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1 Introduction
In this study, we are concerned with the problem of approximating a locally unique solu-
tion x� of the equation

F(x) = , (.)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach
space X with values in a Banach space Y .
A large number of problems in applied mathematics and also in engineering are solved

by finding the solutions of certain equations. For example, dynamic systems aremathemat-
ically modeled by difference or differential equations and their solutions usually represent
the states of the systems. For the sake of simplicity, assume that a time-invariant system
is driven by the equation ẋ =Q(x) for some suitable operator Q, where x is the state. Then
the equilibrium states are determined by solving equation (.). Similar equations are used
in the case of discrete systems. The unknowns of engineering equations can be functions
(difference, differential and integral equations), vectors (systems of linear or nonlinear al-
gebraic equations) or real or complex numbers (single algebraic equations with single un-
knowns). Except in special cases, the most commonly used solution methods are iterative
- when starting from one or several initial approximations, a sequence is constructed that
converges to a solution of the equation. Iterationmethods are also applied for solving opti-
mization problems. In such cases, the iteration sequences converge to an optimal solution
of the problem at hand. Since all of these methods have the same recursive structure, they
can be introduced and discussed in a general framework.
Many authors have developed high order methods for generating a sequence approx-

imating x�. A survey of such results can be found in [, and the references there] (see
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also [–]). The natural generalization of the Newton method is to apply a multipoint
scheme. Suppose that we know the analytic expressions of F(xn), F ′(xn) and F ′(xn)– at
a recurrent step xn for each n ≥ . In order to increase the order of convergence and to
avoid the computation of the second Fréchet-derivative, we can add one more evaluation
of F(cxn + cyn) or F ′(cxn + cyn), where c and c are real constants that are independent
of xn and yn, whereas yn is generated by a Newton-step. A two-point scheme for func-
tions of one variable was found and developed by Ostrowski []. Following this idea, we
provide a semilocal as well as a local convergence analysis for a fourth-order inverse free
Jarratt-type method (JM) [, ] given by

yn = xn – F ′(xn)–F(xn),

Bn = B(n,F) = F ′(xn)–
(
F ′

(
xn +



(yn – xn)

)
– F ′(xn)

)
, (.)

xn+ = yn –


Bn

(
I –



Bn

)
(yn – xn)

for each n ≥ . The fourth order of (JM) is the same as that of a two-step Newton
method []. But the computational cost is less than that of Newton’s method. In each step,
we save one evaluation of the derivative and the computation of one inverse.
Here, we use our new idea of recurrent functions in order to provide new sufficient con-

vergence conditions, which can be weaker than before []. Using this approach, the error
bounds and the example on the distances are improved (see Example . andRemarks .).
This new idea can be used on other iterative methods [].

2 Semilocal convergence analysis of (JM)
We present our Theorem . in [] in an affine invariant form since F ′(x)–F can be used
for F in the original proof of Theorem ..

Theorem . Let F :D ⊆X → Y be thrice differentiable. Assume that there exist x ∈D,
L ≥ ,M ≥ , N ≥  and η ≥  such that

F ′(x)– ∈L(Y ,X ), (.)∥∥F ′(x)–F(x)
∥∥ ≤ η, (.)∥∥F ′(x)–F ′′(x)
∥∥ ≤ M, (.)∥∥F ′(x)–F ′′′(x)
∥∥ ≤ N , (.)∥∥F ′(x)–

(
F ′′′(x) – F ′′′(y)

)∥∥ ≤ L‖x – y‖ (.)

for each x, y ∈D,

M
(
 +

N
M +

L
M

) 
 ≤ K , (.)

h = Kη ≤ . (.)

and

	U(
x, v�

)
=

{
x ∈X ,‖x – x‖ ≤ v�

} ⊆D, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/194
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where v� and v�� are the zeros of functions

g(t) =
K

t – t + η (.)

given by

v� =
 –

√
 – h
h

η, v�� =
 +

√
 – h
h

η. (.)

Then the following hold:
() The scalar sequences {vn} and {wn} given by

wn = vn – g ′(vn)–g(vn),

bn = g ′(vn)–(g ′(vn + 
 (wn – vn)) – g ′(vn)),

vn+ = wn – 
bn( –


bn)(wn – vn)

⎫⎪⎪⎬
⎪⎪⎭

(.)

for each n≥  are non-decreasing and converge to their common limit v�, so that

vn ≤ wn ≤ vn+ ≤ wn+. (.)

()The sequences {xn} and {yn} generated by (JM) are well defined, remain in 	U(x, v�) for
all n≥  and converge to a unique solution x� ∈ 	U(x, v�) of the equation F(x) = , which is
the unique solution of the equation F(x) =  in U(x, v��).Moreover, the following estimates
hold for all n ≥ :

‖yn – xn‖ ≤ wn – vn, (.)

‖xn+ – yn‖ ≤ wn+ – vn, (.)
∥∥yn – x�

∥∥ ≤ v� –wn, (.)

∥∥xn – x�
∥∥ ≤ v� – vn ≤ ( – θ )η( √θ )n–

 – 
√
( √θ )n

, (.)

where

θ =
v�

v��
. (.)

Remarks . The bounds of Theorem . can be improved under the same hypotheses
and computational cost in two cases as follows.
Case . Define a function g by

g(t) =
M


t – t + η. (.)

In view of (.), there existsM ∈ [,M] such that

∥∥F ′(x)–
(
F ′(x) – F ′(x)

)∥∥ ≤ M‖x – x‖ (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/194
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for all x ∈ D. We can find upper bounds on the norms ‖F ′(x)–F ′(x)‖ using M, which is
actually needed, and not K used in [].
Note that

M ≤ K (.)

and K/M can be arbitrarily large [–]. Using (.), it follows that, for any x ∈ 	U(x, v�),

∥∥F ′(x)–
(
F ′(x) – F ′(x)

)∥∥ ≤ M‖x – x‖ ≤ K‖x – x‖ ≤ Kv� < . (.)

It follows from (.) and theBanach lemmaon invertible operators [] that ‖F ′(x)–F ′(x)‖
exists and

∥∥F ′(x)–F ′(x)
∥∥ ≤ 

 –M‖x – x‖ . (.)

We can use (.) instead of the less precise one used in []:

∥∥F ′(x)–F ′(x)
∥∥ ≤ 

 –K‖x – x‖ . (.)

This suggests that more precise scalar majorizing sequences {v̄n}, {w̄n} can be used and
they are defined as follows for initial iterates v̄ = , w̄ = η:

w̄n = v̄n – g ′
(v̄n)–g(v̄n),

b̄n = b(n, g, g) = g ′
(v̄n)–(g ′(v̄n + 

 (w̄n – v̄n)) – g ′(v̄n)),

v̄n+ = w̄n – 
 b̄n( –


 b̄n)(w̄n – v̄n).

⎫⎪⎪⎬
⎪⎪⎭

(.)

A simple induction argument shows that, ifM < K , then

v̄n < vn, (.)

w̄n < wn, (.)

w̄n – v̄n < wn – vn, (.)

v̄n+ – w̄n < vn+ –wn (.)

and

v̄� ≤ v�, (.)

where

v̄� = lim
n→∞ v̄n.

Note also that ifM = K , then v̄n = vn, w̄n = wn.
Case . In view of the upper bound for ‖F(xn+)‖ obtained in Theorem . in [] and

(.), {tn}, {sn} given in (.) and (.) are also even more precise majorizing sequences

http://www.journalofinequalitiesandapplications.com/content/2013/1/194
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for {xn} and {yn}. Therefore, if they converge under certain conditions (see Lemma .),
then we can produce a new semilocal convergence theorem for (JM) with sufficient con-
vergence conditions or bounds that can be better than the ones of Theorem . (see also
Theorem . and Example .).
Similar favorable comparisons (due to (.)) can be made with other iterative methods

of the fourth order [, ].

3 Semilocal convergence analysis of (JM) using recurrent functions
We show the semilocal convergence of (JM) using recurrent functions. First, we need the
following definition.

Definition . Let L ≥ , M > , M > , N ≥  and η >  be given constants. Define the
polynomials on [,+∞) for some α >  by

f(t) = ( +Mη)Mηt + Mα(α + )η – α,

g(t) =M( +Mη)t +
[
Mα( + α)

]
–M( +Mη)]t – Mα,

h(t) =Mη( + α)t +Mη( + α)t +
Mαη


+
Lη



+
Nαη

M
+
αMη


– ,

g(t) =Mη( + α)t +
(
Mα


+
Lη


+
Nα

M
+
αM


–Mη

)
t

–
(
Mα


+
Lη


+
Nα

M
+
αM


)
.

Moreover, define a scalar φ by

φ =
[Mα

 + Lη

 + Nαη

M + αMη

 ]
 –M[η + M(+Mη)

 η]
.

The polynomials f, g , g have unique positive roots denoted by φf , φg and φg (given in an
explicit form), respectively, by the Descartes rule of signs. Moreover, assume

M

[
η +

M( +Mη)


η
]
<  (.)

and

Mαη


+
Lη


+
Nαη

M
+
αMη


< . (.)

Under the conditions (.), (.), respectively,

φ > ,

and the polynomial h has a unique positive root φh .

http://www.journalofinequalitiesandapplications.com/content/2013/1/194
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Set φ =min{φh ,φf ,φg ,φg , }. Furthermore, assume

φ ≤ φ. (.)

If φ = , then assume that (.) holds as a strict inequality. From now on (.)-(.) con-
stitute the (C) conditions.

We can show the following result on the majorizing sequences for (JM).

Lemma . Under the (C) conditions, choose

φ ∈ [φ,φ] if φ �=  and φ ∈ [φ, ) if φ = . (.)

Then the scalar sequences {sn}, {tn} given by

t = , s = η,

tn+ = sn +
M( +M(sn – tn))(sn – tn)

( –Mtn)
,

sn+ = tn+ +


 –Mtn+

[
M(tn+ – sn)


+
L(sn – tn)



+
NM(sn – tn)

( –Mtn)
+
M(sn – tn)

( –Mtn)

]
(.)

are non-decreasing, bounded from above by

t�� =
(
 +

α

 – φ

)
η (.)

and converge to their unique least upper bound t� ∈ [, t��]. Moreover, the following esti-
mate holds:

 ≤ sn+ – tn+ ≤ φ(sn – tn), (.)

where

α =
M( +Mη)η


.

Proof We show, using induction on k, that

 ≤ M( +M(sk – tk))(sk – tk)
( –Mtk)

≤ α (.)

and

 ≤ 
 –Mtn+

[
Mα


(sk – tk) +

L


(sk – tk) +
NM(sk – tk)

( –Mtk)
+
M(sk – tk)

( –Mtk)

]

≤ φ. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/194


Argyros et al. Journal of Inequalities and Applications 2013, 2013:194 Page 7 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/194

The estimate (.) holds for k =  by the choice of α. Moreover, the estimates (.) and
(.) hold for n =  by (.), the choice of φ and (.). Let us assume (.)-(.) hold for
all k ≤ n. We have in turn by the induction hypotheses:

sk – tk ≤ φ(sk– – tk–) ≤ · · · ≤ φk(s – t) = φkη,

tk+ ≤ sk + α(sk – tk)≤ tk + αφkη + φkη

≤ sk– + α(sk– – tk–) + αφkη + φkη

≤ sk– + αφk–η + αφkη + φkη

≤ · · ·

≤ s + αη
(
 + · · · + φk) + φkη < η +

αη( – φk+)
 – φ

+ φkη,

M(sk – tk)
( –Mtk)

+
M(sk – tk)

( –Mtk)
≤ α

or


M

M


(sk – tk)
( –Mtk)

+
(sk – tk)

( –Mtk)
≤ α

M ,

or

(
sk – tk

 –Mtk

)

≤ α
M

and

NM(sk – tk)

( –Mtk)
=
NM( –Mtk)(sk – tk)

( –Mtk)

=
NM


( –Mtk)
(

sk – tk
 –Mtk

)

(sk – tk)

≤ 
M

NM


(sk – tk)α =
Nα

M
(sk – tk),

M(sk – tk)

( –Mtk)
=
M(sk – tk)


(sk – tk)

( –Mtk)

≤ M


(sk – tk)

α
M =

Mα


(sk – tk).

Hence, instead of (.), we can show

 ≤ 
( –Mtk+)

[
Mα


(sk – tk) +

L


(sk – tk) +
Nα

M
(sk – tk) +

Mα(sk – tk)


]

≤ φ. (.)

The estimate (.) can be written as

M
(
 +Mφkη

)
φkη ≤ α( –Mtk)

http://www.journalofinequalitiesandapplications.com/content/2013/1/194
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or

M
(
 +Mφkη

)
φkη ≤ α + αM

t

k – Mαtk .

So, we can show, instead of (.),

M
(
 +Mφkη

)
φkη + Mαtk ≤ α

or

M
(
 +Mφkη

)
φkη + Mα

[
η + αη

(
 – φk

 – φ

)
+ φk–η

]
– α ≤ . (.)

The estimate (.) motivates us to define polynomials f̄k on [, ) (for φ = t) by

f̄k(t) =M
(
 +Mφkη

)
tkη + Mαη

[
 + α

(
 – tk

 – t

)
+ tk–

]
– α

=Mtkη +Mηtk + Mα

[
 + α

(
 – tk

 – t

)
+ tk–

]
η – α (.)

or, since t ≤ t for t ∈ [, ], define the polynomials fk on [, ) by

fk(t) =Mtkη +Mηtk + Mα

[
 + α

(
 – tk

 – t

)
+ tk–

]
η – α. (.)

We need a relationship between two consecutive polynomials fk :

fk+(t) =Mtk+η +Mηtk+ + Mα

[
 + α

(
 – tk+

 – t

)
+ tk

]
η – α + fk(t) – fk(t)

= fk(t) + g(t)tk–η, (.)

where g and its unique positive root φg ∈ [, ) are given in Definition .. The estimate
(.) is true if

fk(φ) ≤  (.)

or, if

f(φ) ≤ , (.)

since by (.) we have

fk(φ) = f(φ). (.)

But (.) is true by the definition of φf and (.). Define

f∞(φ) = lim
k→∞

fk(φ). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/194
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Then we also have

f∞(φ) = lim
k→∞

fk(φ) = lim
k→∞

f(φ) ≤ lim
k→∞

 = . (.)

This completes the induction for (.). The estimate (.) is true if

Mαφkη


+
L


(
φkη

) + Nα

M
φkη +

αM


φkη ≤ φ( –Mtk+)

or

Mαφkη


+
L


(
φkη

) + Nα

M
φkη +

αM


φk

+ φM

[
 + α

(
 – φk+

 – φ

)
+ φk

]
η – φ ≤ . (.)

The estimate (.) motivates us to define polynomials hk on [, ) by

hk(t) =
Mα


tkη +

L


ηtk +
Nα

M
tkη +

αM


tkη

+ φM

[
 + α

(
 – tk+

 – t

)
+ tk

]
η – φ. (.)

We need a relationship between two consecutive polynomials hk :

hk+(t) =
Mα


tk+η +

L


ηtk+ +
Nα

M
tk+η +

αM


tk+η

+ φM

[
 + α

(
 – tk+

 – t

)
+ tk+

]
η – φ –

Mα


tkη –

L


ηtk –
αM


tkη

–
Nα

M
tkη – φM

[
 + α

(
 – tk+

 – t

)
+ tk

]
+ φ + hk(t)

and so

fk+(t) = hk(t) + g(t)tkη, (.)

where g and the unique positive root φg are given in Definition .. The estimate (.)
is true if

hk(φ) ≤  (.)

or, if

h(φ) ≤  (.)

since

hk(φ) = h(φ). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/194
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But (.) is true by the definition of φh and (.). Define a function h∞ on [, ) by

h∞(φ) = lim
k→∞

hk(φ). (.)

Then we have

h∞(φ) = lim
k→∞

hk(φ) = lim
k→∞

h(φ) ≤ lim
k→∞

 = .

This completes the induction for (.)-(.). It follows that the sequences {sn} and {tn} are
non-decreasing, bounded from above by t�� given in a closed form by (.) and converge
to their unique least upper bound t� ∈ [, t��]. This completes the proof. �

Proposition . [, ] Under the hypotheses of Lemma ., further assume

√bη < , (.)

where

b = a +
M


and a =

M


+
NM
q

+
L


. (.)

Fix

q ∈
(

√b,

η

)
, η �= . (.)

Define the parameters p, p by

p = 
M

( –
√b
q ),

p = Mq
 √b

, b �= ,

⎫⎬
⎭ (.)

and a function g on [, /q) by

g(t) = t +

q
+

p
q

(
(qt)

 – (qt)
+ t

)
. (.)

Moreover, assume

min
{
t, g(η)

} ≤ p. (.)

Then the following estimates hold for all k ≥ :

tk+ – sk ≤ p
q

√
(qη)k+ ,

sk – tk ≤ 
q (qη)

k .

⎫⎬
⎭ (.)

Proof We show

sm+ – tm+ ≤ q(sm – tm). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/194
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If the estimate (.) holds, then we have

q(sm+ – tm+) ≤ (
q(sm – tm)

)
≤ (qη)

m+
, (.)

which implies the second equation in (.). We have the estimate

M

(tm+ – sm) +

L


(sm – tm) +
NM

( –Mtm)
(sm – tm) +

M

( –Mtm)
(sm – tm)

≤ M


(
M(sm – tm)

( –Mtm)

)

+
L


(sm – tm)

+
NM

( –Mtm)
(sm – tm) +

M

( –Mtm)
(sm – tm)

≤ M


(sm – tm)

( –Mtm)
+
L


(sm – tm)

( –Mtm)
( –Mtm)

+
NM(sm – tm)

( –Mtm)
( –Mtm) +

M


(sm – tm)

( –Mtm)

≤ b(sm – tm)

( –Mtm)
,

that is, we have

sm+ – tm+ ≤ b(sm – tm)

( –Mtm+)( –Mtm)
.

Instead of showing (.), we can show

b(sm – tm)

( –Mtm)( –Mtm+)
≤ q(sm – tm) (.)

or

b
( –Mtm+)

≤ q, (.)

or

tm+ ≤ p. (.)

By the hypothesis (.), we have

t ≤ p. (.)

Assume

tm ≤ p. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/194


Argyros et al. Journal of Inequalities and Applications 2013, 2013:194 Page 12 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/194

We also have

tm+ – sm =
M(sm – tm)

( –Mtm)

≤ Mq
 √b

(sm – tm) = p(sm – tm). (.)

We get in turn

tm+ ≤ (sm – tm) + (tm – sm–) + · · · + (t – s) + s + p(sm – tm)

≤ η +

q
(qη)

m
+ p

(
(sm – tm) + (sm– – tm–) + · · · + (s – t)

)

≤ η +

q
(qη)

m
+

p
q

(
(qη)(

m) + (qη)(
m–) + · · · + η)

= η +

q
(qη)m +

p
q

((
(qη)



)m+

+
(
(qη)



)m + · · · + (

(qη)


) + η)

≤ η +

q
+

p
q

(
(qη)(m+) + (qη)m + · · · + (qη) + η)

≤ η +

q

(
(qη)

 – (qη)
+ η

)
= g(η) ≤ p, (.)

which completes the induction for (.). This completes the proof. �

Theorem . Under the hypotheses (.)-(.) and (.), further assume that the hy-
potheses of Lemma . hold and

	U(
x, t�

) ⊆D. (.)

Then the sequences {xn} and {yn} generated by (JM) are well defined, remain in 	U(x, t�) for
all n≥  and converge to a unique solution x� of the equation F(x) =  in 	U(x, t�).Moreover,
the following estimates hold:

‖yn – xn‖ ≤ sn – tn,

‖xn+ – yn‖ ≤ tn+ – sn,∥∥xn – x�
∥∥ ≤ t� – tn,∥∥yn – x�
∥∥ ≤ t� – sn.

Furthermore,under the hypotheses of Proposition ., the estimates (.)also hold.Finally,
if R≥ t� such that

U(x,R)⊆D

and

R ≤ 
M

– t�,

then the solution x� is unique in U(x,R).

http://www.journalofinequalitiesandapplications.com/content/2013/1/194
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Example . Let X = Y =R
, D = [, ], x = (, )T and define a function F on D by

F(x) =
(
ξ 
 – ξ – , ξ 

 – ξ – 
)T .

Using (.)-(.), we obtain

η = ., M = ., N = ., M = ., L = , K = .

and

h = . < ..

Hence the conclusions of Theorem . hold for the equation F(x) = . Considering the
hypotheses of Theorem ., from Lemma ., we have

α = .

and, from Definition ., we get

φf = ., φg = .,

φh = ., φg = ..

Consequently, from the definition of φ (see Definition .), we obtain

φ = φf = .,

and from the definition of φ (see Definition .), we obtain

φ = ..

We see the assumption φ < φ (see equation (.) in Definition .) is also valid. Further-
more, from the equation (.) (see Lemma .), we consider

φ = ..

From the equation (.),

t�� = ..

Hence the conditions of Theorem . are also satisfied. Additionally, to verify the claims
about the sequences {sn} and {tn} (see equation (.)), we produce Table .
From Table , we observe the following:

� The sequences {tn} and {sn} are non-decreasing.
� The sequences {tn} and {sn} are bounded from above by t��.
� The estimate (.) holds.
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Table 1 The scalar sequences {sn} and {tn} are given by equation (3.5) in Lemma 3.2

n tn sn sn – tn φ(sn – tn)

0 0.000000× 10+00 1.000000× 10–01 1.000000× 10–01 2.000000× 10–02

1 1.106200× 10–01 1.109892× 10–01 3.691608× 10–04 7.383216× 10–05

2 1.109893× 10–01 1.109893× 10–01 9.907814× 10–14 1.981563× 10–14

3 1.109893× 10–01 1.109893× 10–01 5.147480× 10–52 1.029496× 10–52

4 1.109893× 10–01 1.109893× 10–01 3.750264× 10–205 7.500528× 10–206

5 1.109893× 10–01 1.109893× 10–01 1.056649× 10–817 2.113298× 10–818

6 1.109893× 10–01 1.109893× 10–01 0.000000× 10+00 0.000000× 10+00

Table 2 The scalar sequences {wn} and {vn} are given by equation (2.11) in Theorem 2.1

n wn vn wn – vn
0 1.000000× 10–01 0.000000× 10+00 1.000000× 10–01

1 1.112526× 10–01 1.107448× 10–01 5.078254× 10–04

2 1.112529× 10–01 1.112529× 10–01 4.913882× 10–13

3 1.112529× 10–01 1.112529× 10–01 1.527672× 10–41

4 1.112529× 10–01 1.112529× 10–01 1.476527× 10–98

5 1.112529× 10–01 1.112529× 10–01 1.379314× 10–212

6 1.112529× 10–01 1.112529× 10–01 1.203670× 10–440

7 1.112529× 10–01 1.112529× 10–01 9.166325× 10–897

8 1.112529× 10–01 1.112529× 10–01 5.315832× 10–1809

9 1.112529× 10–01 1.112529× 10–01 0.000000× 10+00

Let us now compare the bounds between Theorems . and .. From equation (.), we
get

v� = .× – and v�� = .× –.

From the equation (.), for v[] = , we obtain Table .
Comparing Tables  and , we observe that the bounds of Theorem . are finer than

those of Theorem .. That is, sn – tn ≤ wn – vn for all n = , , , . . . . Considering the hy-
potheses of Proposition ., we have for q = 

a = ., √b = ., p = .,

p = . and g(η) = . < p.

From Table  and the preceding data, we note that min{t, g(η)} < p. Consequently, the
assumption (.) is true. Additionally, to ascertain the estimate (.), we form Table .
In Table , we observe that the estimates (.) are also true. Hence the conclusions of

Proposition . also hold for the equation F(x) = .

Remarks . [, , ] () The condition (.) can be replaced by a stronger, but easier to
check

η
 – δ

≤ p, (.)

for δ ∈ I (see (.) and (.)).
The best possible choice for δ seems to be δ = δ. Let

δ =max{δ, δ, δ}.
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Table 3 To validate the estimate (3.33) of Proposition 3.3

n sn – tn (tn+1 – sn)
p
q2

√
(qη)4k+1 1

q (qη)4
k

0 1.000000× 10–01 1.062000× 10–02 2.512112× 10–02 1.000000× 10–01

1 3.691608× 10–04 1.764238× 10–07 1.028961× 10–04 6.400000× 10–03

2 9.907814× 10–14 1.271658× 10–26 2.896268× 10–14 1.073742× 10–07

3 5.147480× 10–52 3.432448× 10–103 1.818017× 10–52 8.507059× 10–27

4 3.750264× 10–205 1.821958× 10–409 2.822505× 10–205 3.351952× 10–103

5 1.056649× 10–817 1.446359× 10–1634 1.639764× 10–816 8.079252× 10–409

6 0.000000× 10+00 0.000000× 10+00 1.867962× 10–3261 2.726870× 10–1631

7 0.000000× 10+00 0.000000× 10+00 3.145683× 10–13041 3.538653× 10–6521

8 0.000000× 10+00 0.000000× 10+00 2.529895× 10–52160 1.003533× 10–26080

9 0.000000× 10+00 0.000000× 10+00 1.058406× 10–208636 6.490926× 10–104319

10 0.000000× 10+00 0.000000× 10+00 3.242295× 10–834542 1.136074× 10–417271

In this case, (.) is written as

η ≤ ( – δ)p


. (.)

() The ratio of convergence ‘qη’ given in Proposition . can be smaller than ‘ 
√
θ ’ given

in Theorem . for q close to √b andM, N , L not all zero and η > .
Set α = √bη and β = √θ . Note that b < K and K > b. By comparing α and β , we

have

h =

K

(
 –

[(
K

b

)/

– 
])

.

Case . If .M +.NM–.L ≤  or .M +.NM–.L >
 and η > h, then we have

α < β .

Case . If .M + .NM – .L >  and η < h, then we have

α > β .

Case . If  < η = h, then we have

α = β .

Note that the p-Jarratt-type method (p ∈ [, ]) given in [] uses (.)-(.), but the suffi-
cient convergence conditions are different from the ones given in the study and guarantees
only third-order convergence (not fourth obtained here) in the case of the Jarratt method
(for p = /).

4 Conclusions
We developed a semilocal convergence analysis, using recurrent functions, for the Jar-
ratt method to approximate a locally unique solution of a nonlinear equation in a Banach
space. A numerical example and some favorable comparisons with previous works are also
reported.
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