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1 Introduction and preliminaries
Throughout the paper, we assume that E is an arbitrary real Banach space,D is a nonempty
closed convex subset of E, T : D → D is a self-mapping and F(T) is the fixed point set of
T , i.e., F(T) = {x ∈D : Tx = x}. Let J denote the normalized duality mapping from E to E∗

defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E, (.)

where E∗ denotes the dual space of E and 〈·, ·〉 denotes the generalized duality pairing. The
single-valued normalized duality mapping is denoted by j.

Definition . (see []) () A mapping T is said to be uniformly L-Lipschitz if there exists
a constant L >  such that, for all x, y ∈D,

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, ∀n≥ . (.)

() The mapping T is said to be asymptotically nonexpansive with a sequence {kn} ⊂
[, +∞) and limn→∞ kn =  if, for all x, y ∈D,

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀n≥ . (.)

() ThemappingT is said to be asymptotically pseudocontractivewith a sequence {kn} ⊂
[, +∞) and limn→∞ kn =  if, for all x, y ∈D, there exists j(x – y) ∈ J(x – y) such that

〈
Tnx – Tny, j(x – y)

〉 ≤ kn‖x – y‖, ∀n≥ . (.)
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Obviously, an asymptotically nonexpansive mapping is both asymptotically pseudocon-
tractive and uniformly L-Lipschitz, but the converse is not true in general. For more de-
tails on uniformly L-Lipschitz asymptotically nonexpansive and asymptotically pseudo-
contractive mappings, see [–] and [–].

Definition . (see []) For any u,x ∈ D, the sequences {un} and {xn} in D defined by

un+ = ( – an)un + anTnun, ∀n≥ , (.)

and
⎧⎨
⎩
yn = ( – bn)xn + bnTnxn,

xn+ = ( – an)xn + anTnyn, ∀n≥ ,
(.)

are called the modified Mann and Ishikawa iterations, respectively, where {an}, {bn} are
two real sequences in [, ] satisfying some conditions. For more details on the Mann and
Ishikawa iterations, see [, ] and [].

In , Chidume and Mutangadura [] constructed an example for every nontrivial
Mann iteration failing to converge while Ishikawa iteration converges. Therefore, there
exist some differences between convergence of two kinds of the iterative sequences. Since
then, many authors have shown that the Mann (modified Mann) and Ishikawa (modified
Ishikawa) iterations (with errors) converge strongly to fixed points of pseudocontractive
mappings and others under appropriate conditions.
Especially, Chang [] proved the following.

Theorem . [, Theorem .] Let D be a nonempty closed convex subset of E and T :
D → D be a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with a
sequence {kn} ⊂ [, +∞) such that limn→∞ kn =  and L ≥ . Let {an} and {bn} be two real
sequences in [, ] satisfying the following conditions:
(a) an,bn →  as n→ ∞;
(b)

∑∞
n= an = ∞.

For any x ∈ D, let {xn} be the modified Ishikawa iteration defined by (.). If F(T) = ∅,
q ∈ F(T) and there exists a strictly increasing function� : [, +∞)→ [, +∞)with�() = 
such that

〈
Tnxn+ – q, j(xn+ – q)

〉 ≤ kn‖xn+ – q‖ –�
(‖xn+ – q‖), ∀n≥ ,

where j(xn+ – q) ∈ J(xn+ – q), then {xn} converges strongly to a fixed point q of T .

Theorem . [, Theorem .] Let D be a nonempty closed convex subset of E and T :
D → D be a uniformly L-Lipschitzian asymptotically pseudocontractive mapping with a
sequence {kn} ⊂ [, +∞) such that limn→∞ kn =  and L ≥ . Let {an} be the real sequence
in [, ] satisfying the following conditions:
(a) an →  as n→ ∞;
(b)

∑∞
n= an = ∞.
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For any u ∈ D, let {un} be the modified Mann iteration defined by (.). If F(T) = ∅,
q ∈ F(T) and there exists a strictly increasing function� : [, +∞)→ [, +∞)with�() = 
satisfying the condition (.) of [, Theorem.], then {un} converges strongly to a fixed point
q of T .

Motivated byTheorems . and ., Zeng [] gave another interesting results as follows.

Theorem . [, Theorem .] Let D be a nonempty closed convex subset of E and
T : D → D be a uniformly L-Lipschitz asymptotically pseudocontractive mapping with a
sequence {kn} ⊂ [, +∞) such that limn→∞ kn =  and L ≥ . Let {an} and {bn} be two real
sequences in [, ] satisfying the following conditions:
(a) an →  as n→ ∞ and

∑∞
n= an = ∞;

(b)
∑∞

n= an < ∞ and
∑∞

n= an(kn – ) <∞;
(c)

∑∞
n= anbn <∞.

For arbitrary x ∈ D, let {xn} be the modified Ishikawa iteration defined by (.). If
F(T) = ∅, q ∈ F(T) and there exists a strictly increasing function � : [, +∞) → [, +∞)
with �() =  such that

〈
Tnxn+ – q, j(xn+ – q)

〉 ≤ kn‖xn+ – q‖ –�
(‖xn+ – q‖), ∀n≥ ,

where j(xn+ – q) ∈ J(xn+ – q), then {xn} converges strongly to the fixed point q of T .

Theorem . [, Theorem .] Let D be a nonempty closed convex subset of E and
T : D → D be a uniformly L-Lipschitz asymptotically pseudocontractive mapping with a
sequence {kn} ⊂ [, +∞) such that limn→∞ kn =  and L ≥ . Let {an} be a real sequence in
[, ] satisfying the following conditions:
(a) an →  as n→ ∞ and

∑∞
n= an = ∞;

(b)
∑∞

n= an < ∞ and
∑∞

n= an(kn – ) <∞.
For arbitrary u ∈D, let {un} be the modifiedMann iteration defined by (.). If F(T) = ∅,

q ∈ F(T) and there exists a strictly increasing function� : [, +∞)→ [, +∞)with�() = 
satisfying the condition (.) of [, Theorem .], then {un} converges strongly to the fixed
point q of T .

It is worth mentioning that the result of Chang [] is different from that of Zeng [].
This can be seen from the following example.

Example . Set

an =

⎧⎨
⎩
, n = i,

n , n = i – ,

bn =

⎧⎨
⎩


 , n = i,

n , n = i – ,

kn =  +

n
, ∀i≥ ,n≥ .

Then an →  as n→ ∞,
∑∞

n= an = ∞ and
∑∞

n= an < ∞,
∑∞

n= anbn <∞,
∑∞

n= an(kn –) <
∞, but bn →  as n→ ∞ does not hold. On the other hand, let

an =

⎧⎨
⎩
, n = i,
√
n , n = i – ,

bn =

⎧⎨
⎩
, n = i,
√
n , n = i – ,

kn =  +
√
n
, ∀i≥ ,n≥ .
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Then an,bn →  as n → ∞ and
∑∞

n= an = ∞, but
∑∞

n= an = ∞,
∑∞

n= anbn = ∞ and∑∞
n= an(kn – ) = ∞.

The aim of this paper is to extend and improve Theorem . and Theorem ..
For this, we need to use the following lemmas.

Lemma . [] Let E be a real Banach space and J : E → E∗ be a normalized duality
mapping. Then, for all x, y ∈ E and j(x + y) ∈ J(x + y),

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
. (.)

Lemma . [] Let {an}, {bn} and {cn} be three nonnegative real sequences satisfying

an+ ≤ ( + bn)an + cn, ∀n≥ . (.)

If
∑∞

n= bn < ∞,
∑∞

n= cn < ∞, then limn→∞ an exists.

2 Main results
Now, we give the main results in this paper.

Theorem. Let D be a nonempty closed convex subset of E and T :D→ D be a uniformly
L-Lipschitz asymptotically pseudocontractivemappingwith a sequence {kn} ⊂ [, +∞) such
that limn→∞ kn =  and L ≥ . Let {an} be a real sequence in [, ] satisfying the following
conditions:
(a) an →  as n→ ∞ and

∑∞
n= an = ∞;

(b)
∑∞

n= an < ∞ and
∑∞

n= an(kn – ) < ∞.
For arbitrary u ∈ D, let {un} be the modifiedMann iteration defined by (.). If F(T) = ∅,

q ∈ F(T) and there exists a strictly increasing continuous function � : [, +∞) → [, +∞)
with �() =  such that

〈
Tnun+ – q, j(un+ – q)

〉 ≤ kn‖un+ – q‖ – �(‖un+ – q‖)
 +�(‖un+ – q‖) + ‖un+ – q‖ , ∀n≥ ,

where j(un+ – q) ∈ J(un+ – q), then {un} converges strongly to a fixed point q of T .

Proof Applying (.) and Lemma ., we have

‖un+ – q‖ =
∥∥( – an)(un – q) + an

(
Tnun – q

)∥∥

≤ ( – an)‖un – q‖ + an
〈
Tnun – q, j(un+ – q)

〉
= ( – an)‖un – q‖ + an

〈
Tnun – Tnun+, j(un+ – q)

〉
+ an

〈
Tnun+ – Tnq, j(un+ – q)

〉
≤ ( – an)‖un – q‖ + anL‖un – un+‖ · ‖un+ – q‖

+ an
[
kn‖un+ – q‖ – �(‖un+ – q‖)

 +�(‖un+ – q‖) + ‖un+ – q‖
]
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/188
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Observe that

‖un+ – un‖ =
∥∥an(Tnun – un

)∥∥
≤ an

∥∥Tnun – Tnq + q – un
∥∥

≤ an( + L)‖un – q‖. (.)

Substituting (.) into (.), we obtain

‖un+ – q‖ ≤ ( – an)‖un – q‖ + anL( + L)
(‖un – q‖ + ‖un+ – q‖)

+ an
[
kn‖un+ – q‖ – �(‖un+ – q‖)

 +�(‖un+ – q‖) + ‖un+ – q‖
]
. (.)

Since an →  and kn →  as n → ∞, without loss of generality, we assume that



<  – aL( + L) – ankn < , ∀n≥ .

Then (.) implies that

‖un+ – q‖

≤ ( – an) + anL( + L)
 – aL( + L) – ankn

‖un – q‖

–
an

 – aL( + L) – ankn
· �(‖un+ – q‖)
 +�(‖un+ – q‖) + ‖un+ – q‖

≤
{
 +

an(kn – ) + an[ + L( + L)]
 – aL( + L) – ankn

}
‖un – q‖ – an�(‖un+ – q‖)

 +�(‖un+ – q‖) + ‖un+ – q‖

≤ {
 + an(kn – ) + an

[
 + L( + L)

]}‖un – q‖ – an�(‖un+ – q‖)
 +�(‖un+ – q‖) + ‖un+ – q‖

≤ {
 + an(kn – ) + an

[
 + L( + L)

]}‖un – q‖. (.)

Since
∑∞

n={an(kn – ) + an[ + L( + L)]} < ∞, by Lemma ., limn→∞ ‖un – q‖ exists.
DenoteM = supn≥{‖un – q‖}.
On the other hand, from (.), we have

‖un+ – q‖

≤ {
 + an(kn – ) + an

[
 + L( + L)

]}‖un – q‖

–
an�(‖un+ – q‖)

 +�(‖un+ – q‖) + ‖un+ – q‖
≤ ‖un – q‖ + {

an(kn – ) + an
[
 + L( + L)

]}
M

–
an�(‖un+ – q‖)

 +�(‖un+ – q‖) + ‖un+ – q‖ . (.)

Let infn≥
�(‖un+–q‖)

+�(‖un+–q‖)+‖un+–q‖ = δ. Then δ = . Assume δ > . Then we have

�(‖un+ – q‖)
 +�(‖un+ – q‖) + ‖un+ – q‖ ≥ δ, ∀n≥ .
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It follows from (.) that

anδ ≤ ‖un – q‖ – ‖un+ – q‖ + [
an(kn – ) + an

(
 + L( + L)

)]
M, (.)

which implies that

δ
∞∑
n=

an ≤ ‖u – q‖ +
∞∑
n=

[
an(kn – ) + an

(
 + L( + L)

)]
M < ∞, (.)

which is a contradiction, and so δ = . Thus, there exists a subsequence

{
�(‖uni+ – q‖)

 +�(‖uni+ – q‖) + ‖uni+ – q‖
}

of
{

�(‖un+ – q‖)
 +�(‖un+ – q‖) + ‖un+ – q‖

}

such that

lim
i→∞

�(‖uni+ – q‖)
 +�(‖uni+ – q‖) + ‖uni+ – q‖ = .

Since  ≤ ‖un – q‖ ≤M, it follows that

 ≤ �(‖uni+ – q‖)
 +�(M) +M ≤ �(‖uni+ – q‖)

 +�(‖uni+ – q‖) + ‖uni+ – q‖ .

Thus, limi→∞ �(‖uni+ – q‖) = . By the strictly increasing continuous function �, we ob-
tain that limi→∞ ‖uni+ – q‖ =  and so limn→∞ ‖un – q‖ = . This completes the proof.

�

Theorem. Let E be a real Banach space and D be a nonempty closed convex subset of E.
Let T :D →D be a uniformly L-Lipschitz asymptotically pseudocontractive mapping with
a sequence {kn} ⊂ [, +∞) such that limn→∞ kn = . Suppose that {an} and {bn} are two real
sequences in [, ] satisfying the following conditions:
(a) an →  as n→ ∞ and

∑∞
n= an = ∞;

(b)
∑∞

n= an < ∞ and
∑∞

n= an(kn – ) < ∞;
(c)

∑∞
n= anbn <∞.

For any u,x ∈D, let {un} and {xn} be themodifiedMannand Ishikawa iterations defined
by (.) and (.), respectively. If F(T) = ∅, q ∈ F(T) and there exists a strictly increasing
continuous function � : [, +∞)→ [, +∞) with �() =  such that

〈
Tnxn+ – Tnun+, j(xn+ – un+)

〉

≤ kn‖xn+ – un+‖ – �(‖xn+ – un+‖)
 +�(‖xn+ – un+‖) + ‖xn+ – un+‖ ,

where j(xn+ – un+) ∈ J(xn+ – un+). Then the following two assertions are equivalent:

http://www.journalofinequalitiesandapplications.com/content/2013/1/188
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() {un} converges strongly to the fixed point q of T .
() {xn} converges strongly to the fixed point q of T .

Proof If the iteration (.) converges to a fixed point q, then, by putting bn = , we can get
the convergence of the iteration (.).
Conversely, we only need to prove that the iteration (.) ⇒ the iteration (.), i.e., ‖un –

q‖ →  as n → ∞ ⇒ ‖xn – q‖ →  as n → ∞. Here, without loss of generality, let ‖un –
q‖ ≤ . Then ‖Tnun – un‖ ≤ ( + L).
Applying the iterations (.), (.) and Lemma ., we have

‖xn+ – un+‖ =
∥∥( – an)(xn – un) + an

(
Tnyn – Tnun

)∥∥

≤ ( – an)‖xn – un‖ + an
〈
Tnyn – Tnun, j(xn+ – un+)

〉
= ( – an)‖xn – un‖ + an

〈
Tnyn – Tnxn+, j(xn+ – un+)

〉
+ an

〈
Tnxn+ – Tnun+, j(xn+ – un+)

〉
+ an

〈
Tnun+ – Tnun, j(xn+ – un+)

〉
≤ ( – an)‖xn – un‖ + anL‖yn – xn+‖ · ‖xn+ – un+‖

+ an
[
kn‖xn+ – un+‖ – �(‖xn+ – un+‖)

 +�(‖xn+ – un+‖) + ‖xn+ – un+‖
]

+ anL‖un+ – un‖ · ‖xn+ – un+‖. (.)

Observe that

‖un+ – un‖ =
∥∥an(Tnun – un

)∥∥
≤ an( + L), (.)

‖yn – un‖ =
∥∥( – bn)(xn – un) + bn

(
Tnxn – un

)∥∥
≤ ( – bn)‖xn – un‖ + bn

∥∥Tnxn – Tnun
∥∥ + bn

∥∥Tnun – un
∥∥

≤ ( – bn + bnL)‖xn – un‖ + bn( + L)

≤ ( + bnL)‖xn – un‖ + bn( + L), (.)

‖yn – xn+‖ =
∥∥bn(Tnxn – xn

)
+ an

(
xn – Tnyn

)∥∥
≤ bn

[∥∥Tnxn – Tnun
∥∥ +

∥∥Tnun – un
∥∥ + ‖un – xn‖

]
+ an

[‖xn – un‖ +
∥∥un – Tnun

∥∥ +
∥∥Tnun – Tnyn

∥∥]
≤ bn

[
(L + )‖xn – un‖ + (L + )

]
+ an

[‖xn – un‖ + (L + ) + L‖un – yn‖
]

≤ bn
[
(L + )‖xn – un‖ + (L + )

]
+ an

[‖xn – un‖ + (L + ) + L
[
( + bnL)‖xn – un‖ + bn( + L)

]]
= An‖xn – un‖ + Bn, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/188
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where An = bn(L + ) + an[ + L( + bnL)] →  and Bn = bn(L + ) + an(L + )( + Lbn) → 
as n→ ∞. Substituting (.), (.) into (.), we obtain

‖xn+ – un+‖

≤ ( – an)‖xn – un‖ + anL
(
An‖xn – un‖ + Bn

)‖xn+ – un+‖ + anL( + L)

· ‖xn+ – un+‖ + an
[
kn‖xn+ – un+‖ – �(‖xn+ – un+‖)

 +�(‖xn+ – un+‖) + ‖xn+ – un+‖
]

≤ ( – an)‖xn – un‖ + anLAn‖xn – un‖ + anLAn‖xn+ – un+‖

+ anLBn + anLBn‖xn+ – un+‖ + anL( + L)‖xn+ – un+‖ + anL( + L)

+ an
[
kn‖xn+ – un+‖ – �(‖xn+ – un+‖)

 +�(‖xn+ – un+‖) + ‖xn+ – un+‖
]

=
[
( – an) + anLAn

]‖xn – un‖ +
[
anLAn + anLBn + anL( + L)

+ ankn
]‖xn+ – un+‖ + anLBn + anL( + L)

– an
�(‖xn+ – un+‖)

 +�(‖xn+ – un+‖) + ‖xn+ – un+‖ . (.)

Since an,bn,An,Bn,kn –  →  as n→ ∞, without loss of generality, we assume that



<  – anLAn – anLBn – anL( + L) – ankn < , ∀n≥ .

Then (.) implies that

‖xn+ – un+‖

≤ ( – an) + anLAn

 – anLAn – anLBn – anL( + L) – ankn
‖xn – un‖

+
anLBn + anL( + L)

 – anLAn – anLBn – anL( + L) – ankn

–
an

 – anLAn – anLBn – anL( + L) – ankn

· �(‖xn+ – un+‖)
 +�(‖xn+ – un+‖) + ‖xn+ – un+‖

≤ ‖xn – un‖ + anLAn + anLBn + an( + L + L) + an(kn – )
 – anLAn – anLBn – anL( + L) – ankn

‖xn – un‖

+ anLBn + anL( + L) –
an�(‖xn+ – un+‖)

 +�(‖xn+ – un+‖) + ‖xn+ – un+‖
≤ [

 + anLAn + anLBn + an
(
 + L + L

)
+ an(kn – )

]‖xn – un‖

+ anLBn + anL( + L) –
an�(‖xn+ – un+‖)

 +�(‖xn+ – un+‖) + ‖xn+ – un+‖
≤ [

 + anLAn + anLBn + an
(
 + L + L

)
+ an(kn – )

]‖xn – un‖

+ anLBn + anL( + L). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/188


Xue and Lv Journal of Inequalities and Applications 2013, 2013:188 Page 9 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/188

Since

∞∑
n=

[
anLAn + anLBn + an

(
 + L + L

)
+ an(kn – )

]
<∞

and
∑∞

n=[anLBn + anL( + L)] < ∞, by Lemma ., limn→∞ ‖xn – un‖ exists. Denote
M = supn≥{‖xn – un‖}.
On the other hand, from (.), it follows that

‖xn+ – un+‖

≤ [
 + anLAn + anLBn + an

(
 + L + L

)
+ an(kn – )

]‖xn – un‖

+ anLBn + anL( + L) –
an�(‖xn+ – un+‖)

 +�(‖xn+ – un+‖) + ‖xn+ – un+‖
≤ ‖xn – un‖ +

[
anLAn + anLBn + an

(
 + L + L

)
+ an(kn – )

]
M

+ anLBn + anL( + L) –
an�(‖xn+ – un+‖)

 +�(‖xn+ – un+‖) + ‖xn+ – un+‖ . (.)

Let infn≥
�(‖xn+–un+‖)

+�(‖xn+–un+‖)+‖xn+–un+‖ = δ. Then δ = . Assume δ > . Then we have

�(‖xn+ – un+‖)
 +�(‖xn+ – un+‖) + ‖xn+ – un+‖ ≥ δ, ∀n≥ .

It follows from (.) that

anδ ≤ ‖xn – un‖ – ‖xn+ – un+‖

+
[
anLAn + anLBn + an

(
 + L + L

)
+ an(kn – )

]
M

+ anLBn + anL( + L), (.)

which implies that

δ
∞∑
n=

an ≤ ‖x – u‖ +
∞∑
n=

[
anLAn + anLBn + an( + L) + an(kn – )

]
M

+
∞∑
n=

[
anLBn + anL( + L)

]
< ∞, (.)

which is a contradiction, and so δ = . Thus, there exists a subsequence

{
�(‖xni+ – uni+‖)

 +�(‖xni+ – uni+‖) + ‖xni+ – uni+‖
}

of

{
�(‖xn+ – uni+‖)

 +�(‖xn+ – uni+‖) + ‖xn+ – un+‖
}
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such that

lim
i→∞

�(‖xni+ – uni+‖)
 +�(‖xni+ – uni+‖) + ‖xni+ – uni+‖

= .

Since  ≤ ‖xn – un‖ ≤ M, it follows that

 ≤ �(‖xni+ – uni+‖)
 +�(M) +M ≤ �(‖xni+ – uni+‖)

 +�(‖xni+ – uni+‖) + ‖xni+ – uni+‖
.

Thus, limi→∞ �(‖xni+ – uni+‖) = . By the strictly increasing continuous function �, we
obtain that limi→∞ ‖xni+ – uni+‖ =  and so limn→∞ ‖xn – un‖ = . Using the inequality
‖xn – q‖ ≤ ‖xn – un‖ + ‖un – q‖ →  as n → ∞, we know that xn → q as n → ∞. This
completes the proof. �

Theorem. Let E be a real Banach space and D be a nonempty closed convex subset of E.
Let T :D →D be a uniformly L-Lipschitz asymptotically pseudocontractive mapping with
a sequence {kn} ⊂ [, +∞) such that limn→∞ kn = . Suppose that {an} and {bn} are two real
sequences in [, ] satisfying the following conditions:
(a) an →  as n→ ∞ and

∑∞
n= an = ∞;

(b)
∑∞

n= an < ∞ and
∑∞

n= an(kn – ) < ∞;
(c)

∑∞
n= anbn <∞.

For any x ∈ D, let {xn} be the modified Ishikawa iteration defined in (.). If F(T) = ∅,
q ∈ F(T) and there exists a strictly increasing continuous function � : [, +∞) → [, +∞)
with �() =  such that

〈
Tnxn+ – q, j(xn+ – q)

〉 ≤ kn‖xn+ – q‖ – �(‖xn+ – q‖)
 +�(‖xn+ – q‖) + ‖xn+ – q‖ , ∀n≥ ,

where j(xn+ – q) ∈ J(xn+ – q). Then {xn} converges strongly to the fixed point q of T .

Proof By Theorem . and Theorem ., we obtain the proof of Theorem .. �

Remark . Since the condition 〈Tnx–q, j(x–q)〉 ≤ kn‖x–q‖ – �(‖x–q‖)
+�(‖x–q‖)+‖x–q‖ is weaker

than 〈Tnx–q, j(x–q)〉 ≤ kn‖x–q‖ –�(‖x–q‖), Theorem . and Theorem . generalize
the corresponding results of Zeng []. Further, our proofmethods are different from those
of Zeng [].

For the sake of convenience, we give the following definitions.

Definition . A mapping T : D → E is said to be weak generalized asymptotically
ϕ-hemi-contractive with a sequence {kn} ⊂ [, +∞) such that limn→∞ kn =  if there ex-
ists a strictly increasing continuous function ϕ : [, +∞) → [, +∞) with ϕ() =  such
that, for any x ∈D and y ∈ F(T), there exists j(x – y) ∈ J(x – y) such that

〈
Tnx – Tny, j(x – y)

〉 ≤ kn‖x – y‖ – ϕ(‖x – y‖)
 + ϕ(‖x – y‖) + ‖x – y‖ , ∀n≥ . (.)
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If the condition (.) is replaced by the following inequality:

〈
Tnx – Tny, j(x – y)

〉 ≤ kn‖x – y‖ – ϕ
(‖x – y‖), ∀n≥ , (.)

then T is called a generalized asymptotically ϕ-hemi-contractive mapping. Clearly, if T
is a generalized asymptotically asymptotically ϕ-hemi-contractive, then T must be a
weak generalized asymptotically asymptotically ϕ-hemi-contractive mapping. However,
the converse is not true in general. This can be seen from the following examples.

Example . Let E = R be the set of real numberswith the usual norm | · | andD = [,+∞).
Define a mapping T :D →D by

Tx =
x

 + x
, ∀x ∈ D.

Then T is a monotonically increasing function with a fixed point q =  ∈ D. Define two
functions �,ϕ : [, +∞)→ [, +∞) by �(t) = t

+t and ϕ(t) = t, respectively. Then � and
ϕ are two strictly increasing continuous functions with �() = ϕ() = . For all x ∈ D and
q ∈ F(T), let kn = . Then we obtain that

∣∣Tnx – Tnq
∣∣ ≤ |Tx| ≤ |x – q| = kn|x – q|, (.)

〈
Tnx – Tnq, j(x – q)

〉
=

〈
Tnx, j(x – )

〉 ≤ 〈
Tx, j(x – )

〉

=
〈

x

 + x
,x

〉
=

x

 + x

= |x – q| – |x – q|
 + |x – q|

= kn|x – q| –�
(|x – q|)

= kn|x – q| – ϕ(|x – q|)
 + ϕ(|x – q|) + |x – q| . (.)

Then T is a generalized asymptotically �-hemi-contraction and a weak generalized
asymptotically ϕ-hemi-contraction.

Example . Let E = R be the set of real numbers with the usual norm and R+ = [,+∞).
Define a mapping T : R+ → R by

Tx =
x + x + x/ – x/

 + x/ + x
, ∀x ∈ R+.

Then T has a fixed point q =  ∈ R+. Define a function ϕ : [, +∞) → [, +∞) by ϕ(t) =
t/. Then ϕ is a strictly increasing continuous function with ϕ() = . For all x ∈ R+ and
q ∈ F(T), let n =  and kn = . Then we have

〈
Tx – Tq, j(x – q)

〉
=

〈
x + x + x/ – x/

 + x/ + x
– , j(x – )

〉

=
〈
x + x + x/ – x/

 + x/ + x
,x

〉

http://www.journalofinequalitiesandapplications.com/content/2013/1/188


Xue and Lv Journal of Inequalities and Applications 2013, 2013:188 Page 12 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/188

=
x + x + x/ – x/

 + x/ + x

= x –
x/

 + x/ + x

= |x – q| – |x – q|/
 + |x – q|/ + |x – q|

= |x – q| – ϕ(|x – q|)
 + ϕ(|x – q|) + |x – q| . (.)

Then T is a weak generalized asymptotically ϕ-hemi-contraction, but not a generalized
asymptotically �-hemi-contraction with n = .
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