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Abstract
Using the fixed point method and the direct method, we prove the Hyers-Ulam
stability of an additive functional equation, a quadratic functional equation, a cubic
functional equation and a quartic functional equation in paranormed spaces.
Furthermore, we prove the Hyers-Ulam stability of functional inequalities in

paranormed spaces by using the fixed point method and the direct method.
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1 Introduction and preliminaries
The concept of statistical convergence for sequences of real numbers was introduced by
Fast [] and Steinhaus [] independently, and since then several generalizations and appli-
cations of this notion have been investigated by various authors (see [–]). This notion
was defined in normed spaces by Kolk [].
We recall some basic facts concerning Fréchet spaces.

Definition . [] Let X be a vector space. A paranorm P : X → [,∞) is a function on X
such that
() P() = ;
() P(–x) = P(x);
() P(x + y) ≤ P(x) + P(y) (triangle inequality)
() If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X with P(xn – x) → , then

P(tnxn – tx) →  (continuity of multiplication).
The pair (X,P) is called a paranormed space if P is a paranorm on X .
The paranorm is called total if, in addition, we have

() P(x) =  implies x = .

A Fréchet space is a total and complete paranormed space.
The stability problem of functional equations originated from a question of Ulam []

concerning the stability of group homomorphisms. Hyers [] gave the first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ theoremwas generalized
by Aoki [] for additive mappings and by Rassias [] for linear mappings by considering
an unboundedCauchy difference. A generalization of the Rassias theoremwas obtained by
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Găvruta [] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Rassias’ approach.
In , Rassias [] during the th International Symposium on Functional Equations

asked the question whether such a theorem can also be proved for p ≥ . In , Gajda
[], following the same approach as in Rassias [], gave an affirmative solution to this
question for p > . It was shown by Gajda [], as well as by Rassias and Šemrl [], that
one cannot prove a Rassias-type theoremwhen p =  (cf. the books of Czerwik [], Hyers,
Isac and Rassias []).
The functional equation

f (x + y) + f (x – y) = f (x) + f (y) (.)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for
the quadratic functional equation was proved by Skof [] for mappings f : X → Y , where
X is a normed space and Y is a Banach space. Cholewa [] noticed that the theorem
of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik
[] proved the Hyers-Ulam stability of the quadratic functional equation. The stability
problems of several functional equations have been extensively investigated by a number
of authors, and there are many interesting results concerning this problem (see [–]).
In [], Jun and Kim considered the following cubic functional equation:



f (x + y) +



f (x – y) = f (x + y) + f (x – y) + f (x). (.)

It is easy to show that the function f (x) = x satisfies the functional equation (.), which
is called a cubic functional equation, and every solution of the cubic functional equation
is said to be a cubic mapping.
In [], Lee et al. considered the following quartic functional equation:



f (x + y) +



f (x – y) = f (x + y) + f (x – y) + f (x) – f (y). (.)

It is easy to show that the function f (x) = x satisfies the functional equation (.), which is
called a quartic functional equation, and every solution of the quartic functional equation
is said to be a quartic mapping.
In [], Gilányi showed that if f satisfies the functional inequality

∥∥f (x) + f (y) – f
(
xy–

)∥∥ ≤ ∥∥f (xy)∥∥, (.)

then f satisfies the Jordan-von Neumann functional equation

f (x) + f (y) = f (xy) + f
(
xy–

)
.

See also []. Fechner [] and Gilányi [] proved the Hyers-Ulam stability of the func-
tional inequality (.).
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Park, Cho and Han [] proved the Hyers-Ulam stability of the following functional
inequalities:

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y + z



)∥∥∥∥, (.)
∥∥f (x) + f (y) + f (z)

∥∥ ≤ ∥∥f (x + y + z)
∥∥, (.)

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)∥∥∥∥. (.)

Throughout this paper, assume that (X,P) is a Fréchet space and that (Y ,‖·‖) is a Banach
space.
In this paper, we prove the Hyers-Ulam stability of the Cauchy additive functional equa-

tion, the quadratic functional equation (.), the cubic functional equation (.) and the
quartic functional equation (.) in paranormed spaces by using the fixed point method
and the direct method.
Furthermore, we prove the Hyers-Ulam stability of the functional inequalities (.), (.)

and (.) in paranormed spaces by using the fixed point method and the direct method.

2 Hyers-Ulam stability of the Cauchy additive functional equation
Using the fixed point method and the direct method, we prove the Hyers-Ulam stability
of the Cauchy additive functional equation in paranormed spaces.
Let S be a set. A function m : S × S → [,∞] is called a generalized metric on S if m

satisfies
() m(x, y) =  if and only if x = y;
() m(x, y) =m(y,x) for all x, y ∈ S;
() m(x, z) ≤ m(x, y) +m(y, z) for all x, y, z ∈ S.
We recall a fundamental result in fixed point theory.

Theorem. [, ] Let (S,m) be a complete generalizedmetric space,and let J : S → S be
a strictly contractive mapping with a Lipschitz constant α < . Then, for each given element
x ∈ S, either

m
(
Jnx, Jn+x

)
= ∞

for all nonnegative integers n or there exists a positive integer n such that
() m(Jnx, Jn+x) < ∞, ∀n≥ n;
() the sequence {Jnx} converges to a fixed point y∗ of J ;
() y∗ is the unique fixed point of J in the setW = {y ∈ S |m(Jnx, y) < ∞};
() m(y, y∗) ≤ 

–α
m(y, Jy) for all y ∈W .

In , Isac and Rassias [] were the first to provide applications of stability theory
of functional equations for the proof of new fixed point theorems with applications. By
using fixed pointmethods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [–]).
Note that P(x) ≤ P(x) for all x ∈ Y .

http://www.journalofinequalitiesandapplications.com/content/2013/1/198
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Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)
(.)

for all x, y ∈ X. Let f : X → Y be a mapping such that

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ ϕ(x, y) (.)

for all x, y ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 

 – α
ϕ(x,x) (.)

for all x ∈ X.

Proof Letting y = x in (.), we get

∥∥f (x) – f (x)
∥∥ ≤ ϕ(x,x),

and so
∥∥∥∥f (x) – 


f (x)

∥∥∥∥ ≤ 

ϕ(x,x) (.)

for all x ∈ X.
Consider the set

S := {h : X → Y }

and introduce the generalized metric on S:

m(g,h) = inf
{
μ ∈R+ :

∥∥g(x) – h(x)
∥∥ ≤ μϕ(x,x), ∀x ∈ X

}
,

where, as usual, infφ = +∞. It is easy to show that (S,m) is complete (see [, Lemma .]).
Now we consider the linear mapping J : S → S such that

Jh(x) :=


h(x)

for all x ∈ X.
Let g,h ∈ S be given such thatm(g,h) = ε. Since

∥∥Jg(x) – Jh(x)
∥∥ =

∥∥∥∥ g(x) –


h(x)

∥∥∥∥ ≤ αϕ(x,x)

for all x ∈ X,m(g,h) = ε implies thatm(Jg, Jh) ≤ αε. This means that

m(Jg, Jh) ≤ αm(g,h)

for all g,h ∈ S.

http://www.journalofinequalitiesandapplications.com/content/2013/1/198
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It follows from (.) thatm(f , Jf ) ≤ 
 .

By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A(x) = A(x) (.)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M =
{
g ∈ S :m(f , g) < ∞}

.

This implies that A is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying

∥∥f (x) –A(x)
∥∥ ≤ μϕ(x,x)

for all x ∈ X;
()m(Jnf ,A) →  as n→ ∞. This implies the equality

lim
n→∞


n

f
(
nx

)
= A(x)

for all x ∈ X;
()m(f ,A) ≤ 

–α
m(f , Jf ), which implies the inequality

m(f ,A) ≤ 
 – α

.

This implies that the inequality (.) holds true.
It follows from (.) and (.) that

∥∥A(x + y) –A(x) –A(y)
∥∥ = lim

n→∞

n

∥∥f (n(x + y)
)
– f

(
nx

)
– f

(
ny

)∥∥

≤ lim
n→∞

nαn

n
ϕ(x, y) = 

for all x, y ∈ X. So, A(x + y) –A(x) –A(y) =  for all x, y ∈ X. Thus A : X → Y is an additive
mapping, as desired. �

Corollary . Let r be a positive real number with r < , and let f : X → Y be a mapping
such that

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ P(x)r + P(y)r

for all x, y ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 

 – r
P(x)r (.)

for all x ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2013/1/198
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Proof Taking ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X and choosing α = r– in Theorem .,
we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that

�(x, y) :=
∞∑
j=


j

ϕ
(
jx, jy

)
<∞

for all x, y ∈ X. Let f : X → Y be a mapping satisfying (.). Then there exists a unique
Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 


�(x,x)

for all x ∈ X.

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r < . Letting ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

Theorem . Let ϕ : Y  → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ α


ϕ(x, y) (.)

for all x, y ∈ Y . Let f : Y → X be a mapping such that

P
(
f (x + y) – f (x) – f (y)

) ≤ ϕ(x, y) (.)

for all x, y ∈ Y . Then there exists a unique additive mapping A : Y → X such that

P
(
f (x) –A(x)

) ≤ α

 – α
ϕ(x,x) (.)

for all x ∈ Y .

Proof Letting y = x in (.), we get

P
(
f (x) – f (x)

) ≤ ϕ(x,x),

and so

P
(
f (x) – f

(
x


))
≤ α


ϕ(x,x) (.)

for all x ∈ Y .
Consider the set

S := {h : Y → X}

http://www.journalofinequalitiesandapplications.com/content/2013/1/198
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and introduce the generalized metric on S:

m(g,h) = inf
{
μ ∈R+ : P

(
g(x) – h(x)

) ≤ μϕ(x,x), ∀x ∈ Y
}
,

where, as usual, infφ = +∞. It is easy to show that (S,m) is complete (see [, Lemma .]).
Now we consider the linear mapping J : S → S such that

Jh(x) := h
(
x


)

for all x ∈ Y .
Let g,h ∈ S be given such thatm(g,h) = ε. Since

P
(
Jg(x) – Jh(x)

)
= P

(
g

(
x


)
– h

(
x


))
≤ αϕ(x,x)

for all x ∈ Y ,m(g,h) = ε implies thatm(Jg, Jh) ≤ αε. This means that

m(Jg, Jh) ≤ αm(g,h)

for all g,h ∈ S.
It follows from (.) thatm(f , Jf ) ≤ α

 .
By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A
(
x


)
=


A(x) (.)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M =
{
g ∈ S :m(f , g) < ∞}

.

This implies that A is a uniquemapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying

P
(
f (x) –A(x)

) ≤ μϕ(x,x)

for all x ∈ Y ;
()m(Jnf ,A) →  as n→ ∞. This implies the equality

lim
n→∞nf

(
x
n

)
= A(x)

for all x ∈ Y ;
()m(f ,A) ≤ 

–α
m(f , Jf ), which implies the inequality

m(f ,A) ≤ α

 – α
.

This implies that the inequality (.) holds true.

http://www.journalofinequalitiesandapplications.com/content/2013/1/198
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It follows from (.) and (.) that

P
(
A(x + y) –A(x) –A(y)

)
= lim

n→∞P
(
n

(
f
(
x + y
n

)
– f

(
x
n

)
– f

(
y
n

)))

≤ lim
n→∞nP

((
f
(
x + y
n

)
– f

(
x
n

)
– f

(
y
n

)))

≤ lim
n→∞

nαn

n
ϕ(x, y) = 

for all x, y ∈ Y . So, A(x + y) –A(x) –A(y) =  for all x, y ∈ Y . Thus A : Y → X is an additive
mapping, as desired. �

Corollary . Let r, θ be positive real numbers with r > , and let f : Y → X be a mapping
such that

P
(
f (x + y) – f (x) – f (y)

) ≤ θ
(‖x‖r + ‖y‖r)

for all x, y ∈ Y . Then there exists a unique Cauchy additive mapping A : Y → X such that

P
(
f (x) –A(x)

) ≤ θ
r – 

‖x‖r (.)

for all x ∈ Y .

Proof Taking ϕ(x, y) = θ (‖x‖r + ‖y‖r) for all x, y ∈ X and choosing α = –r in Theorem .,
we get the desired result. �

Theorem . Let ϕ : Y  → [,∞) be a function such that

�(x, y) :=
∞∑
j=

jϕ
(
x
j
,
y
j

)
<∞

for all x, y ∈ Y . Let f : Y → X be a mapping satisfying (.). Then there exists a unique
Cauchy additive mapping A : Y → X such that

P
(
f (x) –A(x)

) ≤ 

�(x,x)

for all x ∈ Y .

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r > . Letting ϕ(x, y) = θ (‖x‖r + ‖y‖r) for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

3 Hyers-Ulam stability of the quadratic functional equation (1.1)
Using the fixed point method and the direct method, we prove the Hyers-Ulam stability
of the quadratic functional equation (.) in paranormed spaces.

http://www.journalofinequalitiesandapplications.com/content/2013/1/198
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Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f () =  and
∥∥f (x + y) + f (x – y) – f (x) – f (y)

∥∥ ≤ ϕ(x, y) (.)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥ ≤ 

 – α
ϕ(x,x)

for all x ∈ X.

Proof Letting y = x in (.), we get
∥∥f (x) – f (x)

∥∥ ≤ ϕ(x,x),

and so
∥∥∥∥f (x) – 


f (x)

∥∥∥∥ ≤ 


ϕ(x,x)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r be a positive real number with r < , and let f : X → Y be a mapping
satisfying f () =  and

∥∥f (x + y) + f (x – y) – f (x) – f (y)
∥∥ ≤ P(x)r + P(y)r

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥ ≤ 

 – r
P(x)r (.)

for all x ∈ X.

Proof Taking ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X and choosing α = r– in Theorem .,
we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that

�(x, y) :=
∞∑
j=


j

ϕ
(
jx, jy

)
< ∞

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f () =  and (.). Then there exists
a unique quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥ ≤ 


�(x,x)

for all x ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2013/1/198
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Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r < . Letting ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

Theorem . Let ϕ : Y  → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ α


ϕ(x, y)

for all x, y ∈ Y . Let f : Y → X be a mapping satisfying f () =  and

P
(
f (x + y) + f (x – y) – f (x) – f (y)

) ≤ ϕ(x, y) (.)

for all x, y ∈ Y . Then there exists a unique quadratic mapping Q : Y → X such that

P
(
f (x) –Q(x)

) ≤ α

 – α
ϕ(x,x)

for all x ∈ Y .

Proof Letting y = x in (.), we get

P
(
f (x) – f (x)

) ≤ ϕ(x,x),

and so

P
(
f (x) – f

(
x


))
≤ ϕ

(
x

,
x


)
≤ α


ϕ(x,x)

for all x ∈ Y .
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r, θ be positive real numbers with r > , and let f : Y → X be a mapping
satisfying f () =  and

P
(
f (x + y) + f (x – y) – f (x) – f (y)

) ≤ θ
(‖x‖r + ‖y‖r)

for all x, y ∈ Y . Then there exists a unique quadratic mapping Q : Y → X such that

P
(
f (x) –Q(x)

) ≤ θ
r – 

‖x‖r (.)

for all x ∈ Y .

Proof Taking ϕ(x, y) = θ (‖x‖r +‖y‖r) for all x, y ∈ X and choosing α = –r in Theorem .,
we get the desired result. �

Theorem . Let ϕ : Y  → [,∞) be a function such that

�(x, y) :=
∞∑
j=

jϕ
(
x
j
,
y
j

)
< ∞

http://www.journalofinequalitiesandapplications.com/content/2013/1/198
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for all x, y ∈ Y . Let f : Y → X be a mapping satisfying f () =  and (.). Then there exists
a unique quadratic mapping Q : Y → X such that

P
(
f (x) –Q(x)

) ≤ 


�(x,x)

for all x ∈ Y .

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r > . Letting ϕ(x, y) = θ (‖x‖r + ‖y‖r) for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

4 Hyers-Ulam stability of the cubic functional equation (1.2)
Using the fixed point method and the direct method, we prove the Hyers-Ulam stability
of the cubic functional equation (.) in paranormed spaces.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)

for all x, y ∈ X. Let f : X → Y be a mapping such that

∥∥∥∥  f (x + y) +


f (x – y) – f (x + y) – f (x – y) – f (x)

∥∥∥∥ ≤ ϕ(x, y) (.)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y such that

∥∥f (x) –C(x)
∥∥ ≤ 

 – α
ϕ(x, )

for all x ∈ X.

Proof Letting y =  in (.), we get

∥∥f (x) – f (x)
∥∥ ≤ ϕ(x, ),

and so
∥∥∥∥f (x) – 


f (x)

∥∥∥∥ ≤ 

ϕ(x, )

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r be a positive real number with r < , and let f : Y → X be a mapping
such that

∥∥∥∥  f (x + y) +


f (x – y) – f (x + y) – f (x – y) – f (x)

∥∥∥∥ ≤ P(x)r + P(y)r

http://www.journalofinequalitiesandapplications.com/content/2013/1/198


Park and Lee Journal of Inequalities and Applications 2013, 2013:198 Page 12 of 23
http://www.journalofinequalitiesandapplications.com/content/2013/1/198

for all x, y ∈ X. Then there exists a unique cubic mapping C : Y → X such that

P
(
f (x) –C(x)

) ≤ 
 – r

P(x)r (.)

for all x ∈ Y .

Proof Taking ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X and choosing α = r– in Theorem .,
we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that

�(x, y) :=
∞∑
j=


j

ϕ
(
jx, jy

)
< ∞

for all x, y ∈ X. Let f : X → Y be amapping satisfying (.).Then there exists a unique cubic
mapping C : X → Y such that

∥∥f (x) –C(x)
∥∥ ≤ 


�(x, )

for all x ∈ X.

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r < . Letting ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

Theorem . Let ϕ : Y  → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ α


ϕ(x, y)

for all x, y ∈ Y . Let f : Y → X be a mapping such that

P
(


f (x + y) +



f (x – y) – f (x + y) – f (x – y) – f (x)

)
≤ ϕ(x, y) (.)

for all x, y ∈ Y . Then there exists a unique cubic mapping C : Y → X such that

P
(
f (x) –C(x)

) ≤ α

 – α
ϕ(x, )

for all x ∈ Y .

Proof Letting y =  in (.), we get

P
(
f (x) – f (x)

) ≤ ϕ(x, ),

and so

P
(
f (x) – f

(
x


))
≤ ϕ

(
x

,
x


)
≤ α


ϕ(x, )

for all x ∈ Y .
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The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r, θ be positive real numbers with r > , and let f : Y → X be a mapping
such that

P
(


f (x + y) +



f (x – y) – f (x + y) – f (x – y) – f (x)

)
≤ θ

(‖x‖r + ‖y‖r)

for all x, y ∈ Y . Then there exists a unique cubic mapping C : Y → X such that

P
(
f (x) –C(x)

) ≤ θ

r – 
‖x‖r (.)

for all x ∈ Y .

Proof Taking ϕ(x, y) = θ (‖x‖r +‖y‖r) for all x, y ∈ X and choosing α = –r in Theorem .,
we get the desired result. �

Theorem . Let ϕ : Y  → [,∞) be a function such that

�(x, y) :=
∞∑
j=

jϕ
(
x
j
,
y
j

)
< ∞

for all x, y ∈ Y . Let f : Y → X be amapping satisfying (.).Then there exists a unique cubic
mapping C : Y → X such that

P
(
f (x) –C(x)

) ≤ 

�(x, )

for all x ∈ Y .

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r > . Letting ϕ(x, y) = θ (‖x‖r + ‖y‖r) for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

5 Hyers-Ulam stability of the quartic functional equation (1.3)
Using the fixed point method and the direct method, we prove the Hyers-Ulam stability
of the quartic functional equation (.) in paranormed spaces.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ αϕ

(
x

,
y


)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f () =  and

∥∥∥∥  f (x + y) +


f (x – y) – f (x + y) – f (x – y) – f (x) + f (y)

∥∥∥∥ ≤ ϕ(x, y) (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/198


Park and Lee Journal of Inequalities and Applications 2013, 2013:198 Page 14 of 23
http://www.journalofinequalitiesandapplications.com/content/2013/1/198

for all x, y ∈ X. Then there exists a unique quartic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥ ≤ 

 – α
ϕ(x, )

for all x ∈ X.

Proof Letting y =  in (.), we get

∥∥f (x) – f (x)
∥∥ ≤ ϕ(x, ),

and so
∥∥∥∥f (x) – 


f (x)

∥∥∥∥ ≤ 


ϕ(x, )

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r be a positive real number with r < , and let f : Y → X be a mapping
satisfying f () =  and

∥∥∥∥  f (x + y) +


f (x – y) – f (x + y) – f (x – y) – f (x) + f (y)

∥∥∥∥ ≤ P(x)r + P(y)r

for all x, y ∈ X. Then there exists a unique quartic mapping Q : Y → X such that

P
(
f (x) –Q(x)

) ≤ 
 – r

P(x)r (.)

for all x ∈ Y .

Proof Taking ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X and choosing α = r– in Theorem .,
we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that

�(x, y) :=
∞∑
j=


j

ϕ
(
jx, jy

)
< ∞

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f () =  and (.). Then there exists
a unique quartic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥ ≤ 


�(x, )

for all x ∈ X.

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r < . Letting ϕ(x, y) = P(x)r + P(y)r for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

http://www.journalofinequalitiesandapplications.com/content/2013/1/198
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Theorem . Let ϕ : Y  → [,∞) be a function such that there exists an α <  with

ϕ(x, y) ≤ α


ϕ(x, y)

for all x, y ∈ Y . Let f : Y → X be a mapping satisfying f () =  and

P
(


f (x + y) +



f (x – y) – f (x + y) – f (x – y) – f (x) + f (y)

)
≤ ϕ(x, y) (.)

for all x, y ∈ Y . Then there exists a unique quartic mapping Q : Y → X such that

P
(
f (x) –Q(x)

) ≤ α

 – α
ϕ(x, )

for all x ∈ Y .

Proof Letting y =  in (.), we get

P
(
f (x) – f (x)

) ≤ ϕ(x, ),

and so

P
(
f (x) – f

(
x


))
≤ ϕ

(
x

,
x


)
≤ α


ϕ(x, )

for all x ∈ Y .
The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r, θ be positive real numbers with r > , and let f : Y → X be a mapping
satisfying f () =  and

P
(


f (x + y) +



f (x – y) – f (x + y) – f (x – y) – f (x) + f (y)

)
≤ θ

(‖x‖r + ‖y‖r)

for all x, y ∈ Y . Then there exists a unique quartic mapping Q : Y → X such that

P
(
f (x) –Q(x)

) ≤ θ

r – 
‖x‖r (.)

for all x ∈ Y .

Proof Taking ϕ(x, y) = θ (‖x‖r +‖y‖r) for all x, y ∈ X and choosing α = –r in Theorem .,
we get the desired result. �

Theorem . Let ϕ : Y  → [,∞) be a function such that

�(x, y) :=
∞∑
j=

jϕ
(
x
j
,
y
j

)
< ∞
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for all x, y ∈ Y . Let f : Y → X be a mapping satisfying f () =  and (.). Then there exists
a unique quartic mapping Q : Y → X such that

P
(
f (x) –Q(x)

) ≤ 


�(x, )

for all x ∈ Y .

Proof The proof is similar to the proof of [, Theorem .]. �

Remark . Let r > . Letting ϕ(x, y) = θ (‖x‖r + ‖y‖r) for all x, y ∈ X in Theorem ., we
obtain the inequality (.). The proof is given in [, Theorem .].

6 Stability of a functional inequality associated with a three-variable Jensen
additive functional equation

Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of
a functional inequality associated with a Jordan-von Neumann type three-variable Jensen
additive functional equation in paranormed spaces.

Proposition . [, Proposition .] Let f : X → Y be a mapping such that

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y + z



)∥∥∥∥
for all x, y, z ∈ X. Then f is Cauchy additive.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y, z) ≤ αϕ

(
x

,
y

,
z


)
(.)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping such that

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y + z



)∥∥∥∥ + ϕ(x, y, z) (.)

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 

 – α
ϕ(x,x, –x) (.)

for all x ∈ X.

Proof Letting y = x and z = –x in (.), we get

∥∥f (x) – f (x)
∥∥ =

∥∥f (x) + f (–x)
∥∥ ≤ ϕ(x,x, –x),

and so
∥∥∥∥f (x) – 


f (x)

∥∥∥∥ ≤ 

ϕ(x,x, –x) (.)

for all x ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2013/1/198
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Consider the set

S := {h : X → Y }

and introduce the generalized metric on S

m(g,h) = inf
{
μ ∈R+ :

∥∥g(x) – h(x)
∥∥ ≤ μϕ(x,x, –x), ∀x ∈ X

}
,

where, as usual, infφ = +∞. It is easy to show that (S,m) is complete (see [, Lemma .]).
Now we consider the linear mapping J : S → S such that

Jh(x) :=


h(x)

for all x ∈ X.
Let g,h ∈ S be given such thatm(g,h) = ε. Since

∥∥Jg(x) – Jh(x)
∥∥ =

∥∥∥∥ g(x) –


h(x)

∥∥∥∥ ≤ αϕ(x,x, –x)

for all x ∈ X,m(g,h) = ε implies thatm(Jg, Jh) ≤ αε. This means that

m(Jg, Jh) ≤ αm(g,h)

for all g,h ∈ S.
It follows from (.) thatm(f , Jf ) ≤ 

 .
By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A(x) = A(x) (.)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

M =
{
g ∈ S :m(f , g) < ∞}

.

This implies that A is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying

∥∥f (x) –A(x)
∥∥ ≤ μϕ(x,x, –x)

for all x ∈ X;
()m(Jnf ,A) →  as n→ ∞. This implies the equality

lim
n→∞


n

f
(
nx

)
= A(x)

for all x ∈ X;

http://www.journalofinequalitiesandapplications.com/content/2013/1/198


Park and Lee Journal of Inequalities and Applications 2013, 2013:198 Page 18 of 23
http://www.journalofinequalitiesandapplications.com/content/2013/1/198

()m(f ,A) ≤ 
–α

m(f , Jf ), which implies the inequality

m(f ,A) ≤ 
 – α

.

This implies that the inequality (.) holds true.
It follows from (.) and (.) that


n

∥∥f (nx) + f
(
ny

)
+ f

(
nz

)∥∥ ≤ 
n

∥∥∥∥f
(
n(x + y + z)



)∥∥∥∥ +

n

ϕ
(
nx, ny, nz

)

≤ 
n

∥∥∥∥f
(
n(x + y + z)



)∥∥∥∥ +
nαn

n
ϕ(x, y, z) (.)

for all x, y, z ∈ X. Letting n→ ∞ in (.), we get

∥∥A(x) +A(y) +A(z)
∥∥ ≤

∥∥∥∥A
(
x + y + z



)∥∥∥∥
for all x, y, z ∈ X. By Proposition ., A : X → Y is Cauchy additive, as desired. �

Corollary . [, Theorem .] Let r be a positive real number with r < , and let f : X →
Y be an odd mapping such that

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y + z



)∥∥∥∥ + P(x)r + P(y)r + P(z)r

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤  + r

 – r
P(x)r (.)

for all x ∈ X.

Proof Taking ϕ(x, y, z) = P(x)r + P(y)r + P(z)r for all x, y, z ∈ X and choosing α = r– in
Theorem ., we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that

�(x, y, z) :=
∞∑
j=


j

ϕ
(
jx, jy, jz

)
<∞

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying (.). Then there exists a
unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 


�(x,x, –x)

for all x ∈ X.

Proof The proof is similar to the proof of [, Theorem .]. �

Remark. Let r < . Lettingϕ(x, y, z) = P(x)r+P(y)r+P(z)r for all x, y ∈ X inTheorem.,
we obtain the inequality (.). The proof is given in [, Theorem .].
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7 Stability of a functional inequality associated with a three-variable Cauchy
additive functional equation

Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of
a functional inequality associatedwith a Jordan-vonNeumann type three-variable Cauchy
additive functional equation in paranormed spaces.

Proposition . [, Proposition .] Let f : X → Y be a mapping such that

∥∥f (x) + f (y) + f (z)
∥∥ ≤ ∥∥f (x + y + z)

∥∥

for all x, y, z ∈ X. Then f is Cauchy additive.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y, z) ≤ αϕ

(
x

,
y

,
z


)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping such that

∥∥f (x) + f (y) + f (z)
∥∥ ≤ ∥∥f (x + y + z)

∥∥ + ϕ(x, y, z) (.)

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 

 – α
ϕ(x,x, –x)

for all x ∈ X.

Proof Letting y = x and z = –x in (.), we get

∥∥f (x) – f (x)
∥∥ =

∥∥f (x) + f (–x)
∥∥ ≤ ϕ(x,x, –x),

and so
∥∥∥∥f (x) – 


f (x)

∥∥∥∥ ≤ 

ϕ(x,x, –x) (.)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem .. �

Corollary . [, Theorem .] Let r be a positive real number with r < , and let f : X →
Y be an odd mapping such that

∥∥f (x) + f (y) + f (z)
∥∥ ≤ ∥∥f (x + y + z)

∥∥ + P(x)r + P(y)r + P(z)r

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤  + r

 – r
P(x)r (.)

for all x ∈ X.
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Proof Taking ϕ(x, y, z) = P(x)r + P(y)r + P(z)r for all x, y, z ∈ X and choosing α = r– in
Theorem ., we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that

�(x, y, z) :=
∞∑
j=


j

ϕ
(
jx, jy, jz

)
<∞

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying (.). Then there exists a
unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 


�(x,x, –x)

for all x ∈ X.

Proof The proof is similar to the proof of [, Theorem .]. �

Remark. Let r < . Letting ϕ(x, y, z) = P(x)r+P(y)r+P(z)r for all x, y ∈ X in Theorem.,
we obtain the inequality (.). The proof is given in [, Theorem .].

8 Stability of a functional inequality associated with the Cauchy-Jensen
functional equation

Using the fixed point method and the direct method, we prove the Hyers-Ulam stabil-
ity of a functional inequality associated with a Jordan-von Neumann type Cauchy-Jensen
additive functional equation in paranormed spaces.

Proposition . [, Proposition .] Let f : X → Y be a mapping such that

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)∥∥∥∥

for all x, y, z ∈ X. Then f is Cauchy additive.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y, z) ≤ αϕ

(
x

,
y

,
z


)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping such that

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)∥∥∥∥ + ϕ(x, y, z) (.)

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 

 – α
ϕ(x, , –x)

for all x ∈ X.
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Proof Replacing x by x and letting y =  and z = –x in (.), we get

∥∥f (x) – f (x)
∥∥ =

∥∥f (x) + f (–x)
∥∥ ≤ ϕ(x, , –x)

for all x ∈ X.
The rest of the proof is the same as in the proof of Theorem .. �

Corollary . [, Theorem .] Let r be a positive real number with r < , and let f : X →
Y be an odd mapping such that

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)∥∥∥∥ + P(x)r + P(y)r + P(z)r

for all x, y, z ∈ X. Then there exists a unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤  + r

 – r
P(x)r (.)

for all x ∈ X.

Proof Taking ϕ(x, y, z) = P(x)r + P(y)r + P(z)r for all x, y, z ∈ X and choosing α = r– in
Theorem ., we get the desired result. �

Theorem . Let ϕ : X → [,∞) be a function such that

�(x, y, z) :=
∞∑
j=


j

ϕ
(
jx, jy, jz

)
<∞

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying (.). Then there exists a
unique Cauchy additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥ ≤ 


�(x, , –x) (.)

for all x ∈ X.

Proof The proof is similar to the proof of [, Theorem .]. �

Remark. Let r < . Letting ϕ(x, y, z) = P(x)r+P(y)r+P(z)r for all x, y ∈ X inTheorem.,
we obtain the inequality (.). The proof is given in [, Theorem .].
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