ∈ F(T), we obtain that

〈
Tx – Tq, j(x – q)

〉
=

〈
x

 + x
– , j(x – )

〉

=
〈

x

 + x
,x

〉

=
x

 + x

= |x – q| – |x – q|
 + |x – q|

= |x – q| –�
(|x – q|). (.)

Therefore, T is a generalized�-hemicontractive mapping. However, T is not a φ-strongly
hemicontractive mapping. If it is not the case, then there exists a strictly increasing func-
tion φ : [, +∞)→ [, +∞) with φ() =  such that

〈
Tx – Tq, j(x – q)

〉 ≤ ‖x – q‖ – φ
(‖x – q‖)‖x – q‖,

i.e., φ(x) ≤ x
+x for all x ∈ [, +∞). So, limx→+∞ φ(x) = . This is a contradiction with a

strictly increasing function φ. Hence it holds.

Recently, Xiang [] discussed the relationship between generalized�-pseudocontractive
mappings and φ-strongly pseudocontractive mappings. The results are as follows.

Theorem . [, Proposition .] Let C be a bounded subset of E and let T : C → E be a
mapping. Then T is generalized �-pseudocontractive if and only if T is �-strongly pseu-
docontractive.

Theorem. [, Proposition .] Suppose that C is an unbounded subset of E and T : C →
E is a generalized�-pseudocontractive mapping. Then T is φ-strongly pseudocontractive if
and only if there exists a strictly increasing function � : [, +∞) → [, +∞) with �() = 
such that (.) holds and lims→∞ inf �(s)

s = σ > .

At the same time, Xiang [] also proved the following existence theorem.

Theorem . [, Theorem .] Let E be real Banach space, let C be a nonempty closed
convex subset of E, and let T : C → C be a continuous generalized �-pseudocontractive
mapping. Then T has a unique fixed point in C.
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In this paper, we extend the results of Xiang [] and give the convergence of other itera-
tive methods. For this, we need to introduce the following lemmas.

Lemma . [, Corollary ] Let D be a nonempty closed convex subset of E, and let T :D →
D be a continuous strongly pseudocontractive mapping. Then T has the unique fixed point
in D.

Lemma . [] Let E be a real Banach space, and let J : E → E* be a normalized duality
mapping. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉

for all x, y ∈ E and each j(x + y) ∈ J(x + y).

2 Main results
In the sequel, we give the main results.

Definition . The map T : D → D is called weak generalized ϕ-pseudocontractive if
there exists a strictly increasing continuous function ϕ : [, +∞)→ [, +∞) with ϕ() = 
such that for any x, y ∈D, there exists j(x – y) ∈ J(x – y) satisfying

〈
Tx – Ty, j(x – y)

〉 ≤ ‖x – y‖ – ϕ(‖x – y‖)
 + ϕ(‖x – y‖) + ‖x – y‖ . (.)

In Definition ., if for any x ∈ D, y ∈ F(T) such that (.) holds, then T is called a weak
generalized ϕ-hemicontractive mapping. (See [, ].)

Remark . If T is generalized ϕ-hemicontractive, then T must be weak generalized ϕ-
hemicontractive. That is,

〈
Tx – Tq, j(x – q)

〉 ≤ ‖x – q‖ – ϕ
(‖x – q‖)

≤ ‖x – q‖ – ϕ(‖x – q‖)
 + ϕ(‖x – q‖) + ‖x – q‖ .

However, the converse is not true in general. See the following example.

Counterexample . Let E = R be a real numbers space with the usual norm and D =
R+ = [,+∞). Define T : R+ → R+ by

Tx =

{

x, x ∈ [, ];
x+x+x

√
x–

√
x

+x
√
x+x , x ∈ (, +∞).

Then T has a fixed point q =  ∈ R+. Set � : [, +∞)→ [, +∞) by

�(t) =

{
t, t ∈ [, ];
t/, t ∈ (, +∞).

http://www.journalofinequalitiesandapplications.com/content/2013/1/231
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Then � is a strictly increasing continuous function with �() = . And for any x ∈ [, ],
q ∈ F(T), we obtain that

〈
Tx – Tq, j(x – q)

〉
=

〈


x – , j(x – )

〉

=


x

≤ x –
x

 + x + x

= |x – q| – |x – q|
 + |x – q| + |x – q|

= |x – q| – �(|x – q|)
 +�(|x – q|) + |x – q| . (.)

For any x ∈ (, +∞), q ∈ F(T), we have

〈
Tx – Tq, j(x – q)

〉
=

〈
x + x + x

√
x –

√
x

 + x
√
x + x

– , j(x – )
〉

=
〈
x + x + x

√
x –

√
x

 + x
√
x + x

,x
〉

=
x + x + x

√
x – x

√
x

 + x
√
x + x

= x –
x/

 + x/ + x

= |x – q| – |x – q|/
 + |x – q|/ + |x – q|

= |x – q| – �(|x – q|)
 +�(|x – q|) + |x – q| . (.)

Then T is a weak generalized �-hemicontractive mapping. But T is not a generalized
ϕ-hemicontractive mapping. Therefore, it has more practical significance to research of
the class of mappings in fixed point theory and applications. For this, we firstly give the
existence theorem.

Theorem . Let E be a real Banach space, let D be a nonempty closed convex subset of E,
and let T : D → D be a continuous weak generalized ϕ-pseudocontractive mapping. Then
T has a unique fixed point in D.

Proof Similar, using the proof method of Xiang [].
Step I. Construct the sequence {xn}.
For any given x ∈D, the mapping S :D →D is defined by Sx = 

x +

Tx for all x ∈D,

then S is a continuous strongly pseudocontractive mapping. So, there exists x ∈ D such
that Sx = x, i.e., x = 

x +

Tx. The mapping S :D →D is defined by Sx = 

x +

Tx

http://www.journalofinequalitiesandapplications.com/content/2013/1/231
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for all x ∈D, then S is a continuous strongly pseudocontractive mapping. So, there exists
x ∈ D such that Sx = x, i.e., x = 

x +

Tx, . . . , we obtain the sequence {xn} by xn+ =


xn +


Txn+.

Step II. Show that limn→∞ ‖xn – xn–‖ = .
From the above sequence {xn}, we notice that

xn+ = xn – xn+ + Txn+, xn = xn– – xn + Txn.

Using the equalities above and Lemma ., we have

‖xn+ – xn‖

=
∥∥(xn – xn–) – (xn+ – xn) + (Txn+ – Txn)

∥∥

≤ ‖xn – xn–‖ – ‖xn+ – xn‖

+ 
[
‖xn+ – xn‖ – ϕ(‖xn+ – xn‖)

 + ϕ(‖xn+ – xn‖) + ‖xn+ – xn‖
]

≤ ‖xn – xn–‖ – ϕ(‖xn+ – xn‖)
 + ϕ(‖xn+ – xn‖) + ‖xn+ – xn‖

≤ ‖xn – xn–‖. (.)

Based on the monotone bounded principle, then limn→∞ ‖xn – xn–‖ exists. And

lim
n→∞‖xn – xn–‖ = lim

n→∞‖Txn – xn‖ = A.

DenoteM = supn{‖xn – xn–‖}. From (.), we have

‖xn+ – xn‖

≤ ‖xn – xn–‖ – ϕ(‖xn+ – xn‖)
 + ϕ(‖xn+ – xn‖) + ‖xn+ – xn‖ . (.)

Let infn≥
ϕ(‖xn+–xn‖)

+ϕ(‖xn+–xn‖)+‖xn+–xn‖ = δ, then δ = . If this is not the case, then δ > . We have

ϕ(‖xn+ – xn‖)
 + ϕ(‖xn+ – xn‖) + ‖xn+ – xn‖ ≥ δ

for all n ≥ . It follows from (.) that

δ ≤ ‖xn – xn–‖ – ‖xn+ – xn‖, (.)

which implies that
∑∞

n= δ ≤ ‖x – x‖ < ∞, which is a contradiction. Then δ = . Thus
there exists an infinite subsequence { ϕ(‖xni+–xni‖)

+ϕ(‖xni+–xni‖)+‖xni+–xni‖
} such that

lim
i→∞

ϕ(‖xni+ – xni‖)
 + ϕ(‖xni+ – xni‖) + ‖xni+ – xni‖

= .

Since ≤ ϕ(‖xni+–xni‖)
+ϕ(M)+M ≤ ϕ(‖xni+–xni‖)

+ϕ(‖xni+–xni‖)+‖xni+–xni‖
, then limi→∞ ϕ(‖xni+ – xni‖) = . It leads

to limi→∞ ‖xni+ – xni‖ =  by the strict increase and continuity of ϕ. Hence A = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/231
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Step III. {xn} is a Cauchy sequence.
Since limn→∞ ‖xn+ – xn‖ = limn→∞ ‖Txn – xn‖ = . For ∀ε ∈ (, ), ∃N such that

‖xn+ – xn‖ < ε, ‖Txn – xn‖,‖Txm – xm‖ < ϕ(ε)
[ + ϕ(ε) + ε]( + ε)

for all m,n ≥ N . By the induction method, we prove that ‖xm – xn‖ < ε for all m,n ≥ N .
If m = n + , then ‖xn+ – xn‖ < ε. Suppose that ‖xm – xn‖ < ε holds for some m ≥ N , then
‖xm+ – xn‖ ≤ ‖xm+ – xm‖+ ‖xm – xn‖ < ε (*). Next we want to show that ‖xm+ – xn‖ < ε.
Since T is a weak generalized ϕ pseudocontractive mapping, then

〈
Txm+ – Txn, j(xm+ – xn)

〉 ≤ ‖xm+ – xn‖ – ϕ(‖xm+ – xn‖)
 + ϕ(‖xm+ – xn‖) + ‖xm+ – xn‖ ,

i.e., ϕ(‖xm+–xn‖)
+ϕ(‖xm+–xn‖)+‖xm+–xn‖ ≤ ‖xm+ – xn‖ – 〈Txm+ –Txn, j(xm+ – xn)〉 ≤ [‖xm+ –Txm+‖+

‖xn – Txn‖] · ‖xm+ – xn‖. By the above inequalities, we have

ϕ(‖xm+ – xn‖)
 + ϕ(ε) + ε

<
εϕ(ε)

[ + ϕ(ε) + ε]( + ε)
<

ϕ(ε)
 + ϕ(ε) + ε

,

which implies that ‖xm+ – xn‖ < ε by the strict increase of ϕ. Therefore {xn} is a Cauchy
sequence. Since D is closed in Banach space E, then D is complete. Hence, there exists a
point q ∈ D such that xn → q as n → ∞. Since T is continuous, then q = Tq. The unique-
ness is obvious. �

3 Applications of the weak generalized ϕ-hemicontractive mappings
Now that the weak generalized ϕ-hemicontractivemappings aremuchmore general map-
pings. Hence it is of interest to study the convergence of an iteration process of fixed points
of the class mappings.

Definition . Let T : D → D be a mapping. For any given u ∈ D, define the sequence
{un}∞n= ⊂D by the iterative scheme

un+ = ( – an)un + anTun, n ≥ , (.)

which is called the Mann iterative process, where {an}∞n= is a real sequence in [, ] sat-
isfying certain conditions. Further, we assume that there exists (I – tT)– for all t ∈ (, ).
For any given x ∈ D, define the sequence {xn}∞n= ⊂D by the iterative scheme []

xn+ = ( – an)xn + anTxn+, n≥ , (.)

which is called the implicit Mann iterative process.

Definition . Let T : D → D be a mapping. For any given u ∈ D, define the sequence
{wn}∞n= ⊂D by the iterative scheme

⎧⎪⎨
⎪⎩
w ∈D,
vn = ( – bn)wn + bnTwn, n ≥ ,
wn+ = ( – an)wn + anTvn, n≥ ,

(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/231
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which is called the Ishikawa iterative process, where {an} and {bn} are two real sequences in
[, ] satisfying certain conditions. And for any given z ∈D, define the sequence {zn}∞n= ⊂
D by the iterative scheme

⎧⎪⎨
⎪⎩
z ∈D,
yn = ( – bn)zn + bnTyn, n≥ ,
zn+ = ( – an)yn + anTzn+, n≥ ,

(.)

which is called the implicit Ishikawa iterative process. Especially, if bn = , then the corre-
sponding iterations (.) and (.) reduce to (.) and (.), respectively.

Lemma . [] Let {an}, {bn} and {cn} be three nonnegative real sequences and satisfy

an+ ≤ ( + bn)an + cn, n≥ .

If
∑∞

n= bn < ∞,
∑∞

n= cn < ∞, then limn→∞ an exists.

In the following, we study the convergence of implicit Mann and Ishikawa iterative pro-
cesses for weak generalized ϕ-hemicontractive mappings in general real Banach spaces.

Theorem. Let E be a real Banach space and let D be a nonempty closed convex subset of
E, let T :D→ D be a weak generalized ϕ-hemicontractive mapping. Suppose that {xn}∞n= is
defined by (.) with the iteration parameter {an}∞n= ⊂ [,  ) satisfying: an →  as n→ ∞;∑∞

n=
an

–an = ∞ and
∑∞

n=
an

–an < ∞. Then the implicit Mann iteration {xn}∞n= converges
strongly to the unique fixed point of T .

Proof Let q ∈ F(T). Applying Lemma . and (.), we have

‖xn+ – q‖

=
∥∥( – an)(xn – q) + an(Txn+ – Tq)

∥∥

≤ ( – an)‖xn – q‖ + an
〈
Txn+ – Tq, j(xn+ – q)

〉
≤ ( – an)‖xn – q‖ + an

[
‖xn+ – q‖ – ϕ(‖xn+ – q‖)

 + ϕ(‖xn+ – q‖) + ‖xn+ – q‖
]
, (.)

which implies that

‖xn+ – q‖ ≤ ( – an)

 – an
‖xn – q‖ – an

 – an
· ϕ(‖xn+ – q‖)
 + ϕ(‖xn+ – q‖) + ‖xn+ – q‖

=
(
 +

an
 – an

)
‖xn – q‖ – an

 – an
· ϕ(‖xn+ – q‖)
 + ϕ(‖xn+ – q‖) + ‖xn+ – q‖

≤
(
 +

an
 – an

)
‖xn – q‖. (.)

By Lemma ., we obtain that limn→∞ ‖xn – q‖ exists. LetM = supn≥{‖xn – q‖}.

http://www.journalofinequalitiesandapplications.com/content/2013/1/231
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Set infn≥
ϕ(‖xn+–q‖)

+ϕ(‖xn+–q‖)+‖xn+–q‖ = λ, then λ = . If this is not the case, we assume that λ > ,
then ϕ(‖xn+–q‖)

+ϕ(‖xn+–q‖)+‖xn+–q‖ ≥ λ for any n. From (.), we get

‖xn+ – q‖ ≤ ‖xn – q‖ + an
 – an

M –
λan
 – an

, (.)

which implies that

∞∑
n=

λan
 – an

≤ ‖x – q‖ +
∞∑
n=

an
 – an

M < ∞, (.)

which is a contradiction, and so λ = . Consequently, there exists an infinite subsequence
such that ϕ(‖xni+–q‖)

+ϕ(‖xni+–q‖)+‖xni+–q‖
→  as i→ ∞. Then we have

 ≤ ϕ(‖xni+ – q‖)
 + ϕ(M) +M ≤ ϕ(‖xni+ – q‖)

 + ϕ(‖xni+ – q‖) + ‖xni+ – q‖ ,

which implies that ϕ(‖xni+ – q‖) →  as i → ∞. It leads to ‖xni+ – q‖ →  as i → ∞ by
the strict increase and continuity of ϕ. Thus, we obtain that ‖xn – q‖ →  as n→ ∞. This
completes the proof. �

Theorem . Let E be a real Banach space and let D be a nonempty closed convex subset
of E, let T :D →D be a weak generalized ϕ-hemicontractive mapping. Suppose that {zn}∞n=
is defined by (.) with the iteration parameters an,bn ∈ [,  ) satisfying the conditions:

(i) an,bn →  as n→ ∞;
(ii)

∑∞
n=

an
–an = ∞;

(iii)
∑∞

n=
an

–an < ∞,
∑∞

n=
bn

–bn <∞.
Then the implicit Ishikawa iteration {zn}∞n= converges strongly to the unique fixed point
of T .

Proof By the definition of a weak generalized ϕ-hemicontractive mapping, we know that
the fixed point of T is unique. Denote q. And for any x ∈ D, we have

〈
Tx – Tq, j(x – q)

〉 ≤ ‖x – q‖ – ϕ(‖x – q‖)
 + ϕ(‖x – q‖) + ‖x – q‖ . (.)

Applying Lemma . and (.), we have

‖zn+ – q‖

=
∥∥( – an)(yn – q) + an(Tzn+ – Tq)

∥∥

≤ ( – an)‖yn – q‖ + an
〈
Tzn+ – Tq, j(zn+ – q)

〉
≤ ( – an)‖yn – q‖ + an

[
‖zn+ – q‖ – ϕ(‖zn+ – q‖)

 + ϕ(‖zn+ – q‖) + ‖zn+ – q‖
]
, (.)

‖yn – q‖

=
∥∥( – bn)(zn – q) + bn(Tyn – Tq)

∥∥

http://www.journalofinequalitiesandapplications.com/content/2013/1/231
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≤ ( – bn)‖zn – q‖ + bn
〈
Tyn – Tq, j(yn – q)

〉
≤ ( – bn)‖zn – q‖ + bn

[
‖yn – q‖ – ϕ(‖yn – q‖)

 + ϕ(‖yn – q‖) + ‖yn – q‖
]
, (.)

which implies that

‖yn – q‖ ≤ ( – bn)

 – bn
‖zn – q‖. (.)

Substituting (.) into (.), we obtain that

‖zn+ – q‖

≤ ( – an)( – bn)

( – an)( – bn)
‖zn – q‖ – an

 – an
· ϕ(‖zn+ – q‖)
 + ϕ(‖zn+ – q‖) + ‖zn+ – q‖

≤
(
 +

an
 – an

+
bn

 – bn

)
‖zn – q‖ – an

 – an
· ϕ(‖zn+ – q‖)
 + ϕ(‖zn+ – q‖) + ‖zn+ – q‖

≤
(
 +

an
 – an

+
bn

 – bn

)
‖zn – q‖. (.)

By Lemma ., we obtain that limn→∞ ‖zn – q‖ exists. LetM = supn≥{‖zn – q‖}.
Set infn≥

ϕ(‖zn+–q‖)
+ϕ(‖zn+–q‖)+‖zn+–q‖ = δ, then δ = . If this is not the case, we assume that δ > ,

then ϕ(‖zn+–q‖)
+ϕ(‖zn+–q‖)+‖zn+–q‖ ≥ δ for any n. From (.), we get

‖zn+ – q‖ ≤ ‖zn – q‖ +
(

an
 – an

+
bn

 – bn

)
M

 –
δan
 – an

, (.)

which implies that

∞∑
n=

δan
 – an

≤ ‖z – q‖ +
∞∑
n=

(
an

 – an
+

bn
 – bn

)
M

 < ∞, (.)

which is a contradiction, and so δ = . Consequently, there exists an infinite subsequence
such that ϕ(‖zni+–q‖)

+ϕ(‖zni+–q‖)+‖zni+–q‖
→  as i→ ∞. Then we have

 ≤ ϕ(‖zni+ – q‖)
 + ϕ(M) +M


≤ ϕ(‖zni+ – q‖)

 + ϕ(‖zni+ – q‖) + ‖zni+ – q‖ ,

which implies that ϕ(‖zni+ – q‖) →  as i → ∞. It leads to ‖zni+ – q‖ →  as i → ∞ by
the strict increase and continuity of ϕ. Thus, we obtain that ‖zn – q‖ →  as n → ∞. This
completes the proof. �

Remark . Theorem . shows that the implicit iteration {xn} by xn+ = 
xn +


Txn+

is convergent, and it converges strongly to the fixed point of T . And Theorem . and
Theorem . also yield that the implicit Mann iteration and the implicit Ishikawa iteration
converge strongly to the fixed point of T , respectively.
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