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Abstract
We investigate the multiplicity of the weak solutions for the nonlinear elliptic
boundary value problem. We get a theorem which shows the existence of at least
four weak solutions for the asymptotically linear elliptic problem with Dirichlet
boundary condition. We obtain this result by using the Leray-Schauder degree theory,
the variational reduction method and critical point theory.
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1 Introduction
Let� be a bounded open subset of Rn with smooth boundary ∂�. Let L be the self-adjoint
strongly elliptic partial differential operator

L =
∑

≤i,j≤n

∂

∂xi
aij(x)

∂

∂xj
,

where aij(x) ∈ L∞(�). Let f : R → R be a C function. Let λk be the eigenvalues and φk , k =
, , . . . , be the associated normalized eigenfunctions of the eigenvalue problem Lu+λu = 
in �, u =  on ∂�. We note that  < λ < λ ≤ · · · ≤ λk → ∞ and φ > .
In this paper, we consider the multiplicity of solutions of the following elliptic problem

with Dirichlet boundary condition and jumping nonlinearity:

Lu + bu+ – au– = sφ in �, (.)

u =  on ∂�.

The physical model for this kind of the jumping nonlinearity problem can be furnished
by traveling waves in suspension bridges. The nonlinear equations with jumping nonlin-
earity have been extensively studied by Lazer and McKenna [], McKenna andWalter [],
Tarantello [], Micheletti and Pistoia [, ], Jung and Choi [–] and many other authors.
McKenna andWalter [] proved that if –∞ < f ′(–∞) < λ and λn < f ′(+∞), then there ex-
ists s such that for all s ≥ s, (.) has at least two solutions if n is odd, and three solutions
if n is even.
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Our main result is as follows.

Theorem . Assume that –∞ < a < λ < b < λ, s > . Then (.) has at least four solu-
tions.

For the proof of Theorem . we use the Leray-Schauder degree theory, the variational
reduction method and the critical point theory. The outline of this paper is as follows:
In Section , we show the existence of the third weak solution for (.) by the variational
reduction method and critical point theory. In Section , we show the existence of the
fourth weak solution for (.) by the Leray-Schauder degree theory.

2 Existence of the third weak solution
We note that (.) has a positive solution v = sφ

b–λ
and a negative solution v = sφ

a–λ
. To

show the existence of the third solution of (.), we shall use the variational reduction
method and the critical point theory. We assume that –∞ < a < λ < b < λ and s > . Let
g(ξ ) = bξ+ – aξ– and H

(�) be the Sobolev space with the norm

‖u‖ =
∫

�

(–Lu) · udx.

We consider the following functional associated with (.):

Ia,b(u, s) =
∫

�

[
–


Lu · u –G(u) + sφu

]
dx, (.)

where

G(u) =
b|u+|


+
a|u–|


.

For simplicity, we shall write I = Ia,b when a and b are fixed. By the condition –∞ < a < λ <
b < λ and s > , I is well defined. By the following Lemma ., I(u, s) ∈ C(H

(�),R) and
Fréchet differentiable inH

(�), so the solutions of (.) coincide with the critical points of
I(u, s).

Lemma . Assume that –∞ < a < λ < b < λ and s > . Then I(u, s) is continuous and
Fréchet differentiable in H

(�) and

DuI(u, s)(h) =
∫

�

[
–Lu · h – (

bu+ – au–
)
h + sφh

]
dx

for h ∈H
(�).Moreover, if we set

F(u, s) =
∫

�

[
b|u+|


+
a|u–|


– sφu

]
dx,

then DuF(u, s) is continuous with respect to weak convergence, DuF(u, s) is compact, and

DuF(u, s)h =
∫

�

[(
bu+ – au–

)
h – sφh

]
dx for all h ∈H

(�).

This implies that I ∈ C(H
(�),R) and F(u, s) is weakly continuous.

http://www.journalofinequalitiesandapplications.com/content/2013/1/187
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Proof Let u ∈ H
(�). First, we will prove that I(u, s) is continuous with respect to the

variable u. We consider

∣∣I(u + v, s) – I(u, s)
∣∣ =

∫
�

[
u · (–Lv) + 


v · (–Lv) –G(u + v) +G(u)

]
dx.

Let u =
∑

hmφm, v =
∑

h̃mφm. Then we have

∣∣∣∣
∫

�

u · (–Lv)dx
∣∣∣∣ =

∣∣∣∣
∑∫

�

λmhmh̃m
∣∣∣∣ ≤ ‖u‖‖v‖,

∣∣∣∣
∫

�

v · (–Lv)dx
∣∣∣∣ =

∣∣∣∑λmh̃m
∣∣∣ ≤ ‖v‖.

On the other hand,

∣∣∣∣(u + v)+
∣∣ – ∣∣u+∣∣∣∣ ≤ u+|v| + |v|,∣∣∣∣(u + v)–
∣∣ – ∣∣u–∣∣∣∣ ≤ u–|v| + |v|,

and hence
∣∣∣∣
∫

�

(∣∣(u + v)+
∣∣ – ∣∣u+∣∣)dx

∣∣∣∣
≤

∫
�

[

∣∣u+∣∣|v| + |v|]dx≤ ‖u‖‖v‖ + ‖v‖,

∣∣∣∣
∫

�

(∣∣(u + v)–
∣∣ – ∣∣u–∣∣)dx

∣∣∣∣
≤

∫
�

[

∣∣u–∣∣|v| + |v|]dx ≤ ‖u‖‖v‖ + ‖v‖.

With the above results, we see that I(u, s) is continuous at u. To prove I(u, s) is Fréchet
differentiable at u ∈H

(�), it is enough to compute the following:

∣∣I(u + v, s) – I(u, s) –DuI(u, s)v
∣∣ =

∣∣∣∣
∫

�



v(–Lv) –G(u + v) +G(u) – g(u)v

∣∣∣∣
≤ 


‖v‖ +Cγ ‖v‖(‖u‖ + ‖v‖) +M‖v‖

≤ C′‖v‖(‖v‖ + ‖u‖ + ‖v‖ + 
)
. �

Let V be the one-dimensional space spanned by the eigenfunction φ whose eigenvalue
is λ. Let W be the orthogonal complement of V in H

(�). Let P : H
(�) → V be the

orthogonal projection of H
(�) onto V and I – P : H

(�) → W denote that of H
(�)

onto W . Then every element u ∈ H
(�) is expressed by u = v + z, v ∈ Pu, z = (I – P)u.

Then (.) is equivalent to the two systems in the two unknowns v and z:

Lv + P
(
b(v +w)+ – a(v +w)–

)
= sφ in �, (.)

Lz + (I – P)
(
b(v +w)+ – a(v +w)–

)
=  in �, (.)

v = z =  on ∂�.

http://www.journalofinequalitiesandapplications.com/content/2013/1/187
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The subspaceW is spanned by eigenfunctions corresponding to the eigenvalues λk , k ≥ .
Let v ∈ V be fixed and consider the function h :W → R defined by

h(w) = I(v +w, s).

The function h has continuous Fréchet derivatives Dh given by

Dh(w)(y) =DuI(v +w, s)(y) (.)

for y ∈ W . By Lemma ., I is a function of class C.
By the following Lemma ., we can get the critical points of the functional I(u, s) on the

infinite dimensional space H
(�) from that of the reduced functional Ĩ(v, s) on the finite

dimensional subspace V .

Lemma . (Reduction Method) Assume that –∞ < a < λ < b < λ and s > . Then
(i) there exists a unique solution z ∈ W of the equation

Lz + (I – P)
(
b(v +w)+ – a(v +w)–

)
=  in �,

z =  on �.

If we put z = θ (v, s), then θ is continuous on V and satisfies a uniform Lipschitz
condition in v with respect to L norm (also norm ‖ · ‖).Moreover,

DuI
(
v + θ (v, s), s

)
(w) =  for all w ∈W .

(ii) There exists m >  such that if w and y are inW , then

(
Dh(w) –Dh(y)

)
(w – y) ≥ m‖w – y‖.

(iii) If Ĩ : V → R is defined by Ĩ(v, s) = I(v + θ (v, s), s), then Ĩ has a continuous Fréchet
derivative DvĨ with respect to v, and

DvĨ(v, s)(h) =DuI
(
v + θ (v, s), s

)
(h) for all v,h ∈ V . (.)

(iv) If v ∈ V is a critical point of Ĩ if and only if v + θ (v, s) is a critical point of I .
(v) Let S ⊂ V and 	 ⊂H

(�) be open bounded regions such that

{
v + θ (v, s); v ∈ S

}
= 	 ∩ {

v + θ (v, s); v ∈ V
}
.

If DĨ(v, s) �=  for v ∈ ∂S, then

deg(DĨ,S, ) = deg(DI,	, ),

where d denote the Leray-Schauder degree.
(vi) If u = v + θ (v) is a critical point of mountain pass type of I , then v is a critical

point of mountain pass type of Ĩ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/187
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Proof (i) Let δ = a+b
 . If g(ξ ) = g(ξ ) – δξ , then equation (.) is equivalent to

z = (–L – δ)–(I – P)
(
g(v + z)

)
. (.)

The operator (–L – δ)–(I – P) is self adjoint, compact and linear map from (I – P)L(�)
into itself and its L norm is |λ – δ|–. Since |g(ξ) – g(ξ)| ≤max{|a– δ|, |b– δ|}|ξ – ξ| =
δ|ξ – ξ|, it follows that the right-hand side of (.) defines, for fixed v ∈ V , a Lipschitz
mapping of (I – P)L(�) into itself with Lipschitz constant r = δ

|λ–δ| < . Therefore, by
the contraction mapping principle, for given v ∈ V , there exists a unique z = (I – P)L(�)
which satisfies (.). If θ (v, s) denote the unique z ∈ (I – P)L(�) which solves (.), then
θ is continuous and satisfies a uniform Lipschitz condition in v with respect to L norm
(also norm ‖ · ‖). In fact, if z = θ (v, s) and z = θ (v, s), then

‖z – z‖L(�) =
∥∥(–L – δ)–(I – P)

(
g(v + z) – g(v + z)

)∥∥
L(�)

≤ r
∥∥(v + z) – (v + z)

∥∥
L(�)

≤ r
(‖v – v‖L(�) + ‖z – z‖L(�)

) ≤ r‖v – v‖ + r‖z – z‖.

Hence,

‖z – z‖ ≤ C‖v – v‖, C =
r

 – r
. (.)

Let u = v + z, v ∈ V and z = θ (v, s). If w ∈ (I – P)L(�)∩H
(�),

DuI
(
v + θ (v, s), s

)
(w) =

∫
�

[
–L(v + z) ·w – Pg(v + z)w

– (I – P)g(v +w)w + sφw
]
dx.

From (.), we see that

∫
�

[
(–Lz) ·w – (I – P)

(
g(v + z)w

)]
dx = .

Since

∫
�

Lv ·w =  and
∫

�

[
Pg(v + z)w – sφw

]
dx = ,

we have

DuI
(
v + θ (v, s), s

)
(w) = . (.)

(ii) If w and y are inW , then

(
Dh(w) –Dh(y)

)
(w – y) =

∫
�

[
–L(w – y)(w – y) –

(
g(v +w) – g(v + y)

)
(w – y)

]
dx.

http://www.journalofinequalitiesandapplications.com/content/2013/1/187
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Since
∫
�
[–L(w– y)(w– y)]dx = ‖w– y‖ and (g(ξ) – g(ξ))(ξ – ξ) < b(ξ – ξ), we see that

if w and y are inW , then ‖w – y‖L(�) ≤ 
λ

‖w – y‖ and
∫

�

[(
g(v +w) – g(v + y)

)
(w – y)

]
dx ≤ b

λ
‖w – y‖

and

(
Dh(w) –Dh(y)

)
(w – y) ≥

(
 + b

b
λ

)
‖w – y‖,

where ( + b b
λ
) > .

(iii) Since the functional I has a continuous Fréchet derivative DuI , Ĩ has a continuous
Fréchet derivative DvĨ with respect to v.
(iv) Suppose that there exists v ∈ V such that DvĨ(v, s) = . From DvĨ(v, s)(h) =DuI(v +

θ (v, s), s)(h) for all v,h ∈ V , DuI(v + θ (v, s), s)(h) = DvĨ(v, s)(h) =  for all h ∈ V . Since
DuI(v + θ (v, s), s)(w) =  for all w ∈ W and E is the direct sum of V and W , it follows that
DuI(v + θ (v, s), s) = . Thus, v + θ (v, s) is a solution of (.). Conversely, if u is a solution
of (.) and v = Pu, then DvĨ(v) = .
(v) The proof of part (v) follows by arguing as in Lemma . of [].
(vi) Suppose v is not of mountain pass type of Ĩ . Let S be an open neighborhood of v in

V such that Ĩ–(–∞, Ĩ(v)) ∩ S is empty or path connected. If Ĩ–(–∞, Ĩ(v)) ∩ S is empty,
by part (i) we see that {v +w : v ∈ V ,w ∈W } ∩ I–(–∞, I(u)) is also empty. Thus u is not
of mountain pass type for I . If Ĩ–(–∞, Ĩ(v)) ∩ S is path connected, Letting T = {v + w :
v ∈ V , |‖w – θ (v)|‖ < } and using again (i) it is seen that T ∩ I–(–∞, I(u)) is also path
connected. �

We define the functional on H
(�)

I∗a,b(u) = Ia,b(u, ) =
∫

�

[


(–Lu) · u –

b

∣∣u+∣∣ – a


∣∣u–∣∣

]
dx.

The critical points of I∗a,b(u) coincide with the solutions of the equation

Lu + bu+ – au– =  in H
(�). (.)

Under the assumption –∞ < a < λ < b < λ, (.) has only the trivial solution and hence
I∗a,b(u) has only one critical point u = . In fact, from (.), we obtain

∫
�

[
(L + λ)u · φ(x) + (b – λ)u+φ(x) –

(
a – λ(x)

)
u– · φ(x)

]
dx =  (.)

under the assumption –∞ < a < λ < b < λ the left-hand side of (.) is nonnegative, so
the only possibility to hold (.) is that u = . Given v ∈ V , let θ∗(v) = θ (v, ) be the unique
solution of the equation

Lz + (I – P)
[
b(v + z)+ – a(v + z)–

]
=  inW .

Let us define Ĩ∗a,b(v) = I∗a,b(v + θ∗(v)). We note that Ĩ∗a,b(v) has only the trivial critical point
v = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/187
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Lemma . Let –∞ < a < λ < b < λ. Then we have

Ĩ∗a,b(v) >  for all v ∈ V with v �= .

Proof To prove the conclusion, it suffices to show that Ĩ∗a,b(v) does not satisfies the follow-
ing cases:

(i) Ĩ∗a,b(v)≤  and Ĩ∗a,b(v) =  for some v ∈ V with v �= .
(ii) Ĩ∗a,b(v)≥  and Ĩ∗a,b(v) =  for some v ∈ V with v �= .
(iii) Ĩ∗a,b(v) <  for all v ∈ V with v �= .
(iv) There exist v and v in V such that Ĩ∗a,b(v) <  and Ĩ∗a,b(v) > .

Suppose that (i) holds. It follows that Ĩ∗a,b(v) has an absolute maximum at v, and hence
DĨ∗a,b(v) = . Therefore, by Lemma ., u = v + θ∗(v) is a nontrivial solution of (.),
which is a contradiction. A similar argument show that it is impossible that (ii) holds.
Suppose that (iii) holds. Then there exists t ∈ (, ) such that for all t with  < t ≤ t,

tĨ∗a,b(v) + ( – t)Ĩ∗,b(v)≤  for all v �= .

We note that there exist v �=  and t with  < t ≤ t such that tĨ∗a,b(v) + ( – t)Ĩ∗,b(v) = 
for some v �=  and t. Let t be the greatest number such that

tĨ∗a,b(v) + ( – t)Ĩ∗,b(v) = .

Then  < t ≤ t. Since t Ĩ∗a,b(v) + ( – t)Ĩ∗,b(v) ≤  for all v �= , and hence v is a point of
maximum of t Ĩ∗a,b(v) + ( – t)Ĩ∗,b(v), we have

D
[
t Ĩ∗a,b(v) + ( – t)Ĩ∗,b(v)

]
= .

Let v ∈ V be given and  < t < . Let θ∗
t (v) be the unique solution of the equation

Lz + (I – P)
(
bu+ – tau–

)
=  inW .

By Lemma ., v+θ∗
t (v)

is a nontrivial solution of the equation

t
(
Lu + bu+ – au–

)
+ ( – t)

(
Lu + bu+ – au–

)
=  in H

(�),

that is,

Lu + bu+ – tau– =  in H
(�),

which contradicts the fact that the above equation has only the trivial solution because
–∞ < ta < λ < b < λ. Suppose that (iv) holds. Since the equation (.) has only the trivial
solution, I∗a,b(u) has only one critical point u = . By the assumption (iv), the trivial solution
u =  is a point of inflexion, and hence by Lemma ., v =  is the critical point of Ĩ∗a,b(v),
which is a point of inflexion. By the assumption (iv), there exist v, v in V and t ∈ (, )
such that for all t with  < t ≤ t, tĨ∗a,b(v)+(– t)Ĩ

∗
,b(v) <  and tĨ∗a,b(v) + ( – t)Ĩ∗,b(v) > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/187
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Wenote that there exists twith  < t ≤ t such that tĨ∗a,b(v)+(–t)Ĩ
∗
,b(v) <  and tĨ∗a,b(v)+

( – t)Ĩ∗,b(v) > . Let t be the greatest number such that

tĨ∗a,b(v) + ( – t)Ĩ∗,b(v) <  and tĨ∗a,b(v) + ( – t)Ĩ∗,b(v) > .

Then  < t ≤ t. Since t Ĩ∗a,b(v) + (– t)Ĩ
∗
,b(v) <  and t Ĩ∗a,b(v) + (– t)Ĩ

∗
,b(v) > . Thus,

there exists a point of inflexion v �=  of t Ĩ∗a,b(v) + ( – t)Ĩ∗,b(v) and we have

Dt Ĩ∗a,b(v) + ( – t)Ĩ∗,b(v) = .

Let v ∈ V be given and  < t < . Let θ∗
t (v) be the unique solution of the equation

Lz + (I – P)
(
bu+ – tau–

)
=  inW .

By Lemma ., v + θ∗
t (v) is a nontrivial solution of the equation

t
(
Lu + bu+ – au–

)
+ ( – t)

(
Lu + bu+ – au–

)
=  in H

(�),

that is,

Lu + bu+ – tau– =  in H
(�),

which contradicts the fact that the above equation has only the trivial solution because
–∞ < ta < λ < b < λ. �

From now on, we shall denote that Ia,b = I .

Lemma . Let –∞ < a < λ < b < λ. Then we have

Ĩa,b(v, s)→ ∞ as ‖v‖ → ∞.

Proof We shall prove the lemmaby contradiction.We suppose that there exists a sequence
{vn}∞ inV and a numberM >  such that ‖vn‖ → ∞ as n→ ∞ and Ĩ(vn, s) ≤M. For given
vn ∈ V , let wn = θ (vn, s) be the unique solution of the equation

Lw + (I – P)
(
b(vn +w)+ – a(vn +w)– – sφ – h(x)

)
=  inW .

By Lemma ., we have that for some constant k,

∥∥θ (vn) – θ ()
∥∥ ≤ k‖vn‖.

From this the sequence { ‖vn+wn‖
‖vn‖ } is bounded in H . Let un = vn + wn, v∗

n =
vn

‖vn‖ , w
∗
n =

wn
‖vn‖

and u∗
n = v∗

n +w∗
n for n ≥ . For wn = θ (vn, s) and w∗

n =
wn

‖vn‖ , we have

w∗
n = L–

(
(I – P)

(
–b

(vn +wn)+

‖vn‖ + a
(vn +wn)–

‖vn‖ – s
φ

‖vn‖ –
h(x)
‖vn‖

))
inW .

http://www.journalofinequalitiesandapplications.com/content/2013/1/187
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Since { vn+wn
‖vn‖ } is bounded and φ

‖vn‖ → , –b (vn+wn)+
‖vn‖ + a (vn+wn)–

‖vn‖ – s φ
‖vn‖ – h(x)

‖vn‖ is bounded
in H . Since L– is a compact operator, by passing to a subsequence, we get that {w∗

n}∞
converges to w∗. Since V is -dimensional subspace, we may assume that {v∗

n}∞ converges
to v∗ ∈ V with ‖v∗‖ = . Therefore, {u∗

n}∞ converges to u∗ in H
(�). Since Ĩ(vn, s)≤ M for

all n, we have, for all n,

∫
�

[
–


Lun · un – b


∣∣u+n∣∣ – a


∣∣u–n∣∣ + sφun + h(x)un

]
dx ≤ M.

Dividing the above inequality by ‖vn‖, we obtain
∫

�

[
–


Lu∗

n · u∗
n –

b

∣∣(u∗

n
)+∣∣ – a


∣∣(u∗

n
)–∣∣ + sφ

u∗
n

‖vn‖ + h(x)
u∗
n

‖vn‖
]
dx

≤ M
‖vn‖ . (.)

From the definition of wn = θ (vn, s), we have that for any y ∈ W , n≥ ,

∫
�

[
Lun · y + bu+ny – au–ny – sφy – h(x)y

]
dx = . (.)

Let us set y = wn in (.) and divide by ‖vn‖. Then we have

∫
�

[
Lu∗

n ·w∗
n + b

(
u∗
n
)+w∗

n – a
(
u∗
n
)–
nw

∗
n – sφ

w∗
n

‖vn‖ – h(x)
w∗
n

‖vn‖
]
dx =  (.)

for all n ≥ . Let y ∈W . Dividing (.) by ‖vn‖ and letting n→ ∞, we obtain

∫
�

[
Lu∗ · y + b

(
u∗)+y – a

(
u∗)–y – sφy – h(x)y

]
dx = . (.)

(.) can be rewritten in the form

DĨ∗a,b
(
v∗ +w∗)(y) =  for all y ∈W .

By w∗ = θ (v∗), letting n→ ∞ in (.), we have

lim
n→∞

∫
�

Lw∗
n ·w∗

n dx = –
∫

�

[
bu∗w∗ – au∗w∗]dx

=
∫

�

[
Lu∗ ·w∗]dx =

∫
�

[
Lw∗ ·w∗]dx.

Hence,

lim
n→∞

∫
�

Lu∗
n · u∗

n dx =
∫

�

[
Lu∗ · u∗]dx.

Letting n → ∞ in (.), we obtain

Ĩ∗a,b
(
v∗) =

∫
�

[
–


Lu∗ · u∗ –

b

∣∣(u∗)+∣∣ – a


∣∣(u∗)–∣∣]dx ≤ .
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Since ‖v∗‖ = , this contradicts the fact that Ĩ∗(v) >  for all v �= . Thus, Ĩ(v, s) → ∞ as
‖v‖ → ∞. �

Lemma . Assume that –∞ < a < λ < b < λ and s > . Then there exists a small open
neighborhood B of v in V such that v is a strict local point maximum of Ĩ(v, s) and there
exists a small open neighborhood D of v in V such that v is a strict point of minimum of
Ĩ(v, s), where v = sφ

b–λ
is a positive solution and v = sφ

a–λ
is a negative solution of (.).

Proof Since the positive solution v = sφ
b–λ

is in V , θ (v, s) =  and I + θ , where I is an iden-
titymap onV , is continuous onV , it follows that there exists a small open neighborhood B
of v in V such that if v + v ∈ B, then v + v+ θ (v + v, s) > . Here, θ (v + v, s) = θ (v, s) = .
Therefore, if v + v ∈ B, then for z = θv + v, s = θ (v) = , we have

Ĩ(v + v, s) = I(v + v, s)

=
∫

�

[
–


L(v + v) · (v + v) –

b|v + v|


+ sφ(v + v)
]
dx

=
∫

�

[
–


Lv · v – b|v|



]
dx +C,

where

C =
∫

�

[
–


Lv · v – b|v|


+ sφv

]
dx = I(v, s) = Ĩ(v, s).

Each v ∈ V has the form v = cφ Therefore, we have, in B,

Ĩ(v + v, s) – Ĩ(v + v, s)

=
∫

�

[
–


Lv · v – b|v|



]
dx

=


(λ – b)

∫
�

v < .

Since λ < b < λ, v is a strict local point maximum of Ĩ(v, s). Since the negative solution
v = sφ

a–λ
is in V , θ (v, s) =  and I + θ , where I is an identity map on V , is continuous on V ,

it follows that there exists a small open neighborhood D of v in V such that if v + v ∈ B,
then v + v + θ (v + v, s) < . Here, θ (v + v, s) = θ (v, s) = . Therefore, if v + v ∈ B, then for
z = θv + v, s = θ (v, s) = , we have

Ĩ(v + v, s) = I(v + v, s) =
∫

�

[
–


L(v + v) · (v + v) –

a|v + v|


+ sφ(v + v)
]
dx

=
∫

�

[
–


Lv · v – a|v|



]
dx +C,

where

C =
∫

�

[
–


Lv · v – a|v|


+ sφv

]
dx

= I(v, s) = Ĩ(v, s).
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Each v ∈ V has the form v = cφ Therefore, we have, in B,

Ĩ(v + v, s) – Ĩ(v, s)

=
∫

�

[
–


Lv · v – a|v|



]
dx

=


(λ – a)

∫
�

v > 

since –∞ < a < λ. Thus, v is a strict local point minimum of Ĩ(v, s). �

Lemma . (Existence of the Third Solution) Assume that –∞ < a < λ < b < λ and s > .
Then (.) has the third weak solution which is a strict point of minimum of Ia,b(u, s).

Proof Weknow that (.) has a positive solution v = sφ
b–λ

and a negative solution v = sφ
a–λ

.
By Lemma . (reduction method), we shall show the existence of the third weak solu-
tion of (.). By Lemma ., Ĩ(v, s) is continuous and Fréchet differentiable. By Lemma .,
Ĩ(v, s)→ ∞ as ‖v‖ → ∞, so Ĩ(v, s) is bounded from below, satisfies the (P.S.) condition. By
Lemma ., there exists a small open neighborhood B of v in V such that v is a strict
local point of maximum of Ĩ(v, s) and there exists a small open neighborhood D of v in V
such that v is a strict local point of minimum of Ĩ(v, s). By the shape of the graph of the
functional Ĩ on the -dimensional subspace V , there exists the third critical point v �= 
which is a strict local point of minimum of Ĩ(v, s). By Lemma ., v + θ (v, s) is a solution
of (.) and a strict local point of minimum of Ia,b(u, s). �

3 Existence of the fourth weak solution
In this section, we shall consider the Leray-Schauder degree of the elliptic operator for the
multiplicity of the solutions of (.).

Lemma . Assume that –∞ < a < λ < b < λ. Then there exists s > , ε >  such that the
Leray-Schauder degree

deg
(
u – L–

(
–bu+ + au– + sφ

)
,B∗

εs(v), 
)
= – (.)

for s ≥ s. Here, B∗
τ denotes a ball of radius τ in H

(�) and v = sφ
b–λ

is a positive solution
of (.).

The proof of this lemma has the similar process to that of Theorem  in [].

Lemma . If –∞ < a < λ < b < λ, then there exist positive constants s, ε such that

deg
(
u – L–

(
–bu+ + au– + sφ

)
,B∗

εs(v), 
)
= 

for s ≥ s, where v = sφ
a–λ

is a negative solution of (.).

The proof of this lemma has the same process as that of Lemma ..
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Lemma . If –∞ < a < λ < b < λ, then there exist positive constants s, γ >  such that

deg
(
u – L–

(
–bu+ + au– + sφ

)
,B∗

γ (v), 
)
= 

for s ≥ s, where v is the third solution of (.).

Proof We know that the third solution v of (.) is an isolated local minimum of Ia,b(u, s).
By [], there exist positive constants s, γ >  such that

deg
(
DĨ,B∗

γ (v)∩V , 
)
= 

for s ≥ s, where B∗
γ (v)∩V is a ball centered at  containing no other critical point. By (v)

of Lemma .,

deg
(
u – L–

(
–bu+ + au– + sφ

)
,B∗

γ (v), 
)
= deg

(
DĨ,B∗

γ (v)∩V , 
)
= .

So we prove the lemma. �

Lemma . Assume that –∞ < a < λ < b < λ and s is bounded. Then there exist C and
s∗ >  such that any solution to (.) satisfies ‖u‖ ≤ C for any s with s ≤ s∗.

Proof If not, then there exist (un, sn) with ‖un‖ → ∞, sn → s∗, sn is bounded, which satisfy
equation (.). Now let vn = un

‖un‖ , and vn satisfies

Lvn +
(
bv+n – av–n

)
–
snφ(x)
‖un‖ = . (.)

Taking the inner product of both sides of (.) with φ, we have

 = 〈–Lvn – λvn,φ〉 =
〈
(b – λ)v+n + (λ – a)v–n ,φ

〉
–

〈
snφ(x)
‖un‖ ,φ

〉
. (.)

Thus,
∣∣∣∣
〈
snφ(x)
‖un‖ ,φ

〉∣∣∣∣ ≥ ε

∫
|vn|φ(x)≥ ε

∣∣∣∣
∫

vnφ(x)
∣∣∣∣.

Thus, if vn is a solution of (.), then

∣∣〈vn,φ(x)
〉∣∣ ≤ 

ε

∣∣∣∣
〈
snφ(x)
‖un‖ ,φ(x)

〉∣∣∣∣. (.)

Since vn’s are precompact in H
(�), there exists v with ‖v‖ =  such that vn → v. Taking

the limit of both sides of (.), we have

∣∣〈v,φ(x)
〉∣∣ ≤ .

Thus, we have

∣∣〈v,φ(x)
〉∣∣ = ,

and hence v = . This is impossible, since ‖v‖ = . �
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We have the following no solvability condition for (.).

Lemma . Assume that –∞ < a < λ < b < λ. Then there exists a constant s <  so small
enough that if s≤ s, the problem

–Lu = bu+ – au– – sφ in H
(�)

has no solution.

Proof We can rewrite (.) as

(–L – λ)u = –λu+ + bu+ + (λ – a)u– – sφ. (.)

Taking the inner product of both sides of (.) with φ, we have

 =
〈
–(λ – b)u+ + (λ – a)u– – sφ,φ

〉 ≥ –s.

Thus, there is no solution for s≤ s if s < . This completes the proof. �

Lemma . Let –∞ < a < λ < b < λ. Then there exists β > , depending on C and s∗ such
that

deg
(
u – L–

(
–bu+ + au– + sφ

)
,B∗

β (), 
)
= 

for s ≤ s∗ and β > C.

Proof By Lemma ., there exists a constant s <  so small enough that if s≤ s, (.) has
no solution. By Lemma ., there exist a constant C and s∗ >  such that if u is a solution
of (.) with s ≤ s∗, then ‖u‖ ≤ C. Let us choose β so large that β > C. We note that

u – L–
(
–bu+ + au– + sφ

) �=  on ∂B∗
β ()

and

u – L–
(
–bu+ + au– + sφ + λ(s – s)φ(x)

) �=  on ∂B∗
β ()

for  ≤ λ ≤ . By the homotopy invariance property, we have that the Leray-Schauder
degree

dLS
(
u – L–

(
–bu+ + au– + sφ

)
,B∗

β (), 
)

= dLS
(
u – L–

(
–bu+ + au– + sφ + λ(s – s)φ(x)

)
,B∗

β (), 
)

= dLS
(
u – L–

(
–bu+ + au– + sφ

)
,B∗

β (), 
)
= ,

where s ≤ s∗ and  ≤ λ ≤ . Thus, we proved the lemma. �
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Proof of Theorem . By Lemma . and Lemma ., there exists a large number β > 
(depending on C and s∗) such that all solutions of (.) are contained in the ball Bβ () and
the Leray-Schauder degree

deg
(
u – L–

(
–bu+ + au– + sφ

)
,B∗

β (), 
)
= 

for β > C and  < s < s∗. Let us choose a positive number s∗ such that s∗ = max{s, s, s}
and s∗ < s∗. Then by Lemma ., Lemma . and Lemma ., for all swith s∗ ≤ s≤ s∗, there
exist three disjoint balls B∗

εs(v), B∗
εs(v) and B∗

γ (v) such that

deg(u – L–
(
–bu+ + au– + sφ

)
,B∗

εs(v, ) = –,

deg
(
u – L–

(
–bu+ + au– + sφ

)
,B∗

εs(v), 
)
= ,

deg
(
u – L–

(
–bu+ + au– + sφ

)
,B∗

γ (v), 
)
= .

By the excision property of Leray-Schauder degree,

deg(u – L–
(
–bu+ + au– + sφ

)
,B∗

β ()\
{
B∗

εs
(
v ∪ B∗

εs(v)∪ B∗
γ (v)

}
, 

)
= –.

Thus, (.) has at least four solutions. �
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