RESEARCH

Open Access

Approximation of linear mappings in Banach modules over C^* -algebras

Choonkil Park¹, Yeol Je Cho^{2*} and Reza Saadati^{3*}

*Correspondence: yjchomath@gmail.com; rsaadati@eml.cc ²Department of Mathematics Education and RINS, Gyeongsang National University, Chinju, 660-701, Korea

³Department of Mathematics and Computer Science, Iran University of Science and Technology, Tehran, Iran

Full list of author information is available at the end of the article

Abstract

Let X, Y be Banach modules over a C^* -algebra and let $r_1, \ldots, r_n \in \mathbb{R}$ be given. Using fixed-point methods, we prove the stability of the following functional equation in Banach modules over a unital C^* -algebra:

$$\sum_{j=1}^{n} f\left(\frac{1}{2} \sum_{1 \le i \le n, i \ne j} r_{i} x_{i} - \frac{1}{2} r_{j} x_{j}\right) + \sum_{i=1}^{n} r_{i} f(x_{i}) = n f\left(\frac{1}{2} \sum_{i=1}^{n} r_{i} x_{i}\right).$$

As an application, we investigate homomorphisms in unital *C**-algebras. **MSC:** 39B72; 46L05; 47H10; 46B03; 47B48

Keywords: fixed point; Hyers-Ulam stability; super-stability; generalized Euler-Lagrange type additive mapping; homomorphism; *C**-algebra

1 Introduction and preliminaries

We say a functional equation (ζ) is stable if any function *g* satisfying the equation (ζ) approximately is near to the true solution of (ζ). We say that a functional equation is superstable if every approximate solution is an exact solution of it (see [1]). The stability problem of functional equations was originated from a question of Ulam [2] concerning the stability of group homomorphisms. Hyers [3] gave a first affirmative partial answer to the question of Ulam in Banach spaces. Hyers' theorem was generalized by Aoki [4] for additive mappings and by T.M. Rassias [5] for linear mappings by considering an unbounded Cauchy difference. A generalization of the T.M. Rassias theorem was obtained by Găvruta [6] by replacing the unbounded Cauchy difference by a general control function in the spirit of T.M. Rassias' approach.

The functional equation

f(x + y) + f(x - y) = 2f(x) + 2f(y)

is called a *quadratic functional equation*. In particular, every solution of the quadratic functional equation is said to be a *quadratic mapping*. A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [7] for mappings $f : X \to Y$, where X is a normed space and Y is a Banach space. Cholewa [8] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [9] proved the Hyers-Ulam stability of the quadratic functional equation. J.M. Rassias [10, 11] introduced

© 2013 Park et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. and investigated the stability problem of Ulam for the Euler-Lagrange quadratic functional equation

$$f(a_1x_1 + a_2x_2) + f(a_2x_1 - a_1x_2) = (a_1^2 + a_2^2)[f(x_1) + f(x_2)].$$
(1.1)

Grabiec [12] has generalized these results mentioned above.

The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [13–43]).

Let *X* be a set. A function $d : X \times X \rightarrow [0, \infty]$ is called a *generalized metric* on *X* if *d* satisfies the following conditions:

- (1) d(x, y) = 0 if and only if x = y;
- (2) d(x, y) = d(y, x) for all $x, y \in X$;
- (3) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

We recall a fundamental result in fixed-point theory.

Theorem 1.1 [44, 45] Let (X, d) be a complete generalized metric space and let $J : X \to X$ be a strictly contractive mapping with Lipschitz constant L < 1. Then, for each given element $x \in X$, either

$$d(J^n x, J^{n+1} x) = \infty$$

for all nonnegative integers n or there exists a positive integer n_0 such that

- (1) $d(J^n x, J^{n+1} x) < \infty$ for all $n \ge n_0$;
- (2) the sequence $\{J^n x\}$ converges to a fixed point y^* of J;
- (3) y^* is the unique fixed point of J in the set $Y = \{y \in X \mid d(J^{n_0}x, y) < \infty\}$;
- (4) $d(y, y^*) \le \frac{1}{1-L} d(y, Jy)$ for all $y \in Y$.

In 1996, Isac and T.M. Rassias [46] were the first to provide applications of stability theory of functional equations for the proof of new fixed-point theorems with applications. By using fixed-point methods, the stability problems of several functional equations have been extensively investigated by a number of authors (see [47–58]).

Recently, Park and Park [59] introduced and investigated the following additive functional equation of Euler-Lagrange type:

$$\sum_{i=1}^{n} r_i L\left(\sum_{j=1}^{n} r_j (x_i - x_j)\right) + \left(\sum_{i=1}^{n} r_i\right) L\left(\sum_{i=1}^{n} r_i x_i\right)$$
$$= \left(\sum_{i=1}^{n} r_i\right) \sum_{i=1}^{n} r_i L(x_i), \quad r_1, \dots, r_n \in (0, \infty)$$
(1.2)

whose solution is said to be a generalized additive mapping of Euler-Lagrange type.

In this paper, we introduce the following additive functional equation of Euler-Lagrange type which is somewhat different from (1.2):

$$\sum_{j=1}^{n} f\left(\frac{1}{2} \sum_{1 \le i \le n, i \ne j} r_i x_i - \frac{1}{2} r_j x_j\right) + \sum_{i=1}^{n} r_i f(x_i) = n f\left(\frac{1}{2} \sum_{i=1}^{n} r_i x_i\right),\tag{1.3}$$

where $r_1, \ldots, r_n \in \mathbb{R}$. Every solution of the functional equation (1.3) is said to be a *general-ized Euler-Lagrange type additive mapping*.

Using fixed-point methods, we investigate the Hyers-Ulam stability of the functional equation (1.3) in Banach modules over a C^* -algebra. These results are applied to investigate C^* -algebra homomorphisms in unital C^* -algebras. Also, ones can get the superstability results after all theorems by putting the product of powers of norms as the control functions (see for more details [60, 61]).

Throughout this paper, assume that *A* is a unital *C*^{*}-algebra with the norm $\|\cdot\|_A$ and the unit *e*, *B* is a unital *C*^{*}-algebra with the norm $\|\cdot\|_B$, and *X*, *Y* are left Banach modules over a unital *C*^{*}-algebra *A* with the norms $\|\cdot\|_X$ and $\|\cdot\|_Y$, respectively. Let U(A) be the group of unitary elements in *A* and let $r_1, \ldots, r_n \in \mathbb{R}$.

2 Hyers-Ulam stability of the functional equation (1.3) in Banach modules over a C*-algebra

For any given mapping $f : X \to Y$, $u \in U(A)$ and $\mu \in \mathbb{C}$, we define $D_{u,r_1,...,r_n}f$ and $D_{\mu,r_1,...,r_n}f : X^n \to Y$ by

$$D_{u,r_1,\dots,r_n} f(x_1,\dots,x_n)$$

:= $\sum_{j=1}^n f\left(\frac{1}{2}\sum_{1\le i\le n, i\ne j} r_i u x_i - \frac{1}{2}r_j u x_j\right) + \sum_{i=1}^n r_i u f(x_i) - n f\left(\frac{1}{2}\sum_{i=1}^n r_i u x_i\right)$

and

$$D_{\mu,r_1,\dots,r_n} f(x_1,\dots,x_n)$$

:= $\sum_{j=1}^n f\left(\frac{1}{2}\sum_{1\le i\le n, i\ne j}\mu r_i x_i - \frac{1}{2}\mu r_j x_j\right) + \sum_{i=1}^n \mu r_i f(x_i) - nf\left(\frac{1}{2}\sum_{i=1}^n \mu r_i x_i\right)$

for all $x_1, \ldots, x_n \in X$.

Lemma 2.1 Let X and Y be linear spaces and let $r_1, ..., r_n$ be real numbers with $\sum_{k=1}^n r_k \neq 0$ and $r_i \neq 0$, $r_j \neq 0$ for some $1 \le i < j \le n$. Assume that a mapping $L : X \to Y$ satisfies the functional equation (1.3) for all $x_1, ..., x_n \in X$. Then the mapping L is additive. Moreover, $L(r_k x) = r_k L(x)$ for all $x \in X$ and $1 \le k \le n$.

Proof One can find a complete proof at [62].

Lemma 2.2 Let X and Y be linear spaces and let $r_1, ..., r_n$ be real numbers with $r_i \neq 0$, $r_j \neq 0$ for some $1 \leq i < j \leq n$. Assume that a mapping $L : X \rightarrow Y$ with L(0) = 0 satisfies the functional equation (1.3) for all $x_1, ..., x_n \in X$. Then the mapping L is additive. Moreover, $L(r_k x) = r_k L(x)$ for all $x \in X$ and $1 \leq k \leq n$.

Proof One can find a complete proof at [62].

We investigate the Hyers-Ulam stability of a generalized Euler-Lagrange type additive mapping in Banach modules over a unital C^* -algebra. Throughout this paper, let r_1, \ldots, r_n be real numbers such that $r_i \neq 0$, $r_j \neq 0$ for fixed $1 \le i < j \le n$.

Theorem 2.3 Let $f : X \to Y$ be a mapping satisfying f(0) = 0 for which there is a function $\varphi : X^n \to [0, \infty)$ such that

$$\left\|D_{e,r_1,\ldots,r_n}f(x_1,\ldots,x_n)\right\|_Y \le \varphi(x_1,\ldots,x_n)$$
(2.1)

for all $x_1, \ldots, x_n \in X$. Let

$$\varphi_{ij}(x,y) := \varphi(0,\ldots,0,\underbrace{x}_{i\text{th}},0,\ldots,0,\underbrace{y}_{j\text{th}},0,\ldots,0)$$

for all $x, y \in X$ and $1 \le i < j \le n$. If there exists 0 < C < 1 such that

$$\varphi(2x_1,\ldots,2x_n) \leq 2C\varphi(x_1,\ldots,x_n)$$

for all $x_1, \ldots, x_n \in X$, then there exists a unique generalized Euler-Lagrange type additive mapping $L: X \to Y$ such that

$$\left\| f(x) - L(x) \right\|_{Y} \leq \frac{1}{4 - 4C} \left\{ \varphi_{ij} \left(\frac{2x}{r_{i}}, \frac{2x}{r_{j}} \right) + 2\varphi_{ij} \left(\frac{x}{r_{i}}, -\frac{x}{r_{j}} \right) + \varphi_{ij} \left(\frac{2x}{r_{i}}, 0 \right) + 2\varphi_{ij} \left(\frac{x}{r_{i}}, 0 \right) + \varphi_{ij} \left(0, \frac{2x}{r_{j}} \right) + 2\varphi_{ij} \left(0, -\frac{x}{r_{j}} \right) \right\}$$
(2.2)

for all $x \in X$. Moreover, $L(r_k x) = r_k L(x)$ for all $x \in X$ and $1 \le k \le n$.

Proof For each $1 \le k \le n$ with $k \ne i, j$, let $x_k = 0$ in (2.1). Then we get the following inequality:

$$\left\| f\left(\frac{-r_i x_i + r_j x_j}{2}\right) + f\left(\frac{r_i x_i - r_j x_j}{2}\right) - 2f\left(\frac{r_i x_i + r_j x_j}{2}\right) + r_i f(x_i) + r_j f(x_j) \right\|_{Y}$$

$$\leq \varphi(0, \dots, 0, \underbrace{x_i}_{i\text{th}}, 0, \dots, 0, \underbrace{x_j}_{j\text{th}}, 0, \dots, 0) \tag{2.3}$$

for all $x_i, x_j \in X$. Letting $x_i = 0$ in (2.3), we get

$$\left\| f\left(-\frac{r_j x_j}{2}\right) - f\left(\frac{r_j x_j}{2}\right) + r_j f(x_j) \right\|_Y \le \varphi_{ij}(0, x_j)$$
(2.4)

for all $x_i \in X$. Similarly, letting $x_i = 0$ in (2.3), we get

$$\left\| f\left(-\frac{r_i x_i}{2}\right) - f\left(\frac{r_i x_i}{2}\right) + r_i f(x_i) \right\|_Y \le \varphi_{ij}(x_i, 0)$$
(2.5)

for all $x_i \in X$. It follows from (2.3), (2.4) and (2.5) that

$$\left\| f\left(\frac{-r_i x_i + r_j x_j}{2}\right) + f\left(\frac{r_i x_i - r_j x_j}{2}\right) - 2f\left(\frac{r_i x_i + r_j x_j}{2}\right) + f\left(\frac{r_i x_j}{2}\right) + f\left(\frac{r_j x_j}{2}\right) - f\left(-\frac{r_i x_i}{2}\right) - f\left(-\frac{r_j x_j}{2}\right) \right\|_{Y}$$

$$\leq \varphi_{ij}(x_i, x_j) + \varphi_{ij}(x_i, 0) + \varphi_{ij}(0, x_j)$$
(2.6)

for all $x_i, x_j \in X$. Replacing x_i and x_j by $\frac{2x}{r_i}$ and $\frac{2y}{r_j}$ in (2.6), we get

$$\|f(-x+y) + f(x-y) - 2f(x+y) + f(x) + f(y) - f(-x) - f(-y)\|_{Y}$$

$$\leq \varphi_{ij}\left(\frac{2x}{r_{i}}, \frac{2y}{r_{j}}\right) + \varphi_{ij}\left(\frac{2x}{r_{i}}, 0\right) + \varphi_{ij}\left(0, \frac{2y}{r_{j}}\right)$$
(2.7)

for all $x, y \in X$. Putting y = x in (2.7), we get

$$\left\|2f(x) - 2f(-x) - 2f(2x)\right\|_{Y} \le \varphi_{ij}\left(\frac{2x}{r_i}, \frac{2x}{r_j}\right) + \varphi_{ij}\left(\frac{2x}{r_i}, 0\right) + \varphi_{ij}\left(0, \frac{2x}{r_j}\right)$$
(2.8)

for all $x \in X$. Replacing x and y by $\frac{x}{2}$ and $-\frac{x}{2}$ in (2.7), respectively, we get

$$\left\|f(x) + f(-x)\right\|_{Y} \le \varphi_{ij}\left(\frac{x}{r_{i}}, -\frac{x}{r_{j}}\right) + \varphi_{ij}\left(\frac{x}{r_{i}}, 0\right) + \varphi_{ij}\left(0, -\frac{x}{r_{j}}\right)$$
(2.9)

for all $x \in X$. It follows from (2.8) and (2.9) that

$$\left\|\frac{1}{2}f(2x) - f(x)\right\|_{Y} \le \frac{1}{4}\psi(x)$$
(2.10)

for all $x \in X$, where

$$\begin{split} \psi(x) &:= \varphi_{ij}\left(\frac{2x}{r_i}, \frac{2x}{r_j}\right) + 2\varphi_{ij}\left(\frac{x}{r_i}, -\frac{x}{r_j}\right) \\ &+ \varphi_{ij}\left(\frac{2x}{r_i}, 0\right) + 2\varphi_{ij}\left(\frac{x}{r_i}, 0\right) + \varphi_{ij}\left(0, \frac{2x}{r_j}\right) + 2\varphi_{ij}\left(0, -\frac{x}{r_j}\right). \end{split}$$

Consider the set $\mathcal{W} := \{g : X \to Y\}$ and introduce the generalized metric on \mathcal{W} :

$$d(g,h) = \inf \left\{ C \in \mathbb{R}_+ : \left\| g(x) - h(x) \right\|_Y \le C \psi(x), \forall x \in X \right\}.$$

It is easy to show that (\mathcal{W}, d) is complete.

Now, we consider the linear mapping $J: \mathcal{W} \to \mathcal{W}$ such that

$$Jg(x) := \frac{1}{2}g(2x)$$
(2.11)

for all $x \in X$. By Theorem 3.1 of [44], $d(Jg, Jh) \leq Cd(g, h)$ for all $g, h \in \mathcal{W}$. Hence, $d(f, Jf) \leq \frac{1}{4}$.

By Theorem 1.1, there exists a mapping $L: X \to Y$ such that

(1) *L* is a fixed point of *J*, *i.e.*,

$$L(2x) = 2L(x)$$
 (2.12)

for all $x \in X$. The mapping *L* is a unique fixed point of *J* in the set

$$Z = \{g \in \mathcal{W} : d(f,g) < \infty\}.$$

This implies that *L* is a unique mapping satisfying (2.12) such that there exists $C \in (0, \infty)$ satisfying

$$\left\|L(x) - f(x)\right\|_{Y} \le C\psi(x)$$

for all $x \in X$.

(2) $d(J^n f, L) \to 0$ as $n \to \infty$. This implies the equality

$$\lim_{n\to\infty}\frac{f(2^nx)}{2^n}=L(x)$$

for all $x \in X$.

(3) $d(f,L) \leq \frac{1}{1-C}d(f,Jf)$, which implies the inequality $d(f,L) \leq \frac{1}{4-4C}$. This implies that the inequality (2.2) holds.

Since $\varphi(2x_1, \ldots, 2x_n) \leq 2C\varphi(x_1, \ldots, x_n)$, it follows that

$$\begin{split} \left\| D_{e,r_1,\dots,r_n} L(x_1,\dots,x_n) \right\|_Y &= \lim_{k \to \infty} \frac{1}{2^k} \left\| D_{e,r_1,\dots,r_n} f\left(2^k x_1,\dots,2^k x_n\right) \right\|_Y \\ &\leq \lim_{k \to \infty} \frac{1}{2^k} \varphi\left(2^k x_1,\dots,2^k x_n\right) \\ &\leq \lim_{k \to \infty} C^k \varphi(x_1,\dots,x_n) = 0 \end{split}$$

for all $x_1, \ldots, x_n \in X$. Therefore, the mapping $L : X \to Y$ satisfies the equation (1.3) and L(0) = 0. Hence, by Lemma 2.2, L is a generalized Euler-Lagrange type additive mapping and $L(r_k x) = r_k L(x)$ for all $x \in X$ and $1 \le k \le n$. This completes the proof. \Box

Theorem 2.4 Let $f : X \to Y$ be a mapping satisfying f(0) = 0 for which there is a function $\varphi : X^n \to [0, \infty)$ satisfying

$$\|D_{u,r_1,\dots,r_n}f(x_1,\dots,x_n)\| \le \varphi(x_1,\dots,x_n)$$
 (2.13)

for all $x_1, \ldots, x_n \in X$ and $u \in U(A)$. If there exists 0 < C < 1 such that

 $\varphi(2x_1,\ldots,2x_n) \leq 2C\varphi(x_1,\ldots,x_n)$

for all $x_1, ..., x_n \in X$, then there exists a unique A-linear generalized Euler-Lagrange type additive mapping $L: X \to Y$ satisfying (2.2) for all $x \in X$. Moreover, $L(r_k x) = r_k L(x)$ for all $x \in X$ and $1 \le k \le n$.

Proof By Theorem 2.3, there exists a unique generalized Euler-Lagrange type additive mapping $L : X \to Y$ satisfying (2.2), and moreover $L(r_k x) = r_k L(x)$ for all $x \in X$ and $1 \le k \le n$. By the assumption, for each $u \in U(A)$, we get

$$\|D_{u,r_1,...,r_n}L(0,...,0,\underbrace{x}_{ith},0,...,0)\|_{Y}$$

= $\lim_{k\to\infty}\frac{1}{2^k}\|D_{u,r_1,...,r_n}f(0,...,0,\underbrace{2^kx}_{ith},0,...,0)\|_{Y}$

$$\leq \lim_{k \to \infty} \frac{1}{2^k} \varphi(0, \dots, 0, \underbrace{2^k x}_{ith}, 0, \dots, 0)$$

$$\leq \lim_{k \to \infty} C^k \varphi(0, \dots, 0, \underbrace{x}_{ith}, 0, \dots, 0) = 0$$

for all $x \in X$. So, we have

$$r_i u L(x) = L(r_i u x)$$

for all $u \in U(A)$ and $x \in X$. Since $L(r_i x) = r_i L(x)$ for all $x \in X$ and $r_i \neq 0$,

$$L(ux) = uL(x)$$

for all $u \in U(A)$ and $x \in X$. By the same reasoning as in the proofs of [63] and [64],

$$L(ax + by) = L(ax) + L(by) = aL(x) + bL(y)$$

for all $a, b \in A$ $(a, b \neq 0)$ and $x, y \in X$. Since L(0x) = 0 = 0L(x) for all $x \in X$, the unique generalized Euler-Lagrange type additive mapping $L : X \to Y$ is an A-linear mapping. This completes the proof.

Theorem 2.5 Let $f : X \to Y$ be a mapping satisfying f(0) = 0 for which there is a function $\varphi : X^n \to [0, \infty)$ such that

$$\|D_{e,r_1,\dots,r_n}f(x_1,\dots,x_n)\|_{Y} \le \varphi(x_1,\dots,x_n)$$
(2.14)

for all $x_1, \ldots, x_n \in X$. If there exists 0 < C < 1 such that

$$\varphi(x_1,\ldots,2_n)\leq \frac{C}{2}\varphi(2x_1,\ldots,2x_n)$$

for all $x_1, \ldots, x_n \in X$, then there exists a unique generalized Euler-Lagrange type additive mapping $L: X \to Y$ such that

$$\left\|f(x) - L(x)\right\|_{Y} \leq \frac{C}{4 - 4C} \left\{\varphi_{ij}\left(\frac{2x}{r_{i}}, \frac{2x}{r_{j}}\right) + 2\varphi_{ij}\left(\frac{x}{r_{i}}, -\frac{x}{r_{j}}\right) + \varphi_{ij}\left(\frac{2x}{r_{i}}, 0\right) + 2\varphi_{ij}\left(\frac{x}{r_{i}}, 0\right) + \varphi_{ij}\left(0, \frac{2x}{r_{j}}\right) + 2\varphi_{ij}\left(0, -\frac{x}{r_{j}}\right)\right\}$$
(2.15)

for all $x \in X$, where φ_{ij} is defined in the statement of Theorem 2.3. Moreover, $L(r_k x) = r_k L(x)$ for all $x \in X$ and $1 \le k \le n$.

Proof It follows from (2.10) that

$$\left\|f(x) - f\left(\frac{x}{2}\right)\right\|_{Y} \le \frac{1}{2}\psi\left(\frac{x}{2}\right) \le \frac{C}{4}\psi(x)$$

for all $x \in X$, where ψ is defined in the proof of Theorem 2.3. The rest of the proof is similar to the proof of Theorem 2.3.

Theorem 2.6 Let $f : X \to Y$ be a mapping with f(0) = 0 for which there is a function $\varphi : X^n \to [0, \infty)$ satisfying

$$\|D_{u,r_1,...,r_n}f(x_1,...,x_n)\| \le \varphi(x_1,...,x_n)$$
(2.16)

for all $x_1, \ldots, x_n \in X$ and $u \in U(A)$. If there exists 0 < C < 1 such that

$$\varphi(x_1,\ldots,2_n)\leq \frac{C}{2}\varphi(2x_1,\ldots,2x_n)$$

for all $x_1, ..., x_n \in X$, then there exists a unique A-linear generalized Euler-Lagrange type additive mapping $L: X \to Y$ satisfying (2.15) for all $x \in X$. Moreover, $L(r_k x) = r_k L(x)$ for all $x \in X$ and all $1 \le k \le n$.

Proof The proof is similar to the proof of Theorem 2.4. \Box

Remark 2.7 In Theorems 2.5 and 2.6, one can assume that $\sum_{k=1}^{n} r_k \neq 0$ instead of f(0) = 0.

3 Homomorphisms in unital C*-algebras

In this section, we investigate C^* -algebra homomorphisms in unital C^* -algebras. We use the following lemma in the proof of the next theorem.

Lemma 3.1 [64] Let $f : A \to B$ be an additive mapping such that $f(\mu x) = \mu f(x)$ for all $x \in A$ and $\mu \in \mathbb{S}^1_{\underline{1}} := \{e^{i\theta}; 0 \le \theta \le 2\pi n_o\}$. Then the mapping $f : A \to B$ is \mathbb{C} -linear.

Note that a \mathbb{C} -linear mapping $H : A \to B$ is called a *homomorphism* in C^* -algebras if H satisfies H(xy) = H(x)H(y) and $H(x^*) = H(x)^*$ for all $x, y \in A$.

Theorem 3.2 Let $f : A \to B$ be a mapping with f(0) = 0 for which there is a function φ : $A^n \to [0, \infty)$ satisfying

$$\|D_{\mu,r_1,...,r_n}f(x_1,...,x_n)\|_{B} \le \varphi(x_1,...,x_n),$$
(3.1)

$$\|f(2^{k}u^{*}) - f(2^{k}u)^{*}\|_{B} \le \varphi(\underbrace{2^{k}u, \dots, 2^{k}u}_{n \text{ times}}),$$
(3.2)

$$\left\|f\left(2^{k}ux\right) - f\left(2^{k}u\right)f(x)\right\|_{B} \le \varphi\left(\underbrace{2^{k}ux, \dots, 2^{k}ux}_{n \text{ times}}\right)$$
(3.3)

for all $x, x_1, ..., x_n \in A$, $u \in U(A)$, $k \in \mathbb{N}$ and $\mu \in \mathbb{S}^1$. If there exists 0 < C < 1 such that

 $\varphi(2x_1,\ldots,2x_n) \leq 2C\varphi(x_1,\ldots,x_n)$

for all $x_1, \ldots, x_n \in A$, then the mapping $f : A \to B$ is a C^* -algebra homomorphism.

Proof Since $|J| \ge 3$, letting $\mu = 1$ and $x_k = 0$ for all $1 \le k \le n$ ($k \ne i, j$) in (3.1), we get

$$f\left(\frac{-r_ix_i+r_jx_j}{2}\right) + f\left(\frac{r_ix_i-r_jx_j}{2}\right) + r_if(x_i) + r_jf(x_j) = 2f\left(\frac{r_ix_i+r_jx_j}{2}\right)$$

for all $x_i, x_j \in A$. By the same reasoning as in the proof of Lemma 2.1, the mapping f is additive and $f(r_k x) = r_k f(x)$ for all $x \in A$ and k = i, j. So, by letting $x_i = x$ and $x_k = 0$ for all $1 \le k \le n$, $k \ne i$, in (3.1), we get $f(\mu x) = \mu f(x)$ for all $x \in A$ and $\mu \in \mathbb{S}^1$. Therefore, by Lemma 3.1, the mapping f is \mathbb{C} -linear. Hence, it follows from (3.2) and (3.3) that

$$\|f(u^*) - f(u)^*\|_B = \lim_{k \to \infty} \frac{1}{2^k} \|f(2^k u^*) - f(2^k u)^*\|_B$$

$$\leq \lim_{k \to \infty} \frac{1}{2^k} \varphi(\underbrace{2^k u, \dots, 2^k u}_{n \text{ times}}) \leq \lim_{k \to \infty} C^k \varphi(\underbrace{u, \dots, u}_{n \text{ times}})$$

$$= 0,$$

$$\|f(ux) - f(u)f(x)\|_B = \lim_{k \to \infty} \frac{1}{2^k} \|f(2^k ux) - f(2^k u)f(x)\|_B$$

$$\leq \lim_{k \to \infty} \frac{1}{2^k} \varphi(\underbrace{2^k ux, \dots, 2^k ux}_{n \text{ times}}) \leq \lim_{k \to \infty} C^k \varphi(\underbrace{ux, \dots, ux}_{n \text{ times}})$$

$$= 0$$

for all $x \in A$ and $u \in U(A)$. So, we have $f(u^*) = f(u)^*$ and f(ux) = f(u)f(x) for all $x \in A$ and $u \in U(A)$. Since f is \mathbb{C} -linear and each $x \in A$ is a finite linear combination of unitary elements (see [65]), *i.e.*, $x = \sum_{k=1}^{m} \lambda_k u_k$, where $\lambda_k \in \mathbb{C}$ and $u_k \in U(A)$ for all $1 \le k \le n$, we have

$$f(x^*) = f\left(\sum_{k=1}^m \overline{\lambda}_k u_k^*\right) = \sum_{k=1}^m \overline{\lambda}_k f(u_k^*) = \sum_{k=1}^m \overline{\lambda}_k f(u_k)^*$$
$$= \left(\sum_{k=1}^m \lambda_k f(u_k)\right)^* = f\left(\sum_{k=1}^m \lambda_k u_k\right)^* = f(x)^*,$$
$$f(xy) = f\left(\sum_{k=1}^m \lambda_k u_k y\right) = \sum_{k=1}^m \lambda_k f(u_k y)$$
$$= \sum_{k=1}^m \lambda_k f(u_k) f(y) = f\left(\sum_{k=1}^m \lambda_k u_k\right) f(y) = f(x) f(y)$$

for all $x, y \in A$. Therefore, the mapping $f : A \to B$ is a C^* -algebra homomorphism. This completes the proof.

The following theorem is an alternative result of Theorem 3.2.

Theorem 3.3 Let $f : A \to B$ be a mapping with f(0) = 0 for which there is a function $\varphi : A^n \to [0, \infty)$ satisfying

$$\left\| D_{\mu,r_1,\dots,r_n} f(x_1,\dots,x_n) \right\|_B \le \varphi(x_1,\dots,x_n),$$

$$\left\| f\left(\frac{u^*}{2^k}\right) - f\left(\frac{u}{2^k}\right)^* \right\|_B \le \varphi\left(\underbrace{\frac{u}{2^k},\dots,\frac{u}{2^k}}_{n \text{ times}}\right),$$
(3.4)

$$\left\| f\left(\frac{ux}{2^k}\right) - f\left(\frac{u}{2^k}\right) f(x) \right\|_B \le \phi\left(\underbrace{\frac{ux}{2^k}, \dots, \frac{ux}{2^k}}_{n \text{ times}}\right)$$
(3.5)

for all $x, x_1, ..., x_n \in A$, $u \in U(A)$, $k \in \mathbb{N}$ and $\mu \in \mathbb{S}^1$. If there exists 0 < C < 1 such that

$$\varphi(x_1,\ldots,2_n) \leq \frac{C}{2}\varphi(2x_1,\ldots,2x_n)$$

for all $x_1, \ldots, x_n \in A$, then the mapping $f : A \to B$ is a C^* -algebra homomorphism.

Remark 3.4 In Theorems 3.2 and 3.3, one can assume that $\sum_{k=1}^{n} r_k \neq 0$ instead of f(0) = 0.

Theorem 3.5 Let $f : A \to B$ be a mapping with f(0) = 0 for which there is a function $\varphi : A^n \to [0, \infty)$ satisfying (3.2), (3.3) and

$$\left\|D_{\mu,r_1,\ldots,r_n}f(x_1,\ldots,x_n)\right\|_B \le \varphi(x_1,\ldots,x_n)$$
(3.6)

for all $x_1, ..., x_n \in A$ and $\mu \in \mathbb{S}^1$. Assume that $\lim_{k\to\infty} \frac{1}{2^k} f(2^k e)$ is invertible. If there exists 0 < C < 1 such that

 $\varphi(2x_1,\ldots,2x_n) \leq 2C\varphi(x_1,\ldots,x_n)$

for all $x_1, \ldots, x_n \in A$, then the mapping $f : A \to B$ is a C^* -algebra homomorphism.

Proof Consider the *C**-algebras *A* and *B* as left Banach modules over the unital *C**-algebra \mathbb{C} . By Theorem 2.4, there exists a unique \mathbb{C} -linear generalized Euler-Lagrange type additive mapping $H : A \to B$ defined by

$$H(x) = \lim_{k \to \infty} \frac{1}{2^k} f(2^k x)$$

for all $x \in A$. By (3.2) and (3.3), we get

$$\|H(u^{*}) - H(u)^{*}\|_{B} = \lim_{k \to \infty} \frac{1}{2^{k}} \|f(2^{k}u^{*}) - f(2^{k}u)^{*}\|_{B}$$
$$\leq \lim_{k \to \infty} \frac{1}{2^{k}} \varphi(\underbrace{2^{k}u, \dots, 2^{k}u}_{n \text{ times}})$$

= 0.

 $\|H(ux) - H(u)f(x)\|_{B} = \lim_{k \to \infty} \frac{1}{2^{k}} \|f(2^{k}ux) - f(2^{k}u)f(x)\|_{B}$ $\leq \lim_{k \to \infty} \frac{1}{2^{k}} \varphi(\underbrace{2^{k}ux, \dots, 2^{k}ux}_{n \text{ times}})$ = 0

for all $u \in U(A)$ and $x \in A$. So, we have $H(u^*) = H(u)^*$ and H(ux) = H(u)f(x) for all $u \in U(A)$ and $x \in A$. Therefore, by the additivity of H, we have

$$H(ux) = \lim_{k \to \infty} \frac{1}{2^k} H(2^k ux) = H(u) \lim_{k \to \infty} \frac{1}{2^k} f(2^k x) = H(u) H(x)$$
(3.7)

for all $u \in U(A)$ and all $x \in A$. Since H is \mathbb{C} -linear and each $x \in A$ is a finite linear combination of unitary elements, *i.e.*, $x = \sum_{k=1}^{m} \lambda_k u_k$, where $\lambda_k \in \mathbb{C}$ and $u_k \in U(A)$ for all $1 \le k \le n$, it follows from (3.7) that

$$H(xy) = H\left(\sum_{k=1}^{m} \lambda_k u_k y\right) = \sum_{k=1}^{m} \lambda_k H(u_k y)$$
$$= \sum_{k=1}^{m} \lambda_k H(u_k) H(y) = H\left(\sum_{k=1}^{m} \lambda_k u_k\right) H(y)$$
$$= H(x) H(y),$$
$$H(x^*) = H\left(\sum_{k=1}^{m} \overline{\lambda}_k u_k^*\right) = \sum_{k=1}^{m} \overline{\lambda}_k H(u_k^*) = \sum_{k=1}^{m} \overline{\lambda}_k H(u_k)^*$$
$$= \left(\sum_{k=1}^{m} \lambda_k H(u_k)\right)^* = H\left(\sum_{k=1}^{m} \lambda_k u_k\right)^*$$
$$= H(x)^*$$

for all $x, y \in A$. Since $H(e) = \lim_{k \to \infty} \frac{1}{2^k} f(2^k e)$ is invertible and

$$H(e)H(y) = H(ey) = H(e)f(y)$$

for all $y \in A$, it follows that H(y) = f(y) for all $y \in A$. Therefore, the mapping $f : A \to B$ is a C^* -algebra homomorphism. This completes the proof.

The following theorem is an alternative result of Theorem 3.5.

Theorem 3.6 Let $f : A \to B$ be a mapping with f(0) = 0 for which there is a function φ : $A^n \to [0, \infty)$ satisfying (3.4), (3.5) and

$$\left\|D_{\mu,r_1,\ldots,r_n}f(x_1,\ldots,x_n)\right\|_B\leq\varphi(x_1,\ldots,x_n)$$

for all $x_1, ..., x_n \in A$ and $\mu \in \mathbb{S}^1$. Assume that $\lim_{k\to\infty} 2^k f(\frac{e}{2^k})$ is invertible. If there exists 0 < C < 1 such that

$$\varphi(x_1,\ldots,2_n) \leq \frac{C}{2}\varphi(2x_1,\ldots,2x_n)$$

for all $x_1, \ldots, x_n \in A$, then the mapping $f : A \to B$ is a C^* -algebra homomorphism.

Remark 3.7 In Theorem 3.6, one can assume that $\sum_{k=1}^{n} r_k \neq 0$ instead of f(0) = 0.

Theorem 3.8 Let $f : A \to B$ be a mapping with f(0) = 0 for which there is a function $\varphi : A^n \to [0, \infty)$ satisfying (3.2), (3.3) and

$$\left\|D_{\mu,r_1,\dots,r_n}f(x_1,\dots,x_n)\right\|_B \le \varphi(x_1,\dots,x_n)$$
(3.8)

for all $x_1, \ldots, x_n \in A$ and $\mu = i, 1$. Assume that $\lim_{k \to \infty} \frac{1}{2^k} f(2^k e)$ is invertible and for each fixed $x \in A$ the mapping $t \mapsto f(tx)$ is continuous in $t \in \mathbb{R}$. If there exists 0 < C < 1 such that

$$\varphi(2x_1,\ldots,2x_n) \leq 2C\varphi(x_1,\ldots,x_n)$$

for all $x_1, \ldots, x_n \in A$, then the mapping $f : A \to B$ is a C^* -algebra homomorphism.

Proof Put $\mu = 1$ in (3.8). By the same reasoning as in the proof of Theorem 2.3, there exists a unique generalized Euler-Lagrange type additive mapping $H : A \rightarrow B$ defined by

$$H(x) = \lim_{k \to \infty} \frac{f(2^k x)}{2^k}$$

for all $x \in A$. By the same reasoning as in the proof of [58], the generalized Euler-Lagrange type additive mapping $H : A \to B$ is \mathbb{R} -linear. By the same method as in the proof of Theorem 2.4, we have

$$\begin{split} \|D_{\mu,r_{1},\dots,r_{n}}H(0,\dots,0,\underbrace{x}_{j\text{th}},0,\dots,0)\|_{Y} \\ &= \lim_{k \to \infty} \frac{1}{2^{k}} \|D_{\mu,r_{1},\dots,r_{n}}f(0,\dots,0,\underbrace{2^{k}x}_{j\text{th}},0,\dots,0)\|_{Y} \\ &\leq \lim_{k \to \infty} \frac{1}{2^{k}} \varphi(0,\dots,0,\underbrace{2^{k}x}_{j\text{th}},0,\dots,0) = 0 \end{split}$$

for all $x \in A$ and so

$$r_j \mu H(x) = H(r_j \mu x)$$

for all $x \in A$. Since $H(r_i x) = r_i H(x)$ for all $x \in X$ and $r_i \neq 0$,

$$H(\mu x) = \mu H(x)$$

for all $x \in A$ and $\mu = i, 1$. For each $\lambda \in \mathbb{C}$, we have $\lambda = s + it$, where $s, t \in \mathbb{R}$. Thus, it follows that

$$H(\lambda x) = H(sx + itx) = sH(x) + tH(ix)$$
$$= sH(x) + itH(x) = (s + it)H(x)$$
$$= \lambda H(x)$$

for all $\lambda \in \mathbb{C}$ and $x \in A$ and so

$$H(\zeta x + \eta y) = H(\zeta x) + H(\eta y) = \zeta H(x) + \eta H(y)$$

for all ζ , $\eta \in \mathbb{C}$ and $x, y \in A$. Hence, the generalized Euler-Lagrange type additive mapping $H : A \rightarrow B$ is \mathbb{C} -linear.

The rest of the proof is the same as in the proof of Theorem 3.5. This completes the proof. $\hfill \Box$

The following theorem is an alternative result of Theorem 3.8.

Theorem 3.9 Let $f : A \to B$ be a mapping with f(0) = 0 for which there is a function φ : $A^n \to [0, \infty)$ satisfying (3.4), (3.5) and

$$\left\|D_{\mu,r_1,\ldots,r_n}f(x_1,\ldots,x_n)\right\|_B\leq\varphi(x_1,\ldots,x_n),$$

for all $x, x_1, ..., x_n \in A$ and $\mu = i, 1$. Assume that $\lim_{k\to\infty} 2^k f(\frac{e}{2^k})$ is invertible and for each fixed $x \in A$ the mapping $t \mapsto f(tx)$ is continuous in $t \in \mathbb{R}$. If there exists 0 < C < 1 such that

$$\varphi(x_1,\ldots,2_n) \leq \frac{C}{2}\varphi(2x_1,\ldots,2x_n)$$

for all $x_1, \ldots, x_n \in A$, then the mapping $f : A \to B$ is a C^* -algebra homomorphism.

Proof We omit the proof because it is very similar to last theorem.

Remark 3.10 In Theorem 3.9, one can assume that $\sum_{k=1}^{n} r_k \neq 0$ instead of f(0) = 0.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Author details

¹Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Korea. ²Department of Mathematics Education and RINS, Gyeongsang National University, Chinju, 660-701, Korea. ³Department of Mathematics and Computer Science, Iran University of Science and Technology, Tehran, Iran.

Acknowledgements

The authors are grateful to the reviewers for their valuable comments and suggestions.

Received: 26 September 2012 Accepted: 5 April 2013 Published: 18 April 2013

References

- Eshaghi Gordji, M, Najati, A, Ebadian, A: Stability and superstability of Jordan homomorphisms and Jordan derivations on Banach algebras and C*-algebras: a fixed point approach. Acta Math. Sci. 31, 1911-1922 (2011)
- 2. Ulam, SM: A Collection of the Mathematical Problems. Interscience, New York (1960)
- 3. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)
- 4. Aoki, T: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64-66 (1950)
- 5. Rassias, TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)
- 6. Găvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. **184**, 431-436 (1994)
- 7. Skof, F: Proprietà locali e approssimazione di operatori. Rend. Semin. Mat. Fis. Milano 53, 113-129 (1983)
- 8. Cholewa, PW: Remarks on the stability of functional equations. Aequ. Math. 27, 76-86 (1984)
- 9. Czerwik, S: On the stability of the quadratic mapping in normed spaces. Abh. Math. Semin. Univ. Hamb. 62, 59-64 (1992)
- 10. Rassias, JM: On the stability of the Euler-Lagrange functional equation. Chin. J. Math 20, 185-190 (1992)
- Rassias, JM: On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces. J. Math. Phys. Sci. 28, 231-235 (1994)
- 12. Grabiec, A: The generalized Hyers-Ulam stability of a class of functional equations. Publ. Math. (Debr.) 48, 217-235 (1996)
- Agarwal, RP, Cho, Y, Saadati, R, Wang, S: Nonlinear *L*-fuzzy stability of cubic functional equations. J. Inequal. Appl. 2012, 77 (2012)
- 14. Baktash, E, Cho, Y, Jalili, M, Saadati, R, Vaezpour, SM: On the stability of cubic mappings and quadratic mappings in random normed spaces. J. Inequal. Appl. **2008**, Article ID 902187 (2008)
- 15. Cho, Y, Eshaghi Gordji, M, Zolfaghari, S: Solutions and stability of generalized mixed type QC functional equations in random normed spaces. J. Inequal. Appl. **2010**, Article ID 403101 (2010)
- 16. Cho, Y, Park, C, Rassias, TM, Saadati, R: Inner product spaces and functional equations. J. Comput. Anal. Appl. 13, 296-304 (2011)

- 17. Cho, Y, Park, C, Saadati, R: Functional inequalities in non-Archimedean Banach spaces. Appl. Math. Lett. 60, 1994-2002 (2010)
- Cho, Y, Saadati, R: Lattice non-Archimedean random stability of ACQ-functional equations. Adv. Differ. Equ. 2011, 31 (2011)
- Cho, Y, Saadati, R, Shabanian, S, Vaezpour, SM: On solution and stability of a two-variable functional equations. Discrete Dyn. Nat. Soc. 2011, Article ID 527574 (2011)
- 20. Czerwik, P: Functional Equations and Inequalities in Several Variables. World Scientific, Singapore (2002)
- Forti, GL: Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations. J. Math. Anal. Appl. 295, 127-133 (2004)
- 22. Forti, GL: Elementary remarks on Ulam-Hyers stability of linear functional equations. J. Math. Anal. Appl. 328, 109-118 (2007)
- 23. Gajda, Z: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431-434 (1991)
- 24. Gao, ZX, Cao, HX, Zheng, WT, Xu, L: Generalized Hyers-Ulam-Rassias stability of functional inequalities and functional equations. J. Math. Inequal. **3**, 63-77 (2009)
- Găvruta, P: On the stability of some functional equations. In: Stability of Mappings of Hyers-Ulam Type, pp. 93-98. Hadronic Press, Palm Harbor (1994)
- 26. Găvruta, P: On a problem of G. Isac and T.M. Rassias concerning the stability of mappings. J. Math. Anal. Appl. 261, 543-553 (2001)
- 27. Găvruta, P: On the Hyers-Ulam-Rassias stability of the quadratic mappings. Nonlinear Funct. Anal. Appl. 9, 415-428 (2004)
- 28. Hyers, DH, Isac, G, Rassias, TM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
- Hyers, DH, Isac, G, Rassias, TM: On the asymptoticity aspect of Hyers-Ulam stability of mappings. Proc. Am. Math. Soc. 126, 425-430 (1998)
- 30. Jung, S: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
- Khodaei, H, Eshaghi Gordji, M, Kim, S, Cho, Y: Approximation of radical functional equations related to quadratic and quartic mappings. J. Math. Anal. Appl. 397, 284-297 (2012)
- 32. Miheţ, D, Radu, V: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. **343**, 567-572 (2008)
- Mohammadi, M, Cho, Y, Park, C, Vetro, P, Saadati, R: Random stability of an additive-quadratic-quartic functional equation. J. Inequal. Appl. 2010, Article ID 754210 (2010)
- Najati, A, Cho, Y: Generalized Hyers-Ulam stability of the pexiderized Cauchy functional equation in non-Archimedean spaces. Fixed Point Theory Appl. 2011, Article ID 309026 (2011)
- Najati, A, Kang, J, Cho, Y: Local stability of the pexiderized Cauchy and Jensen's equations in fuzzy spaces. J. Inequal. Appl. 2011. 78 (2011)
- 36. Park, C: On the stability of the linear mapping in Banach modules. J. Math. Anal. Appl. 275, 711-720 (2002)
- 37. Park, C: Linear functional equations in Banach modules over a C*-algebra. Acta Appl. Math. 77, 125-161 (2003)
- Rassias, JM: Solution of the Ulam stability problem for Euler-Lagrange quadratic mappings. J. Math. Anal. Appl. 220, 613-639 (1998)
- Rassias, TM: On the stability of the quadratic functional equation and its applications. Stud. Univ. Babeş-Bolyai, Math. XLIII, 89-124 (1998)
- 40. Rassias, TM: The problem of S.M. Ulam for approximately multiplicative mappings. J. Math. Anal. Appl. 246, 352-378 (2000)
- 41. Rassias, TM, Šemrl, P: On the Hyers-Ulam stability of linear mappings. J. Math. Anal. Appl. 173, 325-338 (1993)
- Rassias, TM, Shibata, K: Variational problem of some quadratic functionals in complex analysis. J. Math. Anal. Appl. 228, 234-253 (1998)
- 43. Saadati, R, Cho, Y, Vahidi, J: The stability of the quartic functional equation in various spaces. Comput. Math. Appl. 60, 1994-2002 (2010)
- 44. Cădariu, L, Radu, V: Fixed points and the stability of Jensen's functional equation. J. Inequal. Pure Appl. Math. 4, Article ID 4 (2003)
- Diaz, J, Margolis, B: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305-309 (1968)
- 46. Isac, G, Rassias, TM: Stability of ψ-additive mappings: applications to nonlinear analysis. Int. J. Math. Math. Sci. 19, 219-228 (1996)
- Cădariu, L, Radu, V: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 346, 43-52 (2004)
- Cădariu, L, Radu, V: Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory Appl. 2008, Article ID 749392 (2008)
- 49. Cho, Y, Kang, J, Saadati, R: Fixed points and stability of additive functional equations on the Banach algebras. J. Comput. Anal. Appl. 14, 1103-1111 (2012)
- Cho, Y, Kang, S, Sadaati, R: Nonlinear random stability via fixed-point method. J. Appl. Math. 2012, Article ID 902931 (2012)
- 51. Cho, Y, Saadati, R, Vahidi, J: Approximation of homomorphisms and derivations on non-Archimedean Lie C*-algebras via fixed point method. Discrete Dyn. Nat. Soc. 2012, Article ID 373904 (2012)
- Eshaghi Gordji, M, Cho, Y, Ghaemi, MB, Majani, H: Approximately quintic and sextic mappings form r-divisible groups into Šerstnev probabilistic Banach spaces: fixed point method. Discrete Dyn. Nat. Soc. 2011, Article ID 572062 (2011)
- Eshaghi Gordji, M, Ramezani, M, Cho, Y, Baghani, H: Approximate Lie brackets: a fixed point approach. J. Inequal. Appl. 2012, 125 (2012)
- 54. Miheţ, D: The fixed point method for fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst. 160, 1663-1667 (2009)
- 55. Mirzavaziri, M, Moslehian, MS: A fixed point approach to stability of a quadratic equation. Bull. Braz. Math. Soc. 37, 361-376 (2006)

- Park, C: Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras. Fixed Point Theory Appl. 2007, Article ID 50175 (2007)
- 57. Park, C: Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach. Fixed Point Theory Appl. **2008**, Article ID 493751 (2008)
- 58. Radu, V: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4, 91-96 (2003)
- Park, C, Park, J: Generalized Hyers-Ulam stability of an Euler-Lagrange type additive mapping. J. Differ. Equ. Appl. 12, 1277-1288 (2006)
- Eshaghi Gordji, M: Jordan *-homomorphisms between unital C*-algebras: a fixed point approach. Fixed Point Theory 12, 341-348 (2011)
- Eshaghi Gordji, M, Fazeli, A: Stability and superstability of homomorphisms on C*-ternary algebras. An. Univ. "Ovidius" Constanţa, Ser. Mat. 20, 173-187 (2012)
- 62. Najati, A, Park, C: Stability of a generalized Euler-Lagrange type additive mapping and homomorphisms in C*-algebras II. J. Nonlinear Sci. Appl. **3**, 123-143 (2010)
- Park, C: Homomorphisms between Lie JC*-algebras and Cauchy-Rassias stability of Lie JC*-algebra derivations. J. Lie Theory 15, 393-414 (2005)
- 64. Park, C: Homomorphisms between Poisson JC*-algebras. Bull. Braz. Math. Soc. 36, 79-97 (2005)
- 65. Kadison, RV, Ringrose, JR: Fundamentals of the Theory of Operator Algebras. Academic Press, New York (1983)

doi:10.1186/1029-242X-2013-185

Cite this article as: Park et al.: Approximation of linear mappings in Banach modules over C*-algebras. Journal of Inequalities and Applications 2013 2013:185.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com