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Abstract
Let X , Y be Banach modules over a C∗-algebra and let r1, . . . , rn ∈R be given. Using
fixed-point methods, we prove the stability of the following functional equation in
Banach modules over a unital C∗-algebra:

n∑
j=1

f
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2

∑
1≤i≤n,i �=j

rixi –
1
2
rjxj

)
+

n∑
i=1

rif (xi) = nf

(
1
2

n∑
i=1

rixi

)
.

As an application, we investigate homomorphisms in unital C∗-algebras.
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1 Introduction and preliminaries
We say a functional equation (ζ ) is stable if any function g satisfying the equation (ζ )
approximately is near to the true solution of (ζ ). We say that a functional equation is su-
perstable if every approximate solution is an exact solution of it (see []). The stability
problem of functional equations was originated from a question of Ulam [] concerning
the stability of group homomorphisms. Hyers [] gave a first affirmative partial answer
to the question of Ulam in Banach spaces. Hyers’ theorem was generalized by Aoki []
for additive mappings and by T.M. Rassias [] for linear mappings by considering an un-
boundedCauchy difference. A generalization of the T.M. Rassias theoremwas obtained by
Găvruta [] by replacing the unbounded Cauchy difference by a general control function
in the spirit of T.M. Rassias’ approach.
The functional equation

f (x + y) + f (x – y) = f (x) + f (y)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. A Hyers-Ulam stability problem for
the quadratic functional equationwas proved by Skof [] formappings f : X → Y , whereX
is a normed space and Y is a Banach space. Cholewa [] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group. Czerwik [] proved the
Hyers-Ulam stability of the quadratic functional equation. J.M. Rassias [, ] introduced
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and investigated the stability problemofUlam for the Euler-Lagrange quadratic functional
equation

f (ax + ax) + f (ax – ax) =
(
a + a

)[
f (x) + f (x)

]
. (.)

Grabiec [] has generalized these results mentioned above.
The stability problems of several functional equations have been extensively investigated

by a number of authors and there are many interesting results concerning this problem
(see [–]).
Let X be a set. A function d : X × X → [,∞] is called a generalized metric on X if d

satisfies the following conditions:
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .
We recall a fundamental result in fixed-point theory.

Theorem . [, ] Let (X,d) be a complete generalized metric space and let J : X → X
be a strictly contractivemapping with Lipschitz constant L < .Then, for each given element
x ∈ X, either

d
(
Jnx, Jn+x

)
= ∞

for all nonnegative integers n or there exists a positive integer n such that
() d(Jnx, Jn+x) < ∞ for all n≥ n;
() the sequence {Jnx} converges to a fixed point y∗ of J ;
() y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jnx, y) <∞};
() d(y, y∗) ≤ 

–Ld(y, Jy) for all y ∈ Y .

In , Isac and T.M. Rassias [] were the first to provide applications of stability the-
ory of functional equations for the proof of new fixed-point theorems with applications.
By using fixed-point methods, the stability problems of several functional equations have
been extensively investigated by a number of authors (see [–]).
Recently, Park and Park [] introduced and investigated the following additive func-

tional equation of Euler-Lagrange type:

n∑
i=

riL

( n∑
j=

rj(xi – xj)

)
+

( n∑
i=

ri

)
L

( n∑
i=

rixi

)

=

( n∑
i=

ri

) n∑
i=

riL(xi), r, . . . , rn ∈ (,∞) (.)

whose solution is said to be a generalized additive mapping of Euler-Lagrange type.
In this paper, we introduce the following additive functional equation of Euler-Lagrange

type which is somewhat different from (.):

n∑
j=

f
(



∑
≤i≤n,i�=j

rixi –


rjxj

)
+

n∑
i=

rif (xi) = nf

(



n∑
i=

rixi

)
, (.)
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where r, . . . , rn ∈R. Every solution of the functional equation (.) is said to be a general-
ized Euler-Lagrange type additive mapping.
Using fixed-point methods, we investigate the Hyers-Ulam stability of the functional

equation (.) in Banach modules over a C∗-algebra. These results are applied to inves-
tigate C∗-algebra homomorphisms in unital C∗-algebras. Also, ones can get the super-
stability results after all theorems by putting the product of powers of norms as the control
functions (see for more details [, ]).
Throughout this paper, assume that A is a unital C∗-algebra with the norm ‖ · ‖A and

the unit e, B is a unital C∗-algebra with the norm ‖ · ‖B, and X, Y are left Banach modules
over a unital C∗-algebra A with the norms ‖ · ‖X and ‖ · ‖Y , respectively. Let U(A) be the
group of unitary elements in A and let r, . . . , rn ∈R.

2 Hyers-Ulam stability of the functional equation (1.3) in Banachmodules over
a C∗-algebra

For any givenmapping f : X → Y , u ∈U(A) andμ ∈C, we defineDu,r,...,rn f andDμ,r,...,rn f :
Xn → Y by

Du,r,...,rn f (x, . . . ,xn)

:=
n∑
j=

f
(



∑
≤i≤n,i�=j

riuxi –


rjuxj

)
+

n∑
i=

riuf (xi) – nf

(



n∑
i=

riuxi

)

and

Dμ,r,...,rn f (x, . . . ,xn)

:=
n∑
j=

f
(



∑
≤i≤n,i�=j

μrixi –


μrjxj

)
+

n∑
i=

μrif (xi) – nf

(



n∑
i=

μrixi

)

for all x, . . . ,xn ∈ X.

Lemma. Let X and Y be linear spaces and let r, . . . , rn be real numbers with
∑n

k= rk �= 
and ri �= , rj �=  for some  ≤ i < j ≤ n. Assume that a mapping L : X → Y satisfies the
functional equation (.) for all x, . . . ,xn ∈ X. Then the mapping L is additive. Moreover,
L(rkx) = rkL(x) for all x ∈ X and  ≤ k ≤ n.

Proof One can find a complete proof at []. �

Lemma . Let X and Y be linear spaces and let r, . . . , rn be real numbers with ri �= ,
rj �=  for some  ≤ i < j ≤ n. Assume that a mapping L : X → Y with L() =  satisfies the
functional equation (.) for all x, . . . ,xn ∈ X. Then the mapping L is additive. Moreover,
L(rkx) = rkL(x) for all x ∈ X and  ≤ k ≤ n.

Proof One can find a complete proof at []. �

We investigate the Hyers-Ulam stability of a generalized Euler-Lagrange type additive
mapping in Banach modules over a unital C∗-algebra. Throughout this paper, let r, . . . , rn
be real numbers such that ri �= , rj �=  for fixed  ≤ i < j ≤ n.
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Theorem . Let f : X → Y be a mapping satisfying f () =  for which there is a function
ϕ : Xn → [,∞) such that

∥∥De,r,...,rn f (x, . . . ,xn)
∥∥
Y ≤ ϕ(x, . . . ,xn) (.)

for all x, . . . ,xn ∈ X. Let

ϕij(x, y) := ϕ(, . . . , , x︸︷︷︸
ith

, , . . . , , y︸︷︷︸
jth

, , . . . , )

for all x, y ∈ X and  ≤ i < j ≤ n. If there exists  < C <  such that

ϕ(x, . . . , xn) ≤ Cϕ(x, . . . ,xn)

for all x, . . . ,xn ∈ X, then there exists a unique generalized Euler-Lagrange type additive
mapping L : X → Y such that

∥∥f (x) – L(x)
∥∥
Y ≤ 

 – C

{
ϕij

(
x
ri
,
x
rj

)
+ ϕij

(
x
ri
, –

x
rj

)

+ ϕij

(
x
ri
, 

)
+ ϕij

(
x
ri
, 

)
+ ϕij

(
,

x
rj

)
+ ϕij

(
,–

x
rj

)}
(.)

for all x ∈ X.Moreover, L(rkx) = rkL(x) for all x ∈ X and  ≤ k ≤ n.

Proof For each  ≤ k ≤ nwith k �= i, j, let xk =  in (.). Then we get the following inequal-
ity:

∥∥∥∥f
(
–rixi + rjxj



)
+ f

(
rixi – rjxj



)
– f

(
rixi + rjxj



)
+ rif (xi) + rjf (xj)

∥∥∥∥
Y

≤ ϕ(, . . . , , xi︸︷︷︸
ith

, , . . . , , xj︸︷︷︸
jth

, , . . . , ) (.)

for all xi,xj ∈ X. Letting xi =  in (.), we get

∥∥∥∥f
(
–
rjxj


)
– f

(
rjxj


)
+ rjf (xj)

∥∥∥∥
Y

≤ ϕij(,xj) (.)

for all xj ∈ X. Similarly, letting xj =  in (.), we get

∥∥∥∥f
(
–
rixi


)
– f

(
rixi


)
+ rif (xi)

∥∥∥∥
Y

≤ ϕij(xi, ) (.)

for all xi ∈ X. It follows from (.), (.) and (.) that∥∥∥∥f
(
–rixi + rjxj



)
+ f

(
rixi – rjxj



)
– f

(
rixi + rjxj



)

+ f
(
rixi


)
+ f

(
rjxj


)
– f

(
–
rixi


)
– f

(
–
rjxj


)∥∥∥∥
Y

≤ ϕij(xi,xj) + ϕij(xi, ) + ϕij(,xj) (.)
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for all xi,xj ∈ X. Replacing xi and xj by x
ri
and y

rj
in (.), we get

∥∥f (–x + y) + f (x – y) – f (x + y) + f (x) + f (y) – f (–x) – f (–y)
∥∥
Y

≤ ϕij

(
x
ri
,
y
rj

)
+ ϕij

(
x
ri
, 

)
+ ϕij

(
,

y
rj

)
(.)

for all x, y ∈ X. Putting y = x in (.), we get

∥∥f (x) – f (–x) – f (x)
∥∥
Y ≤ ϕij

(
x
ri
,
x
rj

)
+ ϕij

(
x
ri
, 

)
+ ϕij

(
,

x
rj

)
(.)

for all x ∈ X. Replacing x and y by x
 and – x

 in (.), respectively, we get

∥∥f (x) + f (–x)
∥∥
Y ≤ ϕij

(
x
ri
, –

x
rj

)
+ ϕij

(
x
ri
, 

)
+ ϕij

(
,–

x
rj

)
(.)

for all x ∈ X. It follows from (.) and (.) that

∥∥∥∥  f (x) – f (x)
∥∥∥∥
Y

≤ 


ψ(x) (.)

for all x ∈ X, where

ψ(x) := ϕij

(
x
ri
,
x
rj

)
+ ϕij

(
x
ri
, –

x
rj

)

+ ϕij

(
x
ri
, 

)
+ ϕij

(
x
ri
, 

)
+ ϕij

(
,

x
rj

)
+ ϕij

(
,–

x
rj

)
.

Consider the setW := {g : X → Y } and introduce the generalized metric onW :

d(g,h) = inf
{
C ∈R+ :

∥∥g(x) – h(x)
∥∥
Y ≤ Cψ(x),∀x ∈ X

}
.

It is easy to show that (W ,d) is complete.
Now, we consider the linear mapping J :W →W such that

Jg(x) :=


g(x) (.)

for all x ∈ X. By Theorem . of [], d(Jg, Jh) ≤ Cd(g,h) for all g,h ∈ W . Hence, d(f ,
Jf ) ≤ 

 .
By Theorem ., there exists a mapping L : X → Y such that
() L is a fixed point of J , i.e.,

L(x) = L(x) (.)

for all x ∈ X. The mapping L is a unique fixed point of J in the set

Z =
{
g ∈W : d(f , g) < ∞}

.
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This implies that L is a unique mapping satisfying (.) such that there exists C ∈ (,∞)
satisfying

∥∥L(x) – f (x)
∥∥
Y ≤ Cψ(x)

for all x ∈ X.
() d(Jnf ,L) →  as n → ∞. This implies the equality

lim
n→∞

f (nx)
n

= L(x)

for all x ∈ X.
() d(f ,L) ≤ 

–C d(f , Jf ), which implies the inequality d(f ,L) ≤ 
–C . This implies that

the inequality (.) holds.
Since ϕ(x, . . . , xn)≤ Cϕ(x, . . . ,xn), it follows that

∥∥De,r,...,rnL(x, . . . ,xn)
∥∥
Y = lim

k→∞

k

∥∥De,r,...,rn f
(
kx, . . . , kxn

)∥∥
Y

≤ lim
k→∞


k

ϕ
(
kx, . . . , kxn

)
≤ lim

k→∞
Ckϕ(x, . . . ,xn) = 

for all x, . . . ,xn ∈ X. Therefore, the mapping L : X → Y satisfies the equation (.) and
L() = . Hence, by Lemma ., L is a generalized Euler-Lagrange type additive mapping
and L(rkx) = rkL(x) for all x ∈ X and  ≤ k ≤ n. This completes the proof. �

Theorem . Let f : X → Y be a mapping satisfying f () =  for which there is a function
ϕ : Xn → [,∞) satisfying

∥∥Du,r,...,rn f (x, . . . ,xn)
∥∥ ≤ ϕ(x, . . . ,xn) (.)

for all x, . . . ,xn ∈ X and u ∈U(A). If there exists  < C <  such that

ϕ(x, . . . , xn) ≤ Cϕ(x, . . . ,xn)

for all x, . . . ,xn ∈ X, then there exists a unique A-linear generalized Euler-Lagrange type
additive mapping L : X → Y satisfying (.) for all x ∈ X. Moreover, L(rkx) = rkL(x) for all
x ∈ X and  ≤ k ≤ n.

Proof By Theorem ., there exists a unique generalized Euler-Lagrange type additive
mapping L : X → Y satisfying (.), and moreover L(rkx) = rkL(x) for all x ∈ X and
 ≤ k ≤ n. By the assumption, for each u ∈U(A), we get

∥∥Du,r,...,rnL(, . . . , , x︸︷︷︸
ith

, , . . . , )
∥∥
Y

= lim
k→∞


k

∥∥Du,r,...,rn f
(
, . . . , , kx︸︷︷︸

ith

, , . . . , 
)∥∥

Y
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≤ lim
k→∞


k

ϕ
(
, . . . , , kx︸︷︷︸

ith

, , . . . , 
)

≤ lim
k→∞

Ckϕ(, . . . , , x︸︷︷︸
ith

, , . . . , ) = 

for all x ∈ X. So, we have

riuL(x) = L(riux)

for all u ∈U(A) and x ∈ X. Since L(rix) = riL(x) for all x ∈ X and ri �= ,

L(ux) = uL(x)

for all u ∈U(A) and x ∈ X. By the same reasoning as in the proofs of [] and [],

L(ax + by) = L(ax) + L(by) = aL(x) + bL(y)

for all a,b ∈ A (a,b �= ) and x, y ∈ X. Since L(x) =  = L(x) for all x ∈ X, the unique
generalized Euler-Lagrange type additivemapping L : X → Y is anA-linearmapping. This
completes the proof. �

Theorem . Let f : X → Y be a mapping satisfying f () =  for which there is a function
ϕ : Xn → [,∞) such that

∥∥De,r,...,rn f (x, . . . ,xn)
∥∥
Y ≤ ϕ(x, . . . ,xn) (.)

for all x, . . . ,xn ∈ X. If there exists  < C <  such that

ϕ(x, . . . , n) ≤ C


ϕ(x, . . . , xn)

for all x, . . . ,xn ∈ X, then there exists a unique generalized Euler-Lagrange type additive
mapping L : X → Y such that

∥∥f (x) – L(x)
∥∥
Y ≤ C

 – C

{
ϕij

(
x
ri
,
x
rj

)
+ ϕij

(
x
ri
, –

x
rj

)

+ ϕij

(
x
ri
, 

)
+ ϕij

(
x
ri
, 

)
+ ϕij

(
,

x
rj

)
+ ϕij

(
,–

x
rj

)}
(.)

for all x ∈ X, where ϕij is defined in the statement of Theorem ..Moreover, L(rkx) = rkL(x)
for all x ∈ X and  ≤ k ≤ n.

Proof It follows from (.) that

∥∥∥∥f (x) – f
(
x


)∥∥∥∥
Y

≤ 

ψ

(
x


)
≤ C


ψ(x)

for all x ∈ X, whereψ is defined in the proof of Theorem.. The rest of the proof is similar
to the proof of Theorem .. �
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Theorem . Let f : X → Y be a mapping with f () =  for which there is a function
ϕ : Xn → [,∞) satisfying

∥∥Du,r,...,rn f (x, . . . ,xn)
∥∥ ≤ ϕ(x, . . . ,xn) (.)

for all x, . . . ,xn ∈ X and u ∈U(A). If there exists  < C <  such that

ϕ(x, . . . , n) ≤ C


ϕ(x, . . . , xn)

for all x, . . . ,xn ∈ X, then there exists a unique A-linear generalized Euler-Lagrange type
additive mapping L : X → Y satisfying (.) for all x ∈ X.Moreover, L(rkx) = rkL(x) for all
x ∈ X and all  ≤ k ≤ n.

Proof The proof is similar to the proof of Theorem .. �

Remark . In Theorems . and ., one can assume that
∑n

k= rk �=  instead of f () = .

3 Homomorphisms in unital C∗-algebras
In this section, we investigate C∗-algebra homomorphisms in unital C∗-algebras. We use
the following lemma in the proof of the next theorem.

Lemma . [] Let f : A → B be an additive mapping such that f (μx) = μf (x) for all
x ∈ A and μ ∈ S



no

:= {eiθ ;  ≤ θ ≤ πno}. Then the mapping f : A→ B is C-linear.

Note that a C-linear mapping H : A → B is called a homomorphism in C∗-algebras if H
satisfies H(xy) =H(x)H(y) and H(x∗) =H(x)∗ for all x, y ∈ A.

Theorem . Let f : A → B be a mapping with f () =  for which there is a function ϕ :
An → [,∞) satisfying

∥∥Dμ,r,...,rn f (x, . . . ,xn)
∥∥
B ≤ ϕ(x, . . . ,xn), (.)∥∥f (ku∗) – f

(
ku

)∗∥∥
B ≤ ϕ

(
ku, . . . , ku︸ ︷︷ ︸

n times

)
, (.)

∥∥f (kux) – f
(
ku

)
f (x)

∥∥
B ≤ ϕ

(
kux, . . . , kux︸ ︷︷ ︸

n times

)
(.)

for all x,x, . . . ,xn ∈ A, u ∈U(A), k ∈ N and μ ∈ S
. If there exists  < C <  such that

ϕ(x, . . . , xn) ≤ Cϕ(x, . . . ,xn)

for all x, . . . ,xn ∈ A, then the mapping f : A→ B is a C∗-algebra homomorphism.

Proof Since |J| ≥ , letting μ =  and xk =  for all  ≤ k ≤ n (k �= i, j) in (.), we get

f
(
–rixi + rjxj



)
+ f

(
rixi – rjxj



)
+ rif (xi) + rjf (xj) = f

(
rixi + rjxj



)
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for all xi,xj ∈ A. By the same reasoning as in the proof of Lemma ., the mapping f is
additive and f (rkx) = rkf (x) for all x ∈ A and k = i, j. So, by letting xi = x and xk =  for
all  ≤ k ≤ n, k �= i, in (.), we get f (μx) = μf (x) for all x ∈ A and μ ∈ S. Therefore, by
Lemma ., the mapping f is C-linear. Hence, it follows from (.) and (.) that

∥∥f (u∗) – f (u)∗
∥∥
B = lim

k→∞

k

∥∥f (ku∗) – f
(
ku

)∗∥∥
B

≤ lim
k→∞


k

ϕ
(
ku, . . . , ku︸ ︷︷ ︸

n times

) ≤ lim
k→∞

Ckϕ(u, . . . ,u︸ ︷︷ ︸
n times

)

= ,
∥∥f (ux) – f (u)f (x)

∥∥
B = lim

k→∞

k

∥∥f (kux) – f
(
ku

)
f (x)

∥∥
B

≤ lim
k→∞


k

ϕ
(
kux, . . . , kux︸ ︷︷ ︸

n times

) ≤ lim
k→∞

Ckϕ(ux, . . . ,ux︸ ︷︷ ︸
n times

)

= 

for all x ∈ A and u ∈ U(A). So, we have f (u∗) = f (u)∗ and f (ux) = f (u)f (x) for all x ∈ A
and u ∈ U(A). Since f is C-linear and each x ∈ A is a finite linear combination of unitary
elements (see []), i.e., x =

∑m
k= λkuk , where λk ∈ C and uk ∈ U(A) for all  ≤ k ≤ n, we

have

f
(
x∗) = f

( m∑
k=

λku∗
k

)
=

m∑
k=

λkf
(
u∗
k
)
=

m∑
k=

λkf (uk)∗

=

( m∑
k=

λkf (uk)

)∗
= f

( m∑
k=

λkuk

)∗
= f (x)∗,

f (xy) = f

( m∑
k=

λkuky

)
=

m∑
k=

λkf (uky)

=
m∑
k=

λkf (uk)f (y) = f

( m∑
k=

λkuk

)
f (y) = f (x)f (y)

for all x, y ∈ A. Therefore, the mapping f : A → B is a C∗-algebra homomorphism. This
completes the proof. �

The following theorem is an alternative result of Theorem ..

Theorem . Let f : A → B be a mapping with f () =  for which there is a function ϕ :
An → [,∞) satisfying∥∥Dμ,r,...,rn f (x, . . . ,xn)

∥∥
B ≤ ϕ(x, . . . ,xn),∥∥∥∥f

(
u∗

k

)
– f

(
u
k

)∗∥∥∥∥
B

≤ φ

(
u
k

, . . . ,
u
k︸ ︷︷ ︸

n times

)
, (.)

∥∥∥∥f
(
ux
k

)
– f

(
u
k

)
f (x)

∥∥∥∥
B

≤ φ

(
ux
k

, . . . ,
ux
k︸ ︷︷ ︸

n times

)
(.)
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for all x,x, . . . ,xn ∈ A, u ∈U(A), k ∈ N and μ ∈ S
. If there exists  < C <  such that

ϕ(x, . . . , n) ≤ C


ϕ(x, . . . , xn)

for all x, . . . ,xn ∈ A, then the mapping f : A→ B is a C∗-algebra homomorphism.

Remark . In Theorems . and ., one can assume that
∑n

k= rk �=  instead of f () = .

Theorem . Let f : A → B be a mapping with f () =  for which there is a function ϕ :
An → [,∞) satisfying (.), (.) and

∥∥Dμ,r,...,rn f (x, . . . ,xn)
∥∥
B ≤ ϕ(x, . . . ,xn) (.)

for all x, . . . ,xn ∈ A and μ ∈ S
. Assume that limk→∞ 

k f (
ke) is invertible. If there exists

 < C <  such that

ϕ(x, . . . , xn) ≤ Cϕ(x, . . . ,xn)

for all x, . . . ,xn ∈ A, then the mapping f : A→ B is a C∗-algebra homomorphism.

Proof Consider the C∗-algebras A and B as left Banach modules over the unital
C∗-algebra C. By Theorem ., there exists a unique C-linear generalized Euler-Lagrange
type additive mapping H : A→ B defined by

H(x) = lim
k→∞


k

f
(
kx

)
for all x ∈ A. By (.) and (.), we get

∥∥H(
u∗) –H(u)∗

∥∥
B = lim

k→∞

k

∥∥f (ku∗) – f
(
ku

)∗∥∥
B

≤ lim
k→∞


k

ϕ
(
ku, . . . , ku︸ ︷︷ ︸

n times

)

= ,
∥∥H(ux) –H(u)f (x)

∥∥
B = lim

k→∞

k

∥∥f (kux) – f
(
ku

)
f (x)

∥∥
B

≤ lim
k→∞


k

ϕ
(
kux, . . . , kux︸ ︷︷ ︸

n times

)

= 

for all u ∈ U(A) and x ∈ A. So, we have H(u∗) = H(u)∗ and H(ux) = H(u)f (x) for all u ∈
U(A) and x ∈ A. Therefore, by the additivity of H , we have

H(ux) = lim
k→∞


k

H
(
kux

)
=H(u) lim

k→∞

k

f
(
kx

)
=H(u)H(x) (.)
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for all u ∈U(A) and all x ∈ A. SinceH isC-linear and each x ∈ A is a finite linear combina-
tion of unitary elements, i.e., x =

∑m
k= λkuk , where λk ∈C and uk ∈U(A) for all  ≤ k ≤ n,

it follows from (.) that

H(xy) =H

( m∑
k=

λkuky

)
=

m∑
k=

λkH(uky)

=
m∑
k=

λkH(uk)H(y) =H

( m∑
k=

λkuk

)
H(y)

=H(x)H(y),

H
(
x∗) =H

( m∑
k=

λku∗
k

)
=

m∑
k=

λkH
(
u∗
k
)
=

m∑
k=

λkH(uk)∗

=

( m∑
k=

λkH(uk)

)∗
=H

( m∑
k=

λkuk

)∗

=H(x)∗

for all x, y ∈ A. Since H(e) = limk→∞ 
k f (

ke) is invertible and

H(e)H(y) =H(ey) =H(e)f (y)

for all y ∈ A, it follows that H(y) = f (y) for all y ∈ A. Therefore, the mapping f : A → B is a
C∗-algebra homomorphism. This completes the proof. �

The following theorem is an alternative result of Theorem ..

Theorem . Let f : A → B be a mapping with f () =  for which there is a function ϕ :
An → [,∞) satisfying (.), (.) and

∥∥Dμ,r,...,rn f (x, . . . ,xn)
∥∥
B ≤ ϕ(x, . . . ,xn)

for all x, . . . ,xn ∈ A and μ ∈ S
. Assume that limk→∞ kf ( e

k ) is invertible. If there exists
 < C <  such that

ϕ(x, . . . , n) ≤ C


ϕ(x, . . . , xn)

for all x, . . . ,xn ∈ A, then the mapping f : A→ B is a C∗-algebra homomorphism.

Remark . In Theorem ., one can assume that
∑n

k= rk �=  instead of f () = .

Theorem . Let f : A → B be a mapping with f () =  for which there is a function ϕ :
An → [,∞) satisfying (.), (.) and

∥∥Dμ,r,...,rn f (x, . . . ,xn)
∥∥
B ≤ ϕ(x, . . . ,xn) (.)
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for all x, . . . ,xn ∈ A and μ = i, . Assume that limk→∞ 
k f (

ke) is invertible and for each
fixed x ∈ A the mapping t �→ f (tx) is continuous in t ∈R. If there exists  < C <  such that

ϕ(x, . . . , xn) ≤ Cϕ(x, . . . ,xn)

for all x, . . . ,xn ∈ A, then the mapping f : A→ B is a C∗-algebra homomorphism.

Proof Putμ =  in (.). By the same reasoning as in the proof of Theorem ., there exists
a unique generalized Euler-Lagrange type additive mapping H : A→ B defined by

H(x) = lim
k→∞

f (kx)
k

for all x ∈ A. By the same reasoning as in the proof of [], the generalized Euler-Lagrange
type additive mapping H : A→ B is R-linear. By the same method as in the proof of The-
orem ., we have

∥∥Dμ,r,...,rnH(, . . . , , x︸︷︷︸
jth

, , . . . , )
∥∥
Y

= lim
k→∞


k

∥∥Dμ,r,...,rn f
(
, . . . , , kx︸︷︷︸

jth

, , . . . , 
)∥∥

Y

≤ lim
k→∞


k

ϕ
(
, . . . , , kx︸︷︷︸

jth

, , . . . , 
)
= 

for all x ∈ A and so

rjμH(x) =H(rjμx)

for all x ∈ A. Since H(rjx) = rjH(x) for all x ∈ X and rj �= ,

H(μx) = μH(x)

for all x ∈ A and μ = i, . For each λ ∈C, we have λ = s + it, where s, t ∈R. Thus, it follows
that

H(λx) =H(sx + itx) = sH(x) + tH(ix)

= sH(x) + itH(x) = (s + it)H(x)

= λH(x)

for all λ ∈C and x ∈ A and so

H(ζx + ηy) =H(ζx) +H(ηy) = ζH(x) + ηH(y)

for all ζ ,η ∈C and x, y ∈ A. Hence, the generalized Euler-Lagrange type additive mapping
H : A→ B is C-linear.
The rest of the proof is the same as in the proof of Theorem .. This completes the

proof. �
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The following theorem is an alternative result of Theorem ..

Theorem . Let f : A → B be a mapping with f () =  for which there is a function ϕ :
An → [,∞) satisfying (.), (.) and

∥∥Dμ,r,...,rn f (x, . . . ,xn)
∥∥
B ≤ ϕ(x, . . . ,xn),

for all x,x, . . . ,xn ∈ A and μ = i, . Assume that limk→∞ kf ( e
k ) is invertible and for each

fixed x ∈ A the mapping t �→ f (tx) is continuous in t ∈R. If there exists  < C <  such that

ϕ(x, . . . , n) ≤ C


ϕ(x, . . . , xn)

for all x, . . . ,xn ∈ A, then the mapping f : A→ B is a C∗-algebra homomorphism.

Proof We omit the proof because it is very similar to last theorem. �

Remark . In Theorem ., one can assume that
∑n

k= rk �=  instead of f () = .
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