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1 Introduction
Splitting methods have recently received much attention due to the fact that many non-
linear problems arising in applied areas such as image recovery, signal processing, and
machine learning are mathematically modeled as a nonlinear operator equation, and this
operator is decomposed as the sum of two nonlinear operators. Study of fixed (zero) point
approximation algorithms for computing fixed (zero) points constitutes now a topic of in-
tensive research efforts. Many well-known problems can be studied by using algorithms
which are iterative in their nature. As an example, in computer tomography with limited
data, each piece of information implies the existence of a convex set in which the required
solution lies. The problem of finding a point in the intersection of these convex sets is
then of crucial interest, and it cannot be usually solved directly. Therefore, an iterative
algorithm must be used to approximate such a point. The well-known convex feasibility
problem which captures applications in various disciplines such as image restoration and
radiation therapy treatment planning is to find a point in the intersection of common fixed
(zero) point sets of a family of nonlinear mappings; see, for example, [–].
In this paper, we will investigate the problem of finding a common solution to inclusion

problems and fixed point problems based on an iterative algorithm. Strong convergence
of the proposed iterative algorithm has been obtained in the framework of Hilbert spaces.
The organization of this paper is as follows. In Section , we provide some necessary pre-

liminaries. In Section , an iterative algorithm is proposed and analyzed. Some subresults
of the main results are also discussed in this section.

2 Preliminaries
From now on, we always assume thatH is a real Hilbert space with the inner product 〈·, ·〉
and the norm ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H .
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Let S : C → C be a mapping. F(S) stands for the fixed point set of S; that is, F(S) := {x ∈
C : x = Sx}.
Recall that S is said to be nonexpansive iff

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.

S is said to be asymptotically nonexpansive iff there exists a sequence {kn} ⊂ [,∞) with
limn→∞ kn =  such that

∥∥Snx – Sny
∥∥ ≤ kn‖x – y‖, ∀x, y ∈ C.

Recall that S is said to be strictly pseudocontractive iff there exits a positive constant κ

such that

‖Sx – Sy‖ ≤ ‖x – y‖ + κ
∥∥(x – Sx) – (y – Sy)

∥∥, ∀x, y ∈ C.

S is said to be asymptotically strictly pseudocontractive iff there exits a positive constant
κ and a sequence {kn} ⊂ [,∞) with limn→∞ kn =  such that

∥∥Snx – Sny
∥∥ ≤ kn‖x – y‖ + κ

∥∥(
x – Snx

)
–

(
y – Sny

)∥∥, ∀x, y ∈ C.

Let A : C →H be a mapping. Recall that A is said to be monotone iff

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

A is said to be inverse-strongly monotone iff there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is also said to be α-inverse-strongly monotone. It is not hard to see that
inverse-strongly monotone mappings are Lipschitz continuous.
A multivalued operator T : H → H with the domain D(T) = {x ∈ H : Tx �= ∅} and the

range R(T) = {Tx : x ∈ D(T)} is said to be monotone if for x ∈ D(T), x ∈ D(T), y ∈ Tx
and y ∈ Tx, we have 〈x – x, y – y〉 ≥ . A monotone operator T is said to be maximal
if its graph G(T) = {(x, y) : y ∈ Tx} is not properly contained in the graph of any other
monotone operator. Let I denote the identity operator onH and T :H → H be amaximal
monotone operator. Then we can define, for each λ > , a nonexpansive single-valued
mapping Jλ :H →H by Jλ = (I +λT)–. It is called the resolvent of T . We know that T– =
F(Jλ) for all λ >  and Jλ is firmly nonexpansive; see [–] and the references therein.
Recently, many authors have investigated the solution problems of nonlinear operator

equations or inequalities based on iterative methods; see, for instance, [–] and the
references therein. In [], Kamimura and Takahashi investigated the problem of finding
zero points of a maximal monotone operator via the following iterative algorithm:

x ∈ H , xn+ = αnxn + ( – αn)Jλnxn, n = , , , . . . , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/199
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where {αn} is a sequence in (, ), {λn} is a positive sequence, T : H → H is a maximal
monotone and Jλn = (I + λnT)–. They showed that the sequence {xn} generated in (.)
converges weakly to some z ∈ T–() provided that the control sequence satisfies some
restrictions.
Recall that the classical variational inequality is to find an x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

In this paper, we use VI(C,A) to denote the solution set of (.). It is known that x ∈ C is
a solution to (.) iff x is a fixed point of the mapping PC(I – λA), where λ >  is a con-
stant, I stands for the identity mapping, and PC stands for the metric projection from H
onto C. If A is α-inverse-strongly monotone and λ ∈ (, α], then the mapping PC(I – rA)
is nonexpansive; see [] for more details. It follows that VI(C,A) is closed and convex.
In [], Takahashi an Toyoda investigated the problem of finding a common solution

of variational inequality problem (.) and a fixed point problem involving nonexpansive
mappings by considering the following iterative algorithm:

x ∈ C, xn+ = αnxn + ( – αn)SPC(xn – λnAxn), ∀n≥ , (.)

where {αn} is a sequence in (, ), {λn} is a positive sequence, S : C → C is a nonexpansive
mapping and A : C →H is an inverse-strongly monotone mapping. They proved that the
sequence {xn} generated in (.) converges weakly to some z ∈ VI(C,A) ∩ F(S) provided
that the control sequence satisfies some restrictions.
In [], Tada and Takahashi investigated the problem of finding a common solution of

an equilibrium problem and a fixed point problem involving nonexpansive mappings by
considering the following iterative algorithm:

⎧⎨
⎩
un ∈ C such that F(un,u) + 

rn 〈u – un,un – xn〉 ≥ , ∀u ∈ C,

xn+ = αnxn + ( – αn)Sun
(.)

for each n≥ , where {αn} is a sequence in (, ), {rn} is a positive sequence, S : C → C is a
nonexpansive mapping and F : C×C → R is a bifunction. They showed that the sequence
{xn} generated in (.) converges weakly to some z ∈ EP(F)∩F(S), where EP(F) stands for
the solution set of the equilibrium problem, provided that the control sequence satisfies
some restrictions.
In [], Manaka and Takahashi introduced the following iteration:

x ∈ C, xn+ = αnxn + ( – αn)SJλn (I – λnA)xn, n≥ , (.)

where {αn} is a sequence in (, ), {λn} is a positive sequence, S : C → C is a nonexpansive
mapping, A : C → H is an inversely-strongly monotone mapping, B :D(B) ⊂ C → H is a
maximal monotone operator, Jλn = (I + λnB)– is the resolvent of B. They showed that the
sequence {xn} generated in (.) converges weakly to some z ∈ (A+B)–()∩F(S) provided
that the control sequence satisfies some restrictions.
In this paper, motivated by the above results, we consider the problem of finding a com-

mon solution to the zero point problems involving two monotone operators and fixed

http://www.journalofinequalitiesandapplications.com/content/2013/1/199


Cho et al. Journal of Inequalities and Applications 2013, 2013:199 Page 4 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/199

point problems involving asymptotically strictly pseudocontractive mappings based on a
one-step iterative method. Weak convergence theorems are established in the framework
of Hilbert spaces.
In order to obtain our main results in this paper, we need the following lemmas.
Recall that a space is said to satisfy Opial’s property [] if, for any sequence {xn} ⊂ H

with xn ⇀ x, where ⇀ denotes the weak convergence, the inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖

holds for every y ∈H with y �= x. Indeed, the above inequality is equivalent to the following:

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖.

Lemma . [] Let C be a nonempty, closed, and convex subset of H , A : C → H be a
mapping, and B : H ⇒ H be a maximal monotone operator. Then F(Jr(I – λA)) = (A +
B)–().

Lemma . Let H be a real Hilbert space. For any a ∈ (, ) and x, y ∈ H , the following
holds:

∥∥ax + ( – a)y
∥∥ = a‖x‖ + ( – a)‖y‖ – a( – a)‖x – y‖.

Lemma . [] Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the fol-
lowing condition:

an+ ≤ ( + bn)an + cn, ∀n≥ n,

where n is some nonnegative integer,
∑∞

n= bn < ∞ and
∑∞

n= cn < ∞. Then the limit
limn→∞ an exists.

Lemma. [] Let C be a nonempty closed convex subset of H and S be an asymptotically
κ-strictly pseudocontractive mapping. Then we have
(a) S is uniformly Lipschitz continuous;
(b) I – S is demiclosed at zero, that is, if {xn} is a sequence in C with xn ⇀ x and

xn – Sxn → , then x ∈ F(S).

The following lemma can be obtained from [] immediately.

Lemma . Let H be a real Hilbert space. The following holds:

∥∥∥∥∥
N∑
i=

aixi

∥∥∥∥∥


=
N∑
i=

ai‖xi‖ –
N∑
i�=j

aiaj‖xi – xj‖,

where N ≥  denotes some positive integer, a,a, . . . ,aN are real numbers with
∑N

i= ai = 
in (, ) and x,x, . . . ,xN ∈ H .

http://www.journalofinequalitiesandapplications.com/content/2013/1/199
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3 Main results
Theorem . Let C be a nonempty closed convex subset of H . Let N ≥  be some positive
integer and S : C → C be an asymptotically strictly pseudocontractive mapping with the
constant κ and the sequence {kn}. Let Am : C → H be an inverse-strongly monotone map-
ping with the constant αm and Bm be a maximal monotone operator on H such that the do-
main of Bm is included in C for each m ∈ {, , . . . ,N}. Assume F =

⋂N
m=(Am + Bm)–()∩

F(S) �= ∅. Let {αn,}, {αn,}, . . . , {αn,N } and {βn} are real number sequences in (, ). Let
{rn,}, . . . , and {rn,N } be positive real number sequences. Let {xn} be a sequence in C gen-
erated in the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = βnxn + ( – βn)Snxn,

xn+ = αn,yn +
∑N

m= αn,mJrn,m (xn – rn,mAmxn), n ≥ ,

(.)

where Jrn,m = (I+rn,mBm)– is the resolvent of Bm.Assume that the sequences {αn,}, {αn,}, . . . ,
{αn,N }, {βn}, {rn,}, . . . , {rn,N }, and {kn} satisfy the following restrictions:
(a)

∑N
m= αn,m =  and  < a≤ αn,m < , ∀m ∈ {, . . . ,N};

(b)  ≤ κ ≤ βn ≤ b < ;
(c)  < c≤ rn,m ≤ d < αm, ∀m ∈ {, . . . ,N};
(d)

∑∞
n=(kn – ) <∞,

where a, b, c, and d are positive real numbers. Then the sequence {xn} generated in (.)
converges weakly to some point in F .

Proof First, we show I – rn,mAm is nonexpansive. In view of the restriction (c), we find that

∥∥(I – rn,mAm)x – (I – rn,mAm)y
∥∥

= ‖x – y‖ – rn,m〈x – y,Amx –Amy〉 + rn,m‖Amx –Amy‖

≤ ‖x – y‖ – rn,m(αm – rn,m)‖Amx –Amy‖

≤ ‖x – y‖.

This proves that I – rn,mAm is nonexpansive. Let p ∈F . In view of Lemma ., we find that

p = Sp = Jrn,m (p – rn,mAmp).

Putting un,m = Jrn,m (xn – rn,mAmxn), we find that

‖un,m – p‖ ≤ ∥∥(xn – rn,mAmxn) – (p – rn,mAmp)
∥∥

≤ ‖xn – p‖. (.)

In view of Lemma ., we find from the restriction (b) that

‖yn – p‖ =
∥∥βnxn + ( – βn)Snxn – p

∥∥

= βn‖xn – p‖ + ( – βn)
∥∥Snxn – p

∥∥ – βn( – βn)
∥∥xn – Snxn

∥∥

http://www.journalofinequalitiesandapplications.com/content/2013/1/199
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≤ βn‖xn – p‖ + ( – βn)kn‖xn – p‖ + (κ – βn)
∥∥xn – Snxn

∥∥

≤ kn‖xn – p‖. (.)

From (.) and (.), we have

‖xn+ – p‖ =
∥∥∥∥∥αn,(yn – p) +

N∑
m=

αn,m(un,m – p)

∥∥∥∥∥


≤ αn,‖yn – p‖ +
N∑

m=

αn,m‖un,m – p‖

≤ αn,kn‖xn – p‖ +
N∑

m=

αn,m‖xn – p‖

≤ kn‖xn – p‖. (.)

We draw the conclusion that limn→∞ ‖xn – p‖ exists with the aid of Lemma .. This im-
plies that the sequence {xn} is bounded. In view of Lemma ., we find that

‖xn+ – p‖ =

∥∥∥∥∥αn,(yn – p) +
N∑

m=

αn,m(un,m – p)

∥∥∥∥∥


≤ αn,‖yn – p‖ +
N∑

m=

αn,m‖un,m – p‖

– αn,αn,r‖yn – un,r‖

≤ αn,kn‖xn – p‖ +
N∑

m=

αn,m‖xn – p‖

– αn,αn,r‖yn – un,r‖

≤ kn‖xn – p‖ – αn,αn,r‖yn – un,r‖, ∀r ∈ {, , . . . ,N}, (.)

which yields

αn,αn,r‖yn – un,r‖ ≤ kn‖xn – p‖ – ‖xn+ – p‖, ∀r ∈ {, , . . . ,N}.

In view of the restriction (a), we find that

lim
n→∞‖yn – un,m‖ = , ∀r ∈ {, , . . . ,N}. (.)

On the other hand, we have

‖un,m – p‖ ≤ ∥∥(xn – rn,mAmxn) – (p – rn,mAmp)
∥∥

= ‖xn – p‖ – rn,m〈xn – p,Amxn –Amp〉 + rn,m‖Amxn –Amp‖

≤ ‖xn – p‖ – rn,m(αm – rn,m)‖Amxn –Amp‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/199
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It follows that

‖xn+ – p‖ ≤ αn,‖yn – p‖ +
N∑

m=

αn,m‖un,m – p‖

≤ αn,kn‖xn – p‖ +
N∑

m=

αn,m‖un,m – p‖

≤ kn‖xn – p‖ –
N∑

m=

αn,mrn,m(αm – rn,m)‖Amxn –Amp‖.

This in turn implies that

N∑
m=

αn,mrn,m(αm – rn,m)‖Amxn –Amp‖ ≤ kn‖xn – p‖ – ‖xn+ – p‖.

It follows from the restrictions (b) and (d) that

lim
n→∞‖Amxn –Amp‖ = . (.)

Notice that

‖un,m – p‖ ≤ 〈
(xn – rn,mAmxn) – (p – rn,mAmp),un,m – p

〉

=


(∥∥(xn – rnAmxn) – (p – rnAmp)

∥∥ + ‖un,m – p‖

–
∥∥(xn – rnAmxn) – (p – rnAmp) – (un,m – p)

∥∥)

≤ 

(‖xn – p‖ + ‖un,m – p‖ – ∥∥xn – un,m – rn(Amxn –Amp)

∥∥)

≤ 

(‖xn – p‖ + ‖un,m – p‖ – ‖xn – un,m‖ – rn‖Amxn –Amp‖

+ rn‖xn – un,m‖‖Amxn –Amp‖
)

≤ 

(‖xn – p‖ + ‖un,m – p‖ – ‖xn – un,m‖

+ rn‖xn – un,m‖‖Amxn –Amp‖
)
.

It follows that

‖un,m – p‖ ≤ ‖xn – p‖ – ‖xn – un,m‖ + rn,m‖xn – un,m‖‖Amxn –Amp‖. (.)

This implies that

‖xn+ – p‖ =

∥∥∥∥∥αn,(yn – p) +
N∑

m=

αn,m(un,m – p)

∥∥∥∥∥


≤ αn,‖yn – p‖ +
N∑

m=

αn,m‖un,m – p‖

http://www.journalofinequalitiesandapplications.com/content/2013/1/199
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≤ kn‖xn – p‖ –
N∑

m=

αn,m‖xn – un,m‖

+ 
N∑

m=

αn,mrn,m‖xn – un,m‖‖Amxn –Amp‖,

which finds that

N∑
m=

αn,m‖xn – un,m‖ ≤ kn‖xn – p‖ – ‖xn+ – p‖

+ 
N∑

m=

αn,mrn,m‖xn – un,m‖‖Amxn –Amp‖.

In view of the restriction (a), we find from (.) that

lim
n→∞‖xn – un,m‖ = . (.)

Notice that

‖xn – yn‖ ≤ ‖xn – un,m‖ + ‖un,m – yn‖.

From (.) and (.), we obtain that

lim
n→∞‖xn – yn‖ = . (.)

On the other hand, we have

∥∥Snxn – xn
∥∥ ≤ ∥∥Snxn – (

βnxn + ( – βn)Snxn
)∥∥ +

∥∥(
βnxn + ( – βn)Snxn

)
– xn

∥∥
= βn

∥∥Snxn – xn
∥∥ + ‖yn – xn‖,

which yields

( – βn)
∥∥Snxn – xn

∥∥ ≤ ‖yn – xn‖.

This implies from the restriction (c) and (.) that

lim
n→∞

∥∥Snxn – xn
∥∥ = . (.)

Notice that

‖xn+ – xn‖ ≤ αn,‖yn – xn‖ +
N∑

m=

αn,m‖un,m – xn‖.

This implies from (.) and (.) that

lim
n→∞‖xn+ – xn‖ = . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/199
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On the other hand, we have

‖xn – Sxn‖ ≤ ‖xn – xn+‖ +
∥∥xn+ – Sn+xn+

∥∥
+

∥∥Sn+xn+ – Sn+xn
∥∥ +

∥∥Sn+xn – Sxn
∥∥.

Since S is uniformly continuous, we obtain from (.) and (.) that

lim
n→∞‖Sxn – xn‖ = . (.)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ ω ∈ C. We
find that ω ∈ F(S) with the aid of Lemma ..
Next, we show ω ∈ (Am + Bm)– for every m ∈ {, , . . . ,N}. In view of (.), we can

choose a subsequence {uni ,m} of {un,m} such that uni ,m ⇀ ω. Notice that

un,m = Jrn,m (xn – rn,mAmxn).

This implies that

xn – rn,mAmxn ∈ (I + rn,mBm)un,m.

That is,

xn – un,m
rn,m

–Amxn ∈ Bmun,m.

Since Bm is monotone, we get for any (um, vm) ∈G(Bm) that

〈
un,m – um,

xn – un,m
rn,m

–Amxn – vm
〉
≥ . (.)

Replacing n by ni and letting i→ ∞, we obtain from (.) that

〈ω – um, –Amω – vm〉 ≤ .

This means –Amωm ∈ Bmω, that is,  ∈ (Am +Bm)(ω). Hence we get ω ∈ (Am +Bm)–() for
everym ∈ {, , . . . ,N}. This completes the proof that ω ∈F .
Suppose there is another subsequence {xnj} of {xn} such that xnj ⇀ ω′. Thenwe can show

that ω′ ∈ F in the same way. Assume ω �= ω′. Since limn→∞ ‖xn – p‖ exits for any p ∈ F .
Put limn→∞ ‖xn –ω‖ = d. Since the space satisfies Opial’s condition, we see that

d = lim inf
i→∞ ‖xni –ω‖

< lim inf
i→∞

∥∥xni –ω′∥∥
= lim

n→∞
∥∥xn –ω′∥∥

= lim inf
j→∞

∥∥xnj –ω′∥∥
< lim inf

j→∞ ‖xnj –ω‖ = d.

http://www.journalofinequalitiesandapplications.com/content/2013/1/199
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This is a contradiction. This shows that ω = ω′. This proves that the sequence {xn} con-
verges weakly to ω ∈F . This completes the proof. �

If N = , then we have the following.

Corollary . Let C be a nonempty closed convex subset of H . Let S : C → C be an asymp-
totically strictly pseudocontractive mapping with the constant κ and the sequence {kn}.
Let A : C → H be an inverse-strongly monotone mapping with the constant α, and B be
a maximal monotone operator on H such that the domain of B is included in C. Assume
F = (A + B)–() ∩ F(S) �= ∅. Let {αn,}, {αn,}, and {βn} be real number sequences in (, ).
Let {rn} be a positive real number sequence. Let {xn} be a sequence in C generated in the
following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = βnxn + ( – βn)Snxn,

xn+ = αn,yn + αn,Jrn (xn – rnAxn), n≥ ,

where Jrn = (I + rnB)– is the resolvent of B. Assume that the sequences {αn,}, {αn,}, {βn},
{rn}, and {kn} satisfy the following restrictions:
(a)

∑
m= αn,m =  and  < a≤ αn,m < , ∀m ∈ {, };

(b)  ≤ κ ≤ βn ≤ b < ;
(c)  < c≤ rn ≤ d < α;
(d)

∑∞
n=(kn – ) <∞,

where a, b, c, and d are positive real numbers. Then the sequence {xn} converges weakly to
some point in F .

If S is asymptotically nonexpansive, then we find from Theorem . the following by
letting βn = .

Corollary . Let C be a nonempty closed convex subset of H . Let N ≥  be some positive
integer and S : C → C be an asymptotically nonexpansive mapping with the sequence {kn}.
Let Am : C →H be an inverse-strongly monotone mapping with the constant αm and let Bm

be amaximalmonotone operator on H such that the domain of Bm is included in C for each
m ∈ {, , . . . ,N}. Assume F =

⋂N
m=(Am + Bm)–() ∩ F(S) �= ∅. Let {αn,}, {αn,}, . . . , {αn,N },

and {βn} be real number sequences in (, ). Let {rn,}, . . . , and {rn,N } be positive real number
sequences. Let {xn} be a sequence in C generated in the following iterative process:

x ∈ C, xn+ = αn,Snxn +
N∑

m=

αn,mJrn,m (xn – rn,mAmxn), n ≥ ,

where Jrn,m = (I+rn,mBm)– is the resolvent of Bm.Assume that the sequences {αn,}, {αn,}, . . . ,
{αn,N }, {βn}, {rn,}, . . . , {rn,N }, and {kn} satisfy the following restrictions:
(a)

∑N
m= αn,m =  and  < a≤ αn,m < , ∀m ∈ {, . . . ,N};

(b)  < b ≤ rn,m ≤ c < αm, ∀m ∈ {, . . . ,N};
(c)

∑∞
n=(kn – ) <∞,

where a, b and c are positive real numbers. Then the sequence {xn} converges weakly to
some point in F .
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If S is the identity mapping, then we draw from Theorem . the following.

Corollary . Let C be a nonempty closed convex subset of H . Let N ≥  be some positive
integer.Let Am : C →H bean inverse-stronglymonotonemappingwith the constantαm and
let Bm be a maximal monotone operator on H such that the domain of Bm is included in C
for each m ∈ {, , . . . ,N}. Assume F =

⋂N
m=(Am + Bm)–() �= ∅. Let {αn,}, {αn,}, . . . , and

{αn,N } be real number sequences in (, ). Let {rn,}, . . . , and {rn,N } be positive real number
sequences. Let {xn} be a sequence in C generated in the following iterative process:

x ∈ C, xn+ = αn,xn +
N∑

m=

αn,mJrn,m (xn – rn,mAmxn), n≥ ,

where Jrn,m = (I+rn,mBm)– is the resolvent of Bm.Assume that the sequences {αn,}, {αn,}, . . . ,
{αn,N }, {rn,}, . . . , and {rn,N } satisfy the following restrictions:
(a)

∑N
m= αn,m =  and  < a≤ αn,m < , ∀m ∈ {, . . . ,N};

(b)  < b ≤ rn,m ≤ c < αm, ∀m ∈ {, . . . ,N},
where a, b, and c are positive real numbers. Then the sequence {xn} converges weakly to
some point in F .

Let f : H → (–∞,∞] be a proper lower semicontinuous convex function. Define the
subdifferential

∂f (x) =
{
z ∈ H : f (x) + 〈y – x, z〉 ≤ f (y),∀y ∈H

}

for all x ∈ H . Then ∂f is a maximal monotone operator of H into itself; see [] for more
details. Let C be a nonempty closed convex subset of H and iC be the indicator function
of C, that is,

iCx =

⎧⎨
⎩
, x ∈ C,

∞, x /∈ C.

Furthermore, we define the normal cone NC(v) of C at v as follows:

NCv =
{
z ∈ H : 〈z, y – v〉 ≤ ,∀y ∈H

}

for any v ∈ C. Then iC :H → (–∞,∞] is a proper lower semicontinuous convex function
on H and ∂iC is a maximal monotone operator. Let Jrx = (I + r∂iC)–x for any r >  and
x ∈H . From ∂iCx =NCx and x ∈ C, we get

v = Jrx ⇔ x ∈ v + rNCv

⇔ 〈x – v, y – v〉 ≤ , ∀y ∈ C,

⇔ v = PCx,

where PC is the metric projection from H into C. Similarly, we can get that x ∈ (A +
∂iC)–() ⇔ x ∈VI(A,C).

http://www.journalofinequalitiesandapplications.com/content/2013/1/199
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Corollary . Let C be a nonempty closed convex subset of H . Let N ≥  be some posi-
tive integer and S : C → C be an asymptotically strictly pseudocontractive mapping with
the constant κ and the sequence {kn}. Let Am : C → H be an inverse-strongly monotone
mapping with the constant αm for each m ∈ {, , . . . ,N}. Assume F =

⋂N
m=VI(C,Am) ∩

F(S) �= ∅. Let {αn,}, {αn,}, . . . , {αn,N }, and {βn} be real number sequences in (, ). Let
{rn,}, . . . , and {rn,N } be positive real number sequences. Let {xn} be a sequence in C gen-
erated in the following iterative process:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yn = βnxn + ( – βn)Snxn,

xn+ = αn,yn +
∑N

m= αn,mPC(xn – rn,mAmxn), n≥ .

Assume that the sequences {αn,}, {αn,}, . . . , {αn,N }, {βn}, {rn,}, . . . , {rn,N }, and {kn} satisfy
the following restrictions:
(a)

∑N
m= αn,m =  and  < a≤ αn,m < , ∀m ∈ {, . . . ,N};

(b)  ≤ κ ≤ βn ≤ b < ;
(c)  < c≤ rn,m ≤ d < αm, ∀m ∈ {, . . . ,N};
(d)

∑∞
n=(kn – ) <∞,

where a, b, c, and d are positive real numbers. Then the sequence {xn} converges weakly to
some point in F .

Proof Putting Bm = ∂iC for every m ∈ {, , . . . ,N}, we see Jrn,m = PC . We can immediately
draw from Theorem . the desired conclusion. �

If S is the identity mapping, then we find from Corollary . the following.

Corollary . Let C be a nonempty closed convex subset of H . Let N ≥  be some positive
integer. Let Am : C →H be an inverse-strongly monotone mapping with the constant αm for
each m ∈ {, , . . . ,N}. Assume F =

⋂N
m=VI(C,Am) �= ∅. Let {αn,}, {αn,}, . . . , and {αn,N } be

real number sequences in (, ). Let {rn,}, . . . , and {rn,N } be positive real number sequences.
Let {xn} be a sequence in C generated in the following iterative process:

x ∈ C, xn+ = αn,xn +
N∑

m=

αn,mPC(xn – rn,mAmxn), n≥ .

Assume that the sequences {αn,}, {αn,}, . . . , {αn,N }, {βn}, {rn,}, . . . , {rn,N }, and {kn} satisfy
the following restrictions:
(a)

∑N
m= αn,m =  and  < a≤ αn,m < , ∀m ∈ {, . . . ,N};

(b)  < b ≤ rn,m ≤ c < αm, ∀m ∈ {, . . . ,N};
(c)

∑∞
n=(kn – ) <∞,

where a, b, and c are positive real numbers. Then the sequence {xn} converges weakly to
some point in F .
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