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Abstract
This paper deals with the initial boundary value problem for a class of nonlinear
Kirchhoff-type equation with dissipative term

utt – ϕ(‖∇u‖22)�u + a|ut|α–2ut = b|u|β–2u, x ∈ �, t > 0

in a bounded domain, where a,b > 0 and α,β > 2 are constants. We obtain the global
existence of solutions by constructing a stable set in H1

0(�) and show the energy
decay estimate by applying a lemma of Komornik.
MSC: 35B40; 35L70

Keywords: nonlinear Kirchhoff-type equation; initial boundary value problem;
stable set; energy decay estimate

1 Introduction
In this paper, we investigate the existence and asymptotic stability of global solutions for
the initial boundary value problem of the following Kirchhoff-type equation with nonlin-
ear dissipative term in a bounded domain

utt – ϕ
(‖∇u‖

)
�u + a|ut|α–ut = b|u|β–u, x ∈ �, t > , (.)

u(x, ) = u(x), ut(x, ) = u(x), x ∈ �, (.)

u(x, t) = , x ∈ ∂�, t ≥ , (.)

where � is a bounded domain in Rn with a smooth boundary ∂�, a,b >  and α,β >  are
constants, ϕ(s) is a C-class function on [,+∞) satisfying

ϕ(s)≥ m, sϕ(s)≥
∫ s


ϕ(θ )dθ , ∀s ∈ [, +∞) (.)

with m ≥  is a constant.
If � = [,L] is an interval of the real line, equation (.) describes a small amplitude

vibration of an elastic string with fixed endpoints. The original equation is

ρhutt + δut + f =
(

γ +
Eh
L

∫ L


|ux| ds

)
uxx,
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where L is the rest length, E is the Young modulus, ρ is the mass density, h is the cross-
section area, γ is the initial axial tension, δ is the resistance modulus and f is a nonlinear
perturbation effect.
When a = b = , ϕ(s) = sr , r ≥  and u �=  (the mildly degenerate case), the local exis-

tence of solutions in Sobolev space was investigated by many author [–]. Concerning a
global existence of solutions for mildly degenerate Kirchhoff equations, it is natural to add
a dissipative term ut or �ut .
For a = , b = , α = , ϕ(s) = sr , r ≥ , the problem (.)-(.) was treated by Nishihara

and Yamada []. They proved the existence and uniqueness of a global solution u(t) for
small data (u,u) ∈ (H

(�) ∩ H(�)) × H
(�) with u �=  and the polynomial decay of

the solution. Aassila and Benaissa [] extended the global existence part of [] to the case
where ϕ(s)≥  with ϕ(‖∇u‖) �=  and the case of nonlinear dissipative term case (a �= ).
In the case a = , for large β and ϕ(s)≥ r > , D’Ancona and Spagnolo [] proved that if

u,u ∈ C∞
 (Rn) are small, then problem (.)-(.) has a global solution. The nondegen-

erate case with α = , a >  and b =  was considered by De Brito, Yamada and Nishihara
[–], they proved that for small initial data (u,u) ∈ (H

(�) ∩ H(�)) × H
(�) there

exists a unique global solution of (.)-(.) that decays exponentially as t → +∞.
When ϕ(s)≥ , Ghisi and Gobbino [] proved the existence and uniqueness of a global

solution u(t) of the problem (.)-(.) for small initial data (u,u) ∈ (H
(�) ∩ H(�)) ×

H
(�) with m(‖∇u‖) �=  and the asymptotic behavior (u(t),ut(t),utt(t))→ (u∞, , ) in

(H
(�)∩H(�))×H

(�)× L(�) as t → +∞, where either u∞ =  or ϕ(‖∇u∞‖) = .
The case ϕ(s)≥ r >  has been considered by Hosoya and Yamada [] under the follow-

ing condition:

 ≤ β <


n – 
, n≥ ;  ≤ β < +∞, n ≤ .

They proved that, if the initial datas are small enough, the problem (.)-(.) has a global
solution which decays exponentially as t → +∞.
In this paper, we prove the global existence for the problem (.)-(.) by applying the po-

tential well theory introduced by Sattinger [] and Payne and Sattinger []. Meanwhile,
we obtain the asymptotic stability of global solutions by use of the lemma of Komornik
[].
We adopt the usual notation and convention. Let Hm(�) denote the Sobolev space

with the norm ‖u‖Hm(�) = (
∑

|α|≤m ‖Dαu‖L(�))

 , Hm

 (�) denotes the closure in Hm(�) of
C∞
 (�). For simplicity of notation, hereafter we denote by ‖ · ‖p the Lebesgue space Lp(�)

norm, ‖ · ‖ denotes L(�) norm and we write equivalent norm ‖∇ · ‖ instead of H
(�)

norm ‖ · ‖H
(�). Moreover,M denotes various positive constants depending on the known

constants and it may be difference in each appearance.
This paper is organized as follows: In the next section, we will give some preliminaries.

Then in Section , we state the main results and give their proof.

2 Preliminaries
In order to state and prove our main results, we first define the following functionals:

K(u) =m‖∇u‖ – b‖u‖β

β , J(u) =
m


‖∇u‖ – b

β
‖u‖β

β ,
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for u ∈ H
(�). Then we define the stable set S by

S =
{
u ∈H

(�),K(u) > 
} ∪ {}.

We denote the total energy functional associated with (.)-(.) by

E(t) =


‖ut‖ + 



∫ ‖∇u‖


ϕ(s)ds –

b
β

‖u‖β

β (.)

for u ∈ H
(�), t ≥ , and E() = 

‖u‖ + 

∫ ‖∇u‖
 ϕ(s)ds – b

β
‖u‖β

β is the total energy of
the initial data.

Lemma . Let q be a number with ≤ q < +∞, n≤  and ≤ q ≤ n
n– , n > . Then there

is a constant C depending on � and q such that

‖u‖q ≤ C‖u‖H
(�), ∀u ∈H

(�).

Lemma . [] Let y(t) : R+ → R+ be a nonincreasing function and assume that there are
two constants μ ≥  and A >  such that

∫ +∞

s
y(t)

μ+
 dt ≤ Ay(s),  ≤ s < +∞,

then y(t) ≤ Cy()( + t)–


μ– , ∀t ≥ , if μ > , where C is positive constants independent of
y().

Lemma. Let u(t,x) be a solutions to the problem (.)-(.).Then E(t) is a nonincreasing
function for t >  and

d
dt

E(t) = –a
∥∥ut(t)∥∥α

α
. (.)

Proof By multiplying equation (.) by ut and integrating over �, we get

d
dt

E
(
u(t)

)
= –a

∥∥ut(t)∥∥α

α
≤ .

Therefore, E(t) is a nonincreasing function on t. �

We state a local existence result, which is known as a standard one (see [, ]).

Theorem . Suppose that α,β >  satisfy

 < β < +∞, n≤ ;  < β ≤ (n – )
n – 

, n > , (.)

 < α < +∞, n≤ ;  < α ≤ n
n – 

, n > , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/195
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and let (u,u) ∈ H
(�)× L(�). Then there exists T >  such that the problem (.)-(.)

has a unique local solution u(t) in the class

u ∈ C
(
[,T);H

(�)
)
, ut ∈ C

(
[,T);L(�)

) ∩ Lα
(
� × [,T)

)
. (.)

In order to prove the existence of global solutions of the problem (.)-(.), we need the
following lemma.

Lemma . Supposed that (.) holds, If u ∈ S, u ∈ L(�) such that

δ = bCβ

(
β

(β – )m
E()

) β–


< , (.)

then u ∈ S, for each t ∈ [,T).

Proof Assume that there exists a number t∗ ∈ [,T) such that u(t) ∈ S on [, t∗) and
u(t∗) /∈ S. Then we have

K
(
u
(
t∗

))
= , u

(
t∗

) �= . (.)

Since u(t) ∈ S on [, t∗), it holds that

J
(
u(t)

)
=
m


∥∥∇u(t)

∥∥ –
b
β

∥∥u(t)∥∥β

β

≥ m


∥∥∇u(t)

∥∥ –
m

β

∥∥∇u(t)
∥∥ =

(β – )m

β
∥∥∇u(t)

∥∥, (.)

we have from K(u(t∗)) =  that

J
(
u
(
t∗

))
=
m


∥∥∇u

(
t∗

)∥∥ –
b
β

∥∥u(
t∗

)∥∥β

β

=
m


∥∥∇u

(
t∗

)∥∥ –
m

β

∥∥∇u
(
t∗

)∥∥ =
(β – )m

β
∥∥∇u

(
t∗

)∥∥, (.)

we conclude from (.) and (.) that

E(t)≥ 

∥∥ut(t)∥∥ +

m


∥∥∇u(t)

∥∥ –
b
β

∥∥u(t)∥∥β

β

=


∥∥ut(t)∥∥ + J

(
u(t)

)
. (.)

Therefore, we obtain from (.), (.) and (.) that

∥∥∇u(t)
∥∥ ≤ β

(β – )m
J
(
u(t)

) ≤ β
(β – )m

E(t)≤ β
(β – )m

E(), (.)

for ∀t ∈ [, t∗].
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By exploiting Lemma ., (.) and (.), we easily arrive at

b
∥∥u(t)∥∥β

β
≤ bCβ

∥∥∇u(t)
∥∥β = bCβ

∥∥∇u(t)
∥∥β–∥∥∇u(t)

∥∥

≤ bCβ

(
β

(β – )m
E()

) β–
 ∥∥∇u(t)

∥∥ <
∥∥∇u(t)

∥∥, (.)

for all t ∈ [, t∗].
Therefore, we obtain

K
(
u
(
t∗

))
=m

∥∥∇u
(
t∗

)∥∥ – b
∥∥u(

t∗
)∥∥β

β
> , (.)

which contradicts (.). Thus, we conclude that u(t) ∈ S on [,T). �

3 The global existence and nonexistence
Theorem . Suppose that (.) and (.) hold, and u(t) is a local solution of problem
(.)-(.) on [,T). If u ∈ S and u ∈ L(�) satisfy (.), then u(x, t) is a global solution of
the problem (.)-(.).

Proof It suffices to show that ‖∇u(t)‖ + ‖ut(t)‖ is bounded independently of t.
Under the hypotheses in Theorem ., we get from Lemma . that u(t) ∈ S on [,T).

So the formula (.) holds on [,T).
Therefore, we have from (.) that



‖ut‖ + (β – )m

β
∥∥∇u(t)

∥∥ ≤ 

∥∥ut(t)∥∥ + J

(
u(t)

)
= E(t)≤ E(). (.)

Hence, we get

∥∥ut(t)∥∥ +
∥∥∇u(t)

∥∥ ≤ max

(
,

β
(β – )m

)
E() < +∞.

The above inequality and the continuation principle lead to the global existence of the
solution, that is, T = +∞. Thus, the solution u(t) is a global solution of the problem (.)-
(.). �

Now we employ the analysis method to discuss the solution of the problem (.)-(.)
occurs blow-up in finite time. Our result reads as follows.

Theorem . Assume that (i)  < β < n
n– , if n > ; (ii)  < β < +∞, if n ≤ . If u ∈ S and

u ∈ L(�) such that

E() <Q, ‖u‖β > S,

where

Q =
(β – )b

β

(
m

bC

) β
β–

, S =
(
m

bC

) 
β–

http://www.journalofinequalitiesandapplications.com/content/2013/1/195
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with C >  is a positive Sobolev constant. Then the solution of the problem (.)-(.) does
not exist globally in time.

Proof On the contrary, under the conditions inTheorem., suppose thatu(x, t) is a global
solution of the problem (.)-(.); then by Lemma ., it is well known that there exists a
constant C >  depending only n, β such that ‖u‖β ≤ C‖∇u‖ for all u ∈H

(�).
From the above inequality, we conclude that

‖∇u‖ ≥ C–‖u‖β . (.)

It follows from (.), (.) and (.) that

E(t) =


‖ut‖ + 



∫ ‖∇u‖


ϕ(s)ds –

b
β

‖u‖β

β

≥ m


‖∇u‖ – b

β
‖u‖β

β ≥ m

C ‖u‖β –
b
β

‖u‖β

β . (.)

Setting

s = s(t) =
∥∥u(t)∥∥

β
=

{∫
�

∣∣u(x, t)∣∣β dx
} 

β

.

We denote the right side of (.) by Q(s) =Q(‖u(t)‖β ), then

Q(s) =
m

C s
 –

b
β
sβ , s ≥ . (.)

By (.), we obtain

Q′(s) =
m

C s – bsβ–.

Let Q′(s) = , then we obtain S = ( m
bC )


β– .

As s = S, we have

Q′′(s)|s=S =
(
m

C – b(β – )sβ–
)∣∣∣∣

s=S
= –

m(β – )
C < .

Consequently, the function Q(s) has a single maximum value Q at S, where

Q =Q(S) =
(β – )b

β

(
m

bC

) β
β–

.

Since the initial data is such that E(), s() satisfies E() <Q, ‖u‖β > S.
Therefore, we have from Lemma . that

E(t)≤ E() <Q, ∀t > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/195
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At the same time, by (.) and (.) it is evident that there can be no time t >  for which

E(t) <Q, s(t) = S.

Hence, we have also s(t) > S for all t >  from the continuity of E(t) and s(t).
According to the above contradiction we know that the global solution of the problem

(.)-(.) does not exist, i.e., the solution blows up in some finite time.
This completes the proof of Theorem .. �

4 Energy decay estimate
The following theorem shows the asymptotic behavior of global solutions of the problem
(.)-(.).

Theorem . If the hypotheses in Theorem . are valid, then the global solutions of the
problem (.)-(.) has the following asymptotic property:

E(t)≤ M( + t)–


α– ,

where M >  is a constant depending on initial energy E().

Proof Multiplying by E(t) α–
 u on both sides of the equation (.) and integrating over

� × [S,T], we obtain that

 =
∫ T

S

∫
�

E(t)
α–
 u

[
utt – ϕ

(‖∇u‖)�u + a|ut|α–ut – bu|u|β–]dxdt, (.)

where  ≤ S < T < +∞.
Since

∫ T

S

∫
�

E(t)
α–
 uutt dxdt =

∫
�

E(t)
α–
 uut dx

∣∣∣∣
T

S
–

∫ T

S

∫
�

E(t)
α–
 |ut| dxdt

–
α – 


∫ T

S

∫
�

E(t)
α–
 E′(t)uut dxdt. (.)

So, substituting the formula (.) into the right-hand side of (.), we get that

 =
∫ T

S
E(t)

α–


(
‖ut‖ + ϕ

(‖∇u‖)‖∇u‖ – b
β

‖u‖β

β

)
dt

–
∫ T

S

∫
�

E(t)
α–


[
|ut| – a|ut|α–utu

]
dxdt

–
α – 


∫ T

S

∫
�

E(t)
α–
 E′(t)uut dxdt +

∫
�

E(t)
α–
 uut dx

∣∣∣∣
T

S

+
(

β
– 

)
b
∫ T

S
E(t)

α–
 ‖u‖β

β dt. (.)

We obtain from (.) and (.) that

b
(
 –


β

)
‖u‖β

β ≤ δ
β – 

β
‖∇u‖ ≤ δ

β – 
β

· β
(β – )m

E(t) =
δ
m

E(t). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/195
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We derive from (.) that

∫ ‖∇u‖


ϕ(s)ds≤ ϕ

(‖∇u‖)‖∇u‖. (.)

It follows from (.), (.) and (.) that


(
 –

δ

m

)∫ T

S
E(t)

α
 dt

≤
∫ T

S

∫
�

E(t)
α–


[
|ut| – a|ut|α–utu

]
dxdt

+
α – 


∫ T

S

∫
�

E(t)
α–
 E′(t)uut dxdt –

∫
�

E(t)
α–
 uut dx

∣∣∣∣
T

S
. (.)

We have from Lemma . and (.) that

∣∣∣∣α – 


∫ T

S

∫
�

E(t)
α–
 E′(t)uut dxdt

∣∣∣∣
≤ α – 



∫ T

S
E(t)

α–


(
–E′(t)

)( 

‖u‖ + 


‖ut‖

)
dt

≤ –
α – 


∫ T

S
E(t)

α–
 E′(t)

(
βC

(β – )m
· (β – )m

β
‖∇u‖ + 


‖ut‖

)
dt

≤ –
α – 


max

(
βC

(β – )m
, 

)∫ T

S
E(t)

α–
 E′(t)dt

= –
α – 

α
max

(
βC

(β – )m
, 

)
E(t)

α


∣∣∣∣
T

S
≤ ME(S)

α
 , (.)

similarly, we have

∣∣∣∣–
∫

�

E(t)
α–
 uut dx

∣∣∣∣
T

S

∣∣∣∣ ≤ max

(
βC

(β – )m
, 

)
E(t)

α


∣∣∣∣
T

S

≤ ME(S)
α
 . (.)

Substituting the estimates (.) and (.) into (.), we conclude that


(
 –

δ

m

)∫ T

S
E(t)

α
 dt

≤
∫ T

S

∫
�

E(t)
α–


[
|ut| – a|ut|α–utu

]
dxdt +ME(S)

α
 . (.)

We get from Young inequality and Lemma . that


∫ T

S

∫
�

E(t)
α–
 |ut| dxdt ≤

∫ T

S

∫
�

(
εE(t)

α
 +M(ε)|ut|α

)
dxdt

≤ Mε

∫ T

S
E(t)

α
 dt +M(ε)

∫ T

S
‖ut‖α

α dt

http://www.journalofinequalitiesandapplications.com/content/2013/1/195
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= Mε

∫ T

S
E(t)

α
 dt –

M(ε)
a

(
E(T) – E(S)

)

≤ Mε

∫ T

S
E(t)

α
 dt +ME(S). (.)

From Young inequality, Lemma ., Lemma . and (.), We receive that

– a
∫ T

S

∫
�

E(t)
α–
 uut|ut|α– dxdt

≤ a
∫ T

S
E(t)

α–


(
ε‖u‖α

α +M(ε)‖ut‖α
α

)
dt

≤ aCαεE()
α–


∫ T

S
‖∇u‖α dt + aM(ε)E(S)

α–


∫ T

S
‖ut‖α

α dt

= aCαεE()
α–


∫ T

S

(
β

(β – )m
E(t)

) α

dt +M(ε)E(S)

α–


(
E(S) – E(T)

)

≤ CαεE()
α–


(
β

(β – )m

) α

∫ T

S
E(t)

α
 dt +ME(S)

α
 . (.)

Choosing small enough ε and ε, such that




[
Mε + E()

α–


(
βC

(β – )m

) α

ε

]
+

δ

m
< ,

then, substituting (.) and (.) into (.), we get

∫ T

S
E(t)

α
 dt ≤ ME(S) +ME(S)

α
 ≤ M

(
 + E()

) α–
 E(S).

Therefore, we have from Lemma . that

E(t)≤ M( + t)–
α–
 , t ∈ [, +∞).

The proof of Theorem . is thus finished. �
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