Global existence of solutions and energy decay for a Kirchhoff-type equation with nonlinear dissipation

Yaojun Ye*

Correspondence:
yjye2013@163.com
Department of Mathematics and Information Science, Zhejiang University of Science and Technology, Hangzhou, 310023, P.R. China

Abstract

This paper deals with the initial boundary value problem for a class of nonlinear Kirchhoff-type equation with dissipative term $$
u_{t t}-\varphi\left(\|\nabla u\|_{2}^{2}\right) \Delta u+a\left|u_{t}\right|^{\alpha-2} u_{t}=b|u|^{\beta-2} u, \quad x \in \Omega, t>0
$$ in a bounded domain, where $a, b>0$ and $\alpha, \beta>2$ are constants. We obtain the global existence of solutions by constructing a stable set in $H_{0}^{1}(\Omega)$ and show the energy decay estimate by applying a lemma of Komornik. MSC: 35B40; 35L70

Keywords: nonlinear Kirchhoff-type equation; initial boundary value problem; stable set; energy decay estimate

1 Introduction

In this paper, we investigate the existence and asymptotic stability of global solutions for the initial boundary value problem of the following Kirchhoff-type equation with nonlinear dissipative term in a bounded domain

$$
\begin{align*}
& u_{t t}-\varphi\left(\|\nabla u\|_{2}^{2}\right) \Delta u+a\left|u_{t}\right|^{\alpha-2} u_{t}=b|u|^{\beta-2} u, \quad x \in \Omega, t>0, \tag{1.1}\\
& u(x, 0)=u_{0}(x), \quad u_{t}(x, 0)=u_{1}(x), \quad x \in \Omega \tag{1.2}\\
& u(x, t)=0, \quad x \in \partial \Omega, t \geq 0 \tag{1.3}
\end{align*}
$$

where Ω is a bounded domain in R^{n} with a smooth boundary $\partial \Omega, a, b>0$ and $\alpha, \beta>2$ are constants, $\varphi(s)$ is a C^{1}-class function on $[0,+\infty)$ satisfying

$$
\begin{equation*}
\varphi(s) \geq m_{0}, \quad s \varphi(s) \geq \int_{0}^{s} \varphi(\theta) d \theta, \quad \forall s \in[0,+\infty) \tag{1.4}
\end{equation*}
$$

with $m_{0} \geq 1$ is a constant.
If $\Omega=[0, L]$ is an interval of the real line, equation (1.1) describes a small amplitude vibration of an elastic string with fixed endpoints. The original equation is

$$
\rho h u_{t t}+\delta u_{t}+f=\left(\gamma_{0}+\frac{E h}{2 L} \int_{0}^{L}\left|u_{x}\right|^{2} d s\right) u_{x x}
$$

where L is the rest length, E is the Young modulus, ρ is the mass density, h is the crosssection area, γ_{0} is the initial axial tension, δ is the resistance modulus and f is a nonlinear perturbation effect.
When $a=b=0, \varphi(s)=s^{r}, r \geq 1$ and $u_{0} \neq 0$ (the mildly degenerate case), the local existence of solutions in Sobolev space was investigated by many author [1-6]. Concerning a global existence of solutions for mildly degenerate Kirchhoff equations, it is natural to add a dissipative term u_{t} or Δu_{t}.
For $a=1, b=0, \alpha=2, \varphi(s)=s^{r}, r \geq 1$, the problem (1.1)-(1.3) was treated by Nishihara and Yamada [7]. They proved the existence and uniqueness of a global solution $u(t)$ for small data $\left(u_{0}, u_{1}\right) \in\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \times H_{0}^{1}(\Omega)$ with $u_{0} \neq 0$ and the polynomial decay of the solution. Aassila and Benaissa [8] extended the global existence part of [7] to the case where $\varphi(s) \geq 0$ with $\varphi\left(\left\|\nabla u_{0}\right\|^{2}\right) \neq 0$ and the case of nonlinear dissipative term case $(a \neq 0)$. In the case $a=0$, for large β and $\varphi(s) \geq r>0$, D'Ancona and Spagnolo [9] proved that if $u_{0}, u_{1} \in C_{0}^{\infty}\left(R^{n}\right)$ are small, then problem (1.1)-(1.3) has a global solution. The nondegenerate case with $\alpha=2, a>0$ and $b=0$ was considered by De Brito, Yamada and Nishihara [10-13], they proved that for small initial data $\left(u_{0}, u_{1}\right) \in\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \times H_{0}^{1}(\Omega)$ there exists a unique global solution of (1.1)-(1.3) that decays exponentially as $t \rightarrow+\infty$.
When $\varphi(s) \geq 0$, Ghisi and Gobbino [14] proved the existence and uniqueness of a global solution $u(t)$ of the problem (1.1)-(1.3) for small initial data $\left(u_{0}, u_{1}\right) \in\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \times$ $H_{0}^{1}(\Omega)$ with $m\left(\left\|\nabla u_{0}\right\|^{2}\right) \neq 0$ and the asymptotic behavior $\left(u(t), u_{t}(t), u_{t t}(t)\right) \rightarrow\left(u_{\infty}, 0,0\right)$ in $\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \times H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ as $t \rightarrow+\infty$, where either $u_{\infty}=0$ or $\varphi\left(\left\|\nabla u_{\infty}\right\|^{2}\right)=0$.
The case $\varphi(s) \geq r>0$ has been considered by Hosoya and Yamada [15] under the following condition:

$$
0 \leq \beta<\frac{2}{n-4}, \quad n \geq 5 ; \quad 0 \leq \beta<+\infty, \quad n \leq 4
$$

They proved that, if the initial datas are small enough, the problem (1.1)-(1.3) has a global solution which decays exponentially as $t \rightarrow+\infty$.
In this paper, we prove the global existence for the problem (1.1)-(1.3) by applying the potential well theory introduced by Sattinger [16] and Payne and Sattinger [17]. Meanwhile, we obtain the asymptotic stability of global solutions by use of the lemma of Komornik [18].
We adopt the usual notation and convention. Let $H^{m}(\Omega)$ denote the Sobolev space with the norm $\|u\|_{H^{m}(\Omega)}=\left(\sum_{|\alpha| \leq m}\left\|D^{\alpha} u\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}, H_{0}^{m}(\Omega)$ denotes the closure in $H^{m}(\Omega)$ of $C_{0}^{\infty}(\Omega)$. For simplicity of notation, hereafter we denote by $\|\cdot\|_{p}$ the Lebesgue space $L^{p}(\Omega)$ norm, $\|\cdot\|$ denotes $L^{2}(\Omega)$ norm and we write equivalent norm $\|\nabla \cdot\|$ instead of $H_{0}^{1}(\Omega)$ norm $\|\cdot\|_{H_{0}^{1}(\Omega)}$. Moreover, M denotes various positive constants depending on the known constants and it may be difference in each appearance.
This paper is organized as follows: In the next section, we will give some preliminaries. Then in Section 3, we state the main results and give their proof.

2 Preliminaries

In order to state and prove our main results, we first define the following functionals:

$$
K(u)=m_{0}\|\nabla u\|^{2}-b\|u\|_{\beta}^{\beta}, \quad J(u)=\frac{m_{0}}{2}\|\nabla u\|^{2}-\frac{b}{\beta}\|u\|_{\beta}^{\beta},
$$

for $u \in H_{0}^{1}(\Omega)$. Then we define the stable set S by

$$
S=\left\{u \in H_{0}^{1}(\Omega), K(u)>0\right\} \cup\{0\} .
$$

We denote the total energy functional associated with (1.1)-(1.3) by

$$
\begin{equation*}
E(t)=\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{1}{2} \int_{0}^{\|\nabla u\|^{2}} \varphi(s) d s-\frac{b}{\beta}\|u\|_{\beta}^{\beta} \tag{2.1}
\end{equation*}
$$

for $u \in H_{0}^{1}(\Omega), t \geq 0$, and $E(0)=\frac{1}{2}\left\|u_{1}\right\|^{2}+\frac{1}{2} \int_{0}^{\left\|\nabla u_{0}\right\|^{2}} \varphi(s) d s-\frac{b}{\beta}\left\|u_{0}\right\|_{\beta}^{\beta}$ is the total energy of the initial data.

Lemma 2.1 Let q be a number with $2 \leq q<+\infty, n \leq 2$ and $2 \leq q \leq \frac{2 n}{n-2}, n>2$. Then there is a constant C depending on Ω and q such that

$$
\|u\|_{q} \leq C\|u\|_{H_{0}^{1}(\Omega)}, \quad \forall u \in H_{0}^{1}(\Omega)
$$

Lemma 2.2 [18] Let $y(t): R^{+} \rightarrow R^{+}$be a nonincreasing function and assume that there are two constants $\mu \geq 1$ and $A>0$ such that

$$
\int_{s}^{+\infty} y(t)^{\frac{\mu+1}{2}} d t \leq A y(s), \quad 0 \leq s<+\infty,
$$

then $y(t) \leq C y(0)(1+t)^{-\frac{2}{\mu-1}}, \forall t \geq 0$, if $\mu>1$, where C is positive constants independent of $y(0)$.

Lemma 2.3 Let $u(t, x)$ be a solutions to the problem (1.1)-(1.3). Then $E(t)$ is a nonincreasing function for $t>0$ and

$$
\begin{equation*}
\frac{d}{d t} E(t)=-a\left\|u_{t}(t)\right\|_{\alpha}^{\alpha} \tag{2.2}
\end{equation*}
$$

Proof By multiplying equation (1.1) by u_{t} and integrating over Ω, we get

$$
\frac{d}{d t} E(u(t))=-a\left\|u_{t}(t)\right\|_{\alpha}^{\alpha} \leq 0
$$

Therefore, $E(t)$ is a nonincreasing function on t.

We state a local existence result, which is known as a standard one (see [6, 19]).

Theorem 2.1 Suppose that $\alpha, \beta>2$ satisfy

$$
\begin{align*}
& 2<\beta<+\infty, \quad n \leq 2 ; \quad 2<\beta \leq \frac{2(n-1)}{n-2}, \quad n>2, \tag{2.3}\\
& 2<\alpha<+\infty, \quad n \leq 2 ; \quad 2<\alpha \leq \frac{2 n}{n-2}, \quad n>2, \tag{2.4}
\end{align*}
$$

and let $\left(u_{0}, u_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)$. Then there exists $T>0$ such that the problem (1.1)-(1.3) has a unique local solution $u(t)$ in the class

$$
\begin{equation*}
u \in C\left([0, T) ; H_{0}^{1}(\Omega)\right), \quad u_{t} \in C\left([0, T) ; L^{2}(\Omega)\right) \cap L^{\alpha}(\Omega \times[0, T)) \tag{2.5}
\end{equation*}
$$

In order to prove the existence of global solutions of the problem (1.1)-(1.3), we need the following lemma.

Lemma 2.4 Supposed that (2.3) holds, If $u_{0} \in S, u_{1} \in L^{2}(\Omega)$ such that

$$
\begin{equation*}
\delta=b C^{\beta}\left(\frac{2 \beta}{(\beta-2) m_{0}} E(0)\right)^{\frac{\beta-2}{2}}<1 \tag{2.6}
\end{equation*}
$$

then $u \in S$, for each $t \in[0, T)$.

Proof Assume that there exists a number $t^{*} \in[0, T)$ such that $u(t) \in S$ on $\left[0, t^{*}\right)$ and $u\left(t^{*}\right) \notin S$. Then we have

$$
\begin{equation*}
K\left(u\left(t^{*}\right)\right)=0, \quad u\left(t^{*}\right) \neq 0 . \tag{2.7}
\end{equation*}
$$

Since $u(t) \in S$ on $\left[0, t^{*}\right)$, it holds that

$$
\begin{align*}
J(u(t)) & =\frac{m_{0}}{2}\|\nabla u(t)\|^{2}-\frac{b}{\beta}\|u(t)\|_{\beta}^{\beta} \\
& \geq \frac{m_{0}}{2}\|\nabla u(t)\|^{2}-\frac{m_{0}}{\beta}\|\nabla u(t)\|^{2}=\frac{(\beta-2) m_{0}}{2 \beta}\|\nabla u(t)\|^{2}, \tag{2.8}
\end{align*}
$$

we have from $K\left(u\left(t^{*}\right)\right)=0$ that

$$
\begin{align*}
J\left(u\left(t^{*}\right)\right) & =\frac{m_{0}}{2}\left\|\nabla u\left(t^{*}\right)\right\|^{2}-\frac{b}{\beta}\left\|u\left(t^{*}\right)\right\|_{\beta}^{\beta} \\
& =\frac{m_{0}}{2}\left\|\nabla u\left(t^{*}\right)\right\|^{2}-\frac{m_{0}}{\beta}\left\|\nabla u\left(t^{*}\right)\right\|^{2}=\frac{(\beta-2) m_{0}}{2 \beta}\left\|\nabla u\left(t^{*}\right)\right\|^{2}, \tag{2.9}
\end{align*}
$$

we conclude from (1.4) and (2.1) that

$$
\begin{align*}
E(t) & \geq \frac{1}{2}\left\|u_{t}(t)\right\|^{2}+\frac{m_{0}}{2}\|\nabla u(t)\|^{2}-\frac{b}{\beta}\|u(t)\|_{\beta}^{\beta} \\
& =\frac{1}{2}\left\|u_{t}(t)\right\|^{2}+J(u(t)) . \tag{2.10}
\end{align*}
$$

Therefore, we obtain from (2.8), (2.9) and (2.10) that

$$
\begin{equation*}
\|\nabla u(t)\|^{2} \leq \frac{2 \beta}{(\beta-2) m_{0}} J(u(t)) \leq \frac{2 \beta}{(\beta-2) m_{0}} E(t) \leq \frac{2 \beta}{(\beta-2) m_{0}} E(0), \tag{2.11}
\end{equation*}
$$

for $\forall t \in\left[0, t^{*}\right]$.

By exploiting Lemma 2.1, (2.6) and (2.11), we easily arrive at

$$
\begin{align*}
b\|u(t)\|_{\beta}^{\beta} & \leq b C^{\beta}\|\nabla u(t)\|^{\beta}=b C^{\beta}\|\nabla u(t)\|^{\beta-2}\|\nabla u(t)\|^{2} \\
& \leq b C^{\beta}\left(\frac{2 \beta}{(\beta-2) m_{0}} E(0)\right)^{\frac{\beta-2}{2}}\|\nabla u(t)\|^{2}<\|\nabla u(t)\|^{2} \tag{2.12}
\end{align*}
$$

for all $t \in\left[0, t^{*}\right]$.
Therefore, we obtain

$$
\begin{equation*}
K\left(u\left(t^{*}\right)\right)=m_{0}\left\|\nabla u\left(t^{*}\right)\right\|^{2}-b\left\|u\left(t^{*}\right)\right\|_{\beta}^{\beta}>0, \tag{2.13}
\end{equation*}
$$

which contradicts (2.7). Thus, we conclude that $u(t) \in S$ on $[0, T)$.

3 The global existence and nonexistence

Theorem 3.1 Suppose that (2.3) and (2.4) hold, and $u(t)$ is a local solution of problem (1.1)-(1.3) on $[0, T)$. If $u_{0} \in S$ and $u_{1} \in L^{2}(\Omega)$ satisfy (2.6), then $u(x, t)$ is a global solution of the problem (1.1)-(1.3).

Proof It suffices to show that $\|\nabla u(t)\|^{2}+\left\|u_{t}(t)\right\|^{2}$ is bounded independently of t.
Under the hypotheses in Theorem 3.1, we get from Lemma 2.4 that $u(t) \in S$ on $[0, T)$. So the formula (2.8) holds on [0,T).

Therefore, we have from (2.8) that

$$
\begin{equation*}
\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{(\beta-2) m_{0}}{2 \beta}\|\nabla u(t)\|^{2} \leq \frac{1}{2}\left\|u_{t}(t)\right\|^{2}+J(u(t))=E(t) \leq E(0) \tag{3.1}
\end{equation*}
$$

Hence, we get

$$
\left\|u_{t}(t)\right\|^{2}+\|\nabla u(t)\|^{2} \leq \max \left(2, \frac{2 \beta}{(\beta-2) m_{0}}\right) E(0)<+\infty .
$$

The above inequality and the continuation principle lead to the global existence of the solution, that is, $T=+\infty$. Thus, the solution $u(t)$ is a global solution of the problem (1.1)(1.3).

Now we employ the analysis method to discuss the solution of the problem (1.1)-(1.3) occurs blow-up in finite time. Our result reads as follows.

Theorem 3.2 Assume that (i) $2<\beta<\frac{2 n}{n-2}$, if $n>2$; (ii) $0<\beta<+\infty$, if $n \leq 2$. If $u_{0} \in S$ and $u_{1} \in L^{2}(\Omega)$ such that

$$
E(0)<Q_{0}, \quad\left\|u_{0}\right\|_{\beta}>S_{0}
$$

where

$$
Q_{0}=\frac{(\beta-2) b}{2 \beta}\left(\frac{m_{0}}{b C^{2}}\right)^{\frac{\beta}{\beta-2}}, \quad S_{0}=\left(\frac{m_{0}}{b C^{2}}\right)^{\frac{1}{\beta-2}}
$$

with $C>0$ is a positive Sobolev constant. Then the solution of the problem (1.1)-(1.3) does not exist globally in time.

Proof On the contrary, under the conditions in Theorem 3.2, suppose that $u(x, t)$ is a global solution of the problem (1.1)-(1.3); then by Lemma 2.1, it is well known that there exists a constant $C>0$ depending only n, β such that $\|u\|_{\beta} \leq C\|\nabla u\|$ for all $u \in H_{0}^{1}(\Omega)$.

From the above inequality, we conclude that

$$
\begin{equation*}
\|\nabla u\|^{2} \geq C^{-2}\|u\|_{\beta}^{2} . \tag{3.2}
\end{equation*}
$$

It follows from (1.4), (2.1) and (3.2) that

$$
\begin{align*}
E(t) & =\frac{1}{2}\left\|u_{t}\right\|^{2}+\frac{1}{2} \int_{0}^{\|\nabla u\|^{2}} \varphi(s) d s-\frac{b}{\beta}\|u\|_{\beta}^{\beta} \\
& \geq \frac{m_{0}}{2}\|\nabla u\|^{2}-\frac{b}{\beta}\|u\|_{\beta}^{\beta} \geq \frac{m_{0}}{2 C^{2}}\|u\|_{\beta}^{2}-\frac{b}{\beta}\|u\|_{\beta}^{\beta} . \tag{3.3}
\end{align*}
$$

Setting

$$
s=s(t)=\|u(t)\|_{\beta}=\left\{\int_{\Omega}|u(x, t)|^{\beta} d x\right\}^{\frac{1}{\beta}} .
$$

We denote the right side of (3.3) by $Q(s)=Q\left(\|u(t)\|_{\beta}\right)$, then

$$
\begin{equation*}
Q(s)=\frac{m_{0}}{2 C^{2}} s^{2}-\frac{b}{\beta} s^{\beta}, \quad s \geq 0 . \tag{3.4}
\end{equation*}
$$

By (3.4), we obtain

$$
Q^{\prime}(s)=\frac{m_{0}}{C^{2}} s-b s^{\beta-1}
$$

Let $Q^{\prime}(s)=0$, then we obtain $S_{0}=\left(\frac{m_{0}}{b C^{2}}\right)^{\frac{1}{\beta-2}}$.
As $s=S_{0}$, we have

$$
\left.Q^{\prime \prime}(s)\right|_{s=S_{0}}=\left.\left(\frac{m_{0}}{C^{2}}-b(\beta-1) s^{\beta-2}\right)\right|_{s=S_{0}}=-\frac{m_{0}(\beta-2)}{C^{2}}<0 .
$$

Consequently, the function $Q(s)$ has a single maximum value Q_{0} at S_{0}, where

$$
Q_{0}=Q\left(S_{0}\right)=\frac{(\beta-2) b}{2 \beta}\left(\frac{m_{0}}{b C^{2}}\right)^{\frac{\beta}{\beta-2}} .
$$

Since the initial data is such that $E(0), s(0)$ satisfies $E(0)<Q_{0},\left\|u_{0}\right\|_{\beta}>S_{0}$.
Therefore, we have from Lemma 2.3 that

$$
E(t) \leq E(0)<Q_{0}, \quad \forall t>0 .
$$

At the same time, by (3.3) and (3.4) it is evident that there can be no time $t>0$ for which

$$
E(t)<Q_{0}, \quad s(t)=S_{0} .
$$

Hence, we have also $s(t)>S_{0}$ for all $t>0$ from the continuity of $E(t)$ and $s(t)$.
According to the above contradiction we know that the global solution of the problem (1.1)-(1.3) does not exist, i.e., the solution blows up in some finite time.

This completes the proof of Theorem 3.2.

4 Energy decay estimate

The following theorem shows the asymptotic behavior of global solutions of the problem (1.1)-(1.3).

Theorem 4.1 If the hypotheses in Theorem 3.2 are valid, then the global solutions of the problem (1.1)-(1.3) has the following asymptotic property:

$$
E(t) \leq M(1+t)^{-\frac{2}{\alpha-2}},
$$

where $M>0$ is a constant depending on initial energy $E(0)$.
Proof Multiplying by $E(t)^{\frac{\alpha-2}{2}} u$ on both sides of the equation (1.1) and integrating over $\Omega \times[S, T]$, we obtain that

$$
\begin{equation*}
0=\int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-2}{2}} u\left[u_{t t}-\varphi\left(\|\nabla u\|^{2}\right) \Delta u+a\left|u_{t}\right|^{\alpha-2} u_{t}-b u|u|^{\beta-2}\right] d x d t \tag{4.1}
\end{equation*}
$$

where $0 \leq S<T<+\infty$.
Since

$$
\begin{align*}
\int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-2}{2}} u u_{t t} d x d t= & \left.\int_{\Omega} E(t)^{\frac{\alpha-2}{2}} u u_{t} d x\right|_{S} ^{T}-\int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-2}{2}}\left|u_{t}\right|^{2} d x d t \\
& -\frac{\alpha-2}{2} \int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-4}{2}} E^{\prime}(t) u u_{t} d x d t \tag{4.2}
\end{align*}
$$

So, substituting the formula (4.2) into the right-hand side of (4.1), we get that

$$
\begin{align*}
0= & \int_{S}^{T} E(t)^{\frac{\alpha-2}{2}}\left(\left\|u_{t}\right\|^{2}+\varphi\left(\|\nabla u\|^{2}\right)\|\nabla u\|^{2}-\frac{2 b}{\beta}\|u\|_{\beta}^{\beta}\right) d t \\
& -\int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-2}{2}}\left[2\left|u_{t}\right|^{2}-a\left|u_{t}\right|^{\alpha-2} u_{t} u\right] d x d t \\
& -\frac{\alpha-2}{2} \int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-4}{2}} E^{\prime}(t) u u_{t} d x d t+\left.\int_{\Omega} E(t)^{\frac{\alpha-2}{2}} u u_{t} d x\right|_{S} ^{T} \\
& +\left(\frac{2}{\beta}-1\right) b \int_{S}^{T} E(t)^{\frac{\alpha-2}{2}}\|u\|_{\beta}^{\beta} d t . \tag{4.3}
\end{align*}
$$

We obtain from (2.12) and (2.11) that

$$
\begin{equation*}
b\left(1-\frac{2}{\beta}\right)\|u\|_{\beta}^{\beta} \leq \delta \frac{\beta-2}{\beta}\|\nabla u\|^{2} \leq \delta \frac{\beta-2}{\beta} \cdot \frac{2 \beta}{(\beta-2) m_{0}} E(t)=\frac{2 \delta}{m_{0}} E(t) . \tag{4.4}
\end{equation*}
$$

We derive from (1.4) that

$$
\begin{equation*}
\int_{0}^{\|\nabla u\|^{2}} \varphi(s) d s \leq \varphi\left(\|\nabla u\|^{2}\right)\|\nabla u\|^{2} \tag{4.5}
\end{equation*}
$$

It follows from (4.3), (4.4) and (4.5) that

$$
\begin{align*}
2(1 & \left.-\frac{\delta}{m_{0}}\right) \int_{S}^{T} E(t)^{\frac{\alpha}{2}} d t \\
\leq & \int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-2}{2}}\left[2\left|u_{t}\right|^{2}-a\left|u_{t}\right|^{\alpha-2} u_{t} u\right] d x d t \\
& +\frac{\alpha-2}{2} \int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-4}{2}} E^{\prime}(t) u u_{t} d x d t-\left.\int_{\Omega} E(t)^{\frac{\alpha-2}{2}} u u_{t} d x\right|_{S} ^{T} \tag{4.6}
\end{align*}
$$

We have from Lemma 2.1 and (3.1) that

$$
\begin{align*}
& \left|\frac{\alpha-2}{2} \int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-4}{2}} E^{\prime}(t) u u_{t} d x d t\right| \\
& \quad \leq \frac{\alpha-2}{2} \int_{S}^{T} E(t)^{\frac{\alpha-4}{2}}\left(-E^{\prime}(t)\right)\left(\frac{1}{2}\|u\|^{2}+\frac{1}{2}\left\|u_{t}\right\|^{2}\right) d t \\
& \quad \leq-\frac{\alpha-2}{2} \int_{S}^{T} E(t)^{\frac{\alpha-4}{2}} E^{\prime}(t)\left(\frac{\beta C^{2}}{(\beta-2) m_{0}} \cdot \frac{(\beta-2) m_{0}}{2 \beta}\|\nabla u\|^{2}+\frac{1}{2}\left\|u_{t}\right\|^{2}\right) d t \\
& \quad \leq-\frac{\alpha-2}{2} \max \left(\frac{\beta C^{2}}{(\beta-2) m_{0}}, 1\right) \int_{S}^{T} E(t)^{\frac{\alpha-2}{2}} E^{\prime}(t) d t \\
& \quad=-\left.\frac{\alpha-2}{\alpha} \max \left(\frac{\beta C^{2}}{(\beta-2) m_{0}}, 1\right) E(t)^{\frac{\alpha}{2}}\right|_{S} ^{T} \leq M E(S)^{\frac{\alpha}{2}}, \tag{4.7}
\end{align*}
$$

similarly, we have

$$
\begin{align*}
\left.\left|-\int_{\Omega} E(t)^{\frac{\alpha-2}{2}} u u_{t} d x\right|_{S}^{T} \right\rvert\, & \leq\left.\max \left(\frac{\beta C^{2}}{(\beta-2) m_{0}}, 1\right) E(t)^{\frac{\alpha}{2}}\right|_{S} ^{T} \\
& \leq M E(S)^{\frac{\alpha}{2}} \tag{4.8}
\end{align*}
$$

Substituting the estimates (4.7) and (4.8) into (4.6), we conclude that

$$
\begin{align*}
& 2\left(1-\frac{\delta}{m_{0}}\right) \int_{S}^{T} E(t)^{\frac{\alpha}{2}} d t \\
& \quad \leq \int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-2}{2}}\left[2\left|u_{t}\right|^{2}-a\left|u_{t}\right|^{\alpha-2} u_{t} u\right] d x d t+M E(S)^{\frac{\alpha}{2}} \tag{4.9}
\end{align*}
$$

We get from Young inequality and Lemma 2.3 that

$$
\begin{aligned}
2 \int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-2}{2}}\left|u_{t}\right|^{2} d x d t & \leq \int_{S}^{T} \int_{\Omega}\left(\varepsilon_{1} E(t)^{\frac{\alpha}{2}}+M\left(\varepsilon_{1}\right)\left|u_{t}\right|^{\alpha}\right) d x d t \\
& \leq M \varepsilon_{1} \int_{S}^{T} E(t)^{\frac{\alpha}{2}} d t+M\left(\varepsilon_{1}\right) \int_{S}^{T}\left\|u_{t}\right\|_{\alpha}^{\alpha} d t
\end{aligned}
$$

$$
\begin{align*}
& =M \varepsilon_{1} \int_{S}^{T} E(t)^{\frac{\alpha}{2}} d t-\frac{M\left(\varepsilon_{1}\right)}{a}(E(T)-E(S)) \\
& \leq M \varepsilon_{1} \int_{S}^{T} E(t)^{\frac{\alpha}{2}} d t+M E(S) \tag{4.10}
\end{align*}
$$

From Young inequality, Lemma 2.1, Lemma 2.3 and (2.11), We receive that

$$
\begin{align*}
- & a \int_{S}^{T} \int_{\Omega} E(t)^{\frac{\alpha-2}{2}} u u_{t}\left|u_{t}\right|^{\alpha-2} d x d t \\
& \leq a \int_{S}^{T} E(t)^{\frac{\alpha-2}{2}}\left(\varepsilon_{2}\|u\|_{\alpha}^{\alpha}+M\left(\varepsilon_{2}\right)\left\|u_{t}\right\|_{\alpha}^{\alpha}\right) d t \\
& \leq a C^{\alpha} \varepsilon_{2} E(0)^{\frac{\alpha-2}{2}} \int_{S}^{T}\|\nabla u\|^{\alpha} d t+a M\left(\varepsilon_{2}\right) E(S)^{\frac{\alpha-2}{2}} \int_{S}^{T}\left\|u_{t}\right\|_{\alpha}^{\alpha} d t \\
& =a C^{\alpha} \varepsilon_{2} E(0)^{\frac{\alpha-2}{2}} \int_{S}^{T}\left(\frac{2 \beta}{(\beta-2) m_{0}} E(t)\right)^{\frac{\alpha}{2}} d t+M\left(\varepsilon_{2}\right) E(S)^{\frac{\alpha-2}{2}}(E(S)-E(T)) \\
& \leq C^{\alpha} \varepsilon_{2} E(0)^{\frac{\alpha-2}{2}}\left(\frac{2 \beta}{(\beta-2) m_{0}}\right)^{\frac{\alpha}{2}} \int_{S}^{T} E(t)^{\frac{\alpha}{2}} d t+M E(S)^{\frac{\alpha}{2}} . \tag{4.11}
\end{align*}
$$

Choosing small enough ε_{1} and ε_{2}, such that

$$
\frac{1}{2}\left[M \varepsilon_{1}+E(0)^{\frac{\alpha-2}{2}}\left(\frac{2 \beta C^{2}}{(\beta-2) m_{0}}\right)^{\frac{\alpha}{2}} \varepsilon_{2}\right]+\frac{\delta}{m_{0}}<1
$$

then, substituting (4.10) and (4.11) into (4.9), we get

$$
\int_{S}^{T} E(t)^{\frac{\alpha}{2}} d t \leq M E(S)+M E(S)^{\frac{\alpha}{2}} \leq M(1+E(0))^{\frac{\alpha-2}{2}} E(S) .
$$

Therefore, we have from Lemma 2.2 that

$$
E(t) \leq M(1+t)^{-\frac{\alpha-2}{2}}, \quad t \in[0,+\infty)
$$

The proof of Theorem 4.1 is thus finished.

Competing interests

The author declares that he has no competing interests.

Acknowledgements

This work was supported by the Natural Science Foundation of China (No. 61273016), the Natural Science Foundation of Zhejiang Province (No. Y6100016), the Middle-aged Academic Leader of Zhejiang University of Science and Technology (2008-2012), Interdisciplinary Pre-research Project of Zhejiang University of Science and Technology (2010-2012) and Zhejiang province universities scientific research key project (Z201017584).

Received: 25 August 2012 Accepted: 9 April 2013 Published: 22 April 2013

References

1. Arosio, A, Garavaldi, S: On the mildly degenerate Kirchhoff string. Math. Methods Appl. Sci. 14, 177-195 (1991)
2. Crippa, HR: On local solutions of some mildly degenerate hyperbolic equations. Nonlinear Anal. 21, 565-574 (1993)
3. Ebihara, Y, Medeiros, LA, Miranda, MM: Local solutions for nonlinear degenerate hyperbolic equation. Nonlinear Anal. 10, 27-40 (1986)
4. Meideiros, LA, Miranda, M: Solutions for the equations of nonlinear vibrations in Sobolev spaces of fractionary order. Comput. Appl. Math. 6, 257-276 (1987)
5. Yamada, Y: Some nonlinear degenerate wave equations. Nonlinear Anal. 11, 1155-1168 (1987)
6. Yamazaki, T: On local solution of some quasilinear degenerate hyperbolic equations. Funkc. Ekvacioj 31, 439-457 (1988)
7. Nishihara, K, Yamada, Y: On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms. Funkc. Ekvacioj 33, 151-159 (1990)
8. Aassila, M, Benaissa, A: Existence globale et comportement asymptotique des solutions des équations de Kirchhoff moyennement dégénérées avec un terme nonlinear dissipatif. Funkc. Ekvacioj 44, 309-333 (2001)
9. D'Ancona, P, Spagnolo, S: Nolinear perturbations of the Kirchhoff equation. Commun. Pure Appl. Math. 47, 1005-1029 (1994)
10. De Brito, EH: The damped elastic stretched string equation generalized: existence uniqueness, regularity and stability. Appl. Anal. 13, 219-233 (1982)
11. De Brito, EH: Decay estimates for the generalized damped extensible string and beam equation. Nonlinear Anal. 8, 1489-1496 (1984)
12. Nishihara, K: Global existence and asymptotic behavior of the solution of some quasilinear hyperbolic equation with linear damping. Funkc. Ekvacioj 32, 343-355 (1989)
13. Yamada, Y: On some quasilinear wave equations with dissipative terms. Nagoya Math. J. 87, 17-39 (1982)
14. Ghisi, M, Gobbino, M: Global existence and asymptotic behaviour for a mildly degenerate dissipative hyperbolic equation of Kirchhoff type. Asymptot. Anal. 40, 25-36 (2004)
15. Hosoya, M, Yamada, Y: On some nonlinear wave equations II: global existence and energy decay of solutions. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 38, 239-250 (1991)
16. Sattinger, DH: On global solutions for nonlinear hyperbolic equations. Arch. Ration. Mech. Anal. 30, 148-172 (1968)
17. Payne, LE, Sattinger, DH: Saddle points and instability of nonlinear hyperbolic equations. Isr. J. Math. 22, 273-303 (1975)
18. Komornik, V: Exact Controllability and Stabilization, the Multiplier Method. Masson, Paris (1994)
19. Ono, K: Global existence and decay properties of solutions for some mildly degenerate nonlinear dissipative Kirchhoff strings. Funkc. Ekvacioj 40, 255-270 (1997)
doi:10.1186/1029-242X-2013-195
Cite this article as: Ye: Global existence of solutions and energy decay for a Kirchhoff-type equation with nonlinear dissipation. Journal of Inequalities and Applications 2013 2013:195.

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

```
Submit your next manuscript at \ springeropen.com
```

