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1 Introduction
Stochastic differential equations (SDEs) are well known to model problems from many
areas of science and engineering. For instance, in , Henderson et al. [] published the
Stochastic Differential Equations in Science and Engineering, in , Mao [] published
the stochastic differential equations and applications, in , Li and Fu [] considered
the stability analysis of stochastic functional differential equations with infinite delay and
its application to recurrent neural networks.
In recent years, there is an increasing interest in stochastic functional differential equa-

tions (SFDEs) (see [, –], and references therein for details).
On the one hand, Kolmanovskii and Myshkis [] introduced the following neutral

stochastic differential equations with finite delay:

d
[
x(t) –G(xt)

]
= f (t,xt)dt + g(t,xt)dB(t)

which could be used in chemical engineering and aeroelasticity. Since then, the theory of
neutral SDEs has been developed by researchers (see [, , ]).
After, Ren andXia [] derived an existence and uniqueness of the solution to the follow-

ing neutral SFDEs under some Carathéodory-type conditions with Lipschitz conditions
and non-Lipschitz conditions as a special case:

x(t) = ξ () +G(t,xt) –G(t, ξ ) +
∫ t

t
f (s,xs)ds +

∫ t

t
g(s,xs)dB(s) a.s.

This kind of neutral SFDE has a practical background in a collision problem in electro-
dynamics. The extra noise B can be regarded as some extra information, which cannot be
detected in the electrodynamics systems, but is available to the particular investors.
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Motivated by [], one of the objectives of this paper is to get one proof to the existence
and uniqueness theorem for given neutral SFDEs, which contains an improved condition
given in []. The other objective of this paper is to estimate on how fast the Picard itera-
tions xn(t) converge the unique solution x(t) of the neutral SFDEs.

2 Preliminary and notations
Let | · | denote Euclidean norm in Rn. If A is a vector or a matrix, its transpose is denoted
byAT ; ifA is a matrix, its trace norm is represented by |A| = √

trace(ATA). Let t be a posi-
tive constant and (�,F ,P) throughout this paper unless otherwise specified, be a complete
probability spacewith a filtration {Ft}t≥t satisfying the usual conditions (i.e. it is right con-
tinuous and Ft contains all P-null sets). Assume that B(t) is a m-dimensional Brownian
motion defined on complete probability space, that is B(t) = (B(t),B(t), . . . ,Bm(t))T . We
consider the following spaces:
• BC((–∞, ];Rd) denote the family of bounded continuous Rd-value functions ϕ

defined on (–∞, ] with norm ‖ϕ‖ = sup–∞<θ≤ |ϕ(θ )|.
• L([t,T];Rd) denote the family of all Rd-valued measurable Ft-adapted process

ψ(t) = ψ(t,w), t ∈ [t,T] such that
∫ T
t

|ψ(t)|dt < ∞.
• L([t,T];Rd×m) denote the family of all Rd×m-valued measurable Ft-adapted process

ψ(t) = ψ(t,w), t ∈ [t,T] such that
∫ T
t

|ψ(t)| dt < ∞.
• M((–∞,T];Rd) denote the family of all Rd-valued measurable Ft-adapted process

ψ(t) = ψ(t,w), t ∈ (–∞,T] such that E
∫ T
–∞ |ψ(t)| dt < ∞.

With all the above preparation, consider the following d-dimensional neutral SFDEs:

d
[
x(t) –G(t,xt)

]
= f (t,xt)dt + g(t,xt)dB(t), t ≤ t ≤ T , (.)

where xt = {x(t + θ ) : –∞ < θ ≤ } can be considered as a BC((–∞, ];Rd)-value stochastic
process,

f : [t,T]× BC
(
(–∞, ];Rd) → Rd,

g : [t,T]× BC
(
(–∞, ];Rd) → Rd×m

be Borel measurable, and

G : [t,T]× BC
(
(–∞, ];Rd) → Rd

be continuous. Next, we give the initial value of (.) as follows:

xt = ξ =
{
ξ (θ ) : –∞ < θ ≤ 

}
is an Ft-measurable,

BC
(
(–∞, ];Rd)-value random variable such that ξ ∈M((–∞, ];Rd). (.)

To bemore precise, we give the definition of the solution of the equation (.) with initial
data (.).

Definition . Rd-value stochastic process x(t) defined on –∞ < t ≤ T is called the solu-
tion of (.) with initial data (.), if x(t) has the following properties:

http://www.journalofinequalitiesandapplications.com/content/2013/1/181
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(i) x(t) is continuous and {x(t)}t≤t≤T is Ft-adapted;
(ii) {f (t,xt)} ∈L([t,T];Rd) and {g(t,xt)} ∈L([t,T];Rd×m);
(iii) xt = ξ , for each t ≤ t ≤ T ,

x(t) = ξ () +G(t,xt) –G(t, ξ ) +
∫ t

t
f (s,xs)ds +

∫ t

t
g(s,xs)dB(s) a.s. (.)

The x(t) is called as a unique solution, if any other solution x(t) is distinguishable with x(t),
that is

P
{
x(t) = x(t), for any –∞ < t ≤ T

}
= .

The following lemma is known as the moment inequality for stochastic integrals which
was established by Mao [] and will play an important role in next section.

Lemma . If p ≥ , g ∈M([,T];Rd×m) such that

E
∫ T



∣∣g(s)∣∣p ds < ∞,

then

E
(

sup
≤t≤T

∣∣∣∣
∫ t


g(s)dB(s)

∣∣∣∣
p)

≤
(

p

(p – )

) p

T

p–
 E

∫ T



∣∣g(s)∣∣p ds.

In order to attain the solution of (.) with initial value (.), we propose the following
assumptions:
(H) (a) There exists a function �(t,u); [t,T]× R+ → R+ such that

∣∣f (t,ϕ) – f (t,ψ)
∣∣ ∨ ∣∣g(t,ϕ) – g(t,ψ)

∣∣ ≤ �
(
t,‖ϕ –ψ‖)

for all ϕ,ψ ∈ BC((–∞, ];Rd) and t ∈ [t,T].
(b) �(t,u) is locally integrable in t for each fixed u ∈ R+ and is continuous,

nondecreasing, and concave in u for each fixed t ≥ t. Moreover, �(t, ) = 
and if a nonnegative continuous function Z(t), t ≤ t ≤ T satisfies

Z(t) ≤ D
∫ t

t
�

(
s,Z(s)

)
ds, t ≤ t ≤ T ,

where D >  is a positive constant, then Z(t) =  for all t ≤ t ≤ T .
(c) For any constant K > , the deterministic ordinary differential equation

du
dt

= K�(t,u), t ≤ t ≤ T

has a global solution for any initial value u.
(H) For any t ∈ [t,T], it follows that f (t, ), g(t, ) ∈ L such that

∣∣f (t, )∣∣ ∨ ∣∣g(t, )∣∣ ≤ K ,

where K is a positive constant.

http://www.journalofinequalitiesandapplications.com/content/2013/1/181
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(H) Assuming that there exists a positive number K such that K < α ( < α < ) and
for any ϕ,ψ ∈ BC((–∞, ];Rd) and t ∈ [t,T], it follows that

∣∣G(t,ϕ) –G(t,ψ)
∣∣ ≤ K

(‖ϕ –ψ‖).
3 Existence and uniqueness of the solution
Now we give the existence and uniqueness theorem to (.) with initial value (.) under
the Carathéodory-type conditions.

Theorem . Assume that (H)-(H) hold. Then there exists a unique solution to the neu-
tral SFDEs (.)with initial value (.).Moreover, the solution belongs toM((–∞,T];Rd).

In order to obtain the existence of solutions to neutral SFDEs, let xt = ξ and x(t) = ξ (),
for t ≤ t ≤ T . For each n = , , . . . , set xnt = ξ and define the following Picard sequence

xn(t) = ξ () +G
(
t,xn–t

)
–G

(
t,xn–t

)
+

∫ t

t
f
(
s,xn–s

)
ds +

∫ t

t
g
(
s,xn–s

)
dB(s).

We prepare a lemma in order to prove this theorem.

Lemma . Let the assumption (H) and (H) hold. If x(t) is a solution of equation (.)
with initial data (.), then

E
(
sup

t<t≤T

∣∣x(t)∣∣) ≤ ut ≤ uT < ∞,

where ut = β + β
∫ t
t

�(s,us)ds, β = K(T – t)β + K+α
(–α)(α–K)

E‖ξ‖, and β = α(T–t+)
(–α)(α–K)

.
In particular, x(t) belong toM((–∞,T];Rd).

Proof For each number n≥ , define the stopping time

τn = T ∧ inf
{
t ∈ [t,T] :

∥∥x(t)∥∥ ≥ n
}
.

Obviously, as n → ∞, τn ↑ T a.s. Let xn(t) = x(t ∧ τn), t ∈ (–∞,T]. Then, for t ≤ t ≤ T ,
xn(t) satisfy the following equation:

xn(t) =G
(
t,xnt

)
–G

(
t,xnt

)
+ Jn(t),

where

Jn(t) = ξ () +
∫ t

t
f
(
s,xns

)
I[t,τn](s)ds +

∫ t

t
g
(
s,xns

)
I[t,τn](s)dB(s).

Applying the elementary inequality (a + b) ≤ a
α
+ b

–α
when a,b > ,  < α < , we have

∣∣xn(t)∣∣ ≤ 
α

∣∣G(
t,xnt

)
–G

(
t,xnt

)∣∣ + 
 – α

∣∣Jn(t)∣∣

≤ K

α

∥∥xnt ∥∥ +
K

α( – α)
‖ξ‖ + 

 – α

∣∣Jn(t)∣∣,

http://www.journalofinequalitiesandapplications.com/content/2013/1/181
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where condition (H) has also been used. Taking the expectation on both sides, one sees
that

E
(
sup
t<s≤t

∣∣xn(s)∣∣)

≤ K

α E
(

sup
–∞<s≤t

∣∣xn(s)∣∣) +
K

α( – α)
E‖ξ‖ + 

 – α
E
(
sup

t≤s≤t

∣∣Jn(s)∣∣).

Noting that sup–∞<s≤t |xn(s)| ≤ ‖ξ‖ + supt≤s≤t |xn(s)|, we get

E
(
sup
t<s≤t

∣∣xn(s)∣∣)

≤ K

α E
(
sup
t<s≤t

∣∣xn(s)∣∣) +
K

α( – α)
E‖ξ‖ + 

 – α
E
(
sup

t≤s≤t

∣∣Jn(s)∣∣).

Consequently,

E
(
sup
t<s≤t

∣∣xn(s)∣∣)

≤ K

( – α)(α –K)
E‖ξ‖ + α

( – α)(α –K)
E
(
sup

t≤s≤t

∣∣Jn(s)∣∣). (.)

On the other hand, by Hölder’s inequality, Lemma ., and the condition (H), one can
show that

E
(
sup

t≤s≤t

∣∣Jn(s)∣∣)

≤ 
[
E‖ξ‖ + (T – t)E

∫ t

t

∣∣f (s,xns )∣∣ ds + E sup
t≤s≤t

∣∣∣∣
∫ s

t
g
(
r,xnr

)
dB(r)

∣∣∣∣
]

≤ β + (T – t + )
∫ t

t
�

[
s,E

(
‖ξ‖ + sup

t≤u≤s

∣∣xn(u)∣∣)]
ds,

where β = E‖ξ‖ + K(T – t)(T – t + ). Substituting this into (.) yields that

E
(
sup
t<s≤t

∣∣xn(s)∣∣) ≤ β + β

∫ t

t
�

[
s,E

(
sup

t<u≤s

∣∣xn(u)∣∣)]
ds,

where β = K(T – t)β + K+α
(–α)(α–K)

E‖ξ‖ and β = α(T–t+)
(–α)(α–K)

. Assumption (c) indicates
that there is a solution ut satisfies that

ut = β + β

∫ t

t
�(s,us)ds.

Since E‖ξ‖ < ∞, for all n = , , , . . . , we deduce that

E
(
sup
t<s≤t

∣∣xn(s)∣∣) ≤ ut ≤ uT < ∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/181
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Letting t = T , it then follows that

E
(
sup

t<s≤T

∣∣x(s∧ τn)
∣∣) ≤ uT .

Thus,

E
(

sup
t<s≤τn

∣∣x(s)∣∣) ≤ uT .

Consequently, the required result follows by letting n→ ∞. �

Proof of Theorem . To check the uniqueness, let x(t) and x(t) be any two solutions of
(.), by Lemma ., x(t),x(t) ∈M((–∞,T];Rd). Note that

x(t) – x(t) =G(t,xt) –G(t,xt) + J(t),

where J(t) =
∫ t
t
[f (s,xs) – f (s,xs)]ds +

∫ t
t
[g(s,xs) – g(s,xs)]dB(s). One then gets

∣∣x(t) – x(t)
∣∣ ≤ 

α

∣∣G(t,xt) –G(t,xt)
∣∣ + 

 – α

∣∣J(t)∣∣,

where  < α < . We derive that

∣∣x(t) – x(t)
∣∣ ≤ K

α
‖xt – xt‖ + 

 – α

∣∣J(s)∣∣.

Therefore,

E
(
sup

t≤s≤t

∣∣x(s) – x(s)
∣∣) ≤ K

α
E
(
sup

t≤s≤t

∣∣x(s) – x(s)
∣∣) +


( – α)

E
(
sup

t≤s≤t

∣∣J(s)∣∣).

Consequently,

E
(
sup

t≤s≤t

∣∣x(t) – x(t)
∣∣) ≤ α

( – α)(α –K)
E
(
sup

t≤s≤t

∣∣J(s)∣∣).

On the other hand, one can show that

E
(
sup

t≤s≤t

∣∣J(s)∣∣)

≤ 
[
(T – t)E

∫ t

t

∣∣f (s,xs) – f (s,xs)
∣∣ ds + E

∫ t

t

∣∣g(s,xs) – g(s,xs)
∣∣ ds

]

≤ (T – t + )
∫ t

t
�

(
s,E

(
sup

t≤u≤s

∣∣x(u) – x(u)
∣∣))

ds.

This yields that

E
(
sup
t<s≤t

∣∣x(t) – x(t)
∣∣) ≤ α(T – t + )

( – α)(α –K)

∫ t

t
�

(
s,E

(
sup

t≤u≤s

∣∣x(u) – x(u)
∣∣))

ds.

http://www.journalofinequalitiesandapplications.com/content/2013/1/181
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Hence,

Z(t) ≤ α(T – t + )
( – α)(α –K)

∫ t

t
�

(
s,Z(s)

)
ds.

By assumption (b), we get Z(t) = . This implies that x(t) = x(t) for t ≤ t ≤ T . Therefore,
for all –∞ < t ≤ T , x(t) = x(t) a.s. The uniqueness has been proved.
Next to check the existence. Obviously, from the Picard iterations, we have x(t) ∈

M([t,T] : Rd). Moreover, one can show the boundedness of the sequence {xn(t),n ≥ }
that xn(t) ∈M((–∞,T] : Rd), in fact,

xn(t) =G
(
t,xn–t

)
–G

(
t,xn–t

)
+ Jn–(t),

where

Jn–(t) = ξ () +
∫ t

t
f
(
s,xn–s

)
ds +

∫ t

t
g
(
s,xn–s

)
dB(s).

Applying the elementary inequality (a + b) ≤ a
α
+ b

–α
when a,b > ,  < α < , we have

∣∣xn(t)∣∣ ≤ 
α

∣∣G(
t,xn–t

)
–G(t, ξ )

∣∣ + 
 – α

∣∣Jn–(t)∣∣

≤ K

α

∥∥xn–t
∥∥ +

K

α( – α)
‖ξ‖ + 

 – α

∣∣Jn–(t)∣∣,

where condition (H) has also been used. Taking the expectation on both sides, one sees
that

E
(
sup

t≤s≤t

∣∣xn(s)∣∣)

≤ K

α( – α)
E‖ξ‖ + K

α E
∥∥xn–t

∥∥ +


 – α
E
(
sup

t≤s≤t

∣∣Jn–(s)∣∣). (.)

On the other hand, by Hölder’s inequality and the conditions, one can show that

E
(
sup

t≤s≤t

∣∣Jn–(s)∣∣)

≤ 
[
E‖ξ‖ + (T – t)E

∫ t

t

∣∣f (s,xn–s
)∣∣ ds + E

∫ t

t

∣∣g(s,xn–s
)∣∣ ds

]

≤ γ + γ

∫ t

t
�

[
s,E

(
sup

t≤u≤s
|xn–(u)|

)]
ds,

where γ = E‖ξ‖ + γK(T – t), γ = (T – t + ). Substituting this into (.) yields that

E
(
‖ξ‖ + sup

t≤s≤t

∣∣xn(s)∣∣)

≤ γ +
K

α E
∥∥xn–t

∥∥ +
γ

 – α

∫ t

t
�

[
s,E

(
sup

t≤u≤s

∣∣xn–(u)∣∣)]
ds,

http://www.journalofinequalitiesandapplications.com/content/2013/1/181
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where γ = K (T–t)
–α

γ + (–α)K+α(–α)
α(–α) E‖ξ‖. Note that for any k ≥ ,

max
≤n≤k

E
(
sup

∣∣xn–(u)∣∣)

=max
{
E‖ξ‖,E(

sup
∣∣x(u)∣∣), . . . ,E(

sup
∣∣xk–(u)∣∣)}

≤ max
{
E‖ξ‖,E(

sup
∣∣x(u)∣∣), . . . ,E(

sup
∣∣xk–(u)∣∣),E(

sup
∣∣xk(u)∣∣)}

≤ E‖ξ‖ + max
≤n≤k

E
(
sup

∣∣xn(u)∣∣).

Therefore, one can derive that

max
≤n≤k

E
(
‖ξ‖ + sup

t≤s≤t

∣∣xn(s)∣∣)

≤ γα


α –K
+

γα


( – α)(α –K)

∫ t

t
�

[
s, max

≤n≤k
E
(
‖ξ‖ + sup

t≤u≤s

∣∣xn(u)∣∣)]
ds.

Assumption (c) indicates that there is a solution ut satisfies that

ut =
γα



α –K
+

γα


( – α)(α –K)

∫ t

t
�(s,us)ds.

Since E‖ξ‖ < ∞, for all n = , , , . . . , we deduce that

E
(
sup

t≤s≤t

∣∣xn(s)∣∣) ≤ ut ≤ uT <∞, (.)

which shows the boundedness of the sequence {xn(t),n≥ }.
Next, we that the sequence {xn(t)} is Cauchy sequence. For all n ≥  and t ≤ t ≤ T , we

have

xn+(t) – xm+(t) = G
(
t,xnt

)
–G

(
t,xmt

)

+
∫ t

t

[
f
(
s,xns

)
– f

(
s,xms

)]
ds +

∫ t

t

[
g
(
s,xns

)
– g

(
s,xms

)]
dB(s).

Next, using an elementary inequality (u + v) ≤ 
α
u + 

–α
v and the condition (H), we

derive that

∣∣xn+(t) – xm+(t)
∣∣ ≤ K

α

∥∥xnt – xmt
∥∥ +


 – α

∣∣Jn,m(t)∣∣,

where Jn,m(t) =
∫ t
t
[f (s,xns ) – f (s,xms )]ds +

∫ t
t
[g(s,xns ) – g(s,xms )]dB(s). Consequently,

E
(
sup
t<s≤t

∣∣xn+(s) – xm+(s)
∣∣)

≤ K

α
E
(
sup
t<s≤t

∣∣xn(s) – xm(s)
∣∣) +


( – α)

E
(
sup

t≤s≤t

∣∣Jn,m(s)∣∣).

http://www.journalofinequalitiesandapplications.com/content/2013/1/181
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On the other hand, by Hölder’s inequality, Lemma ., and the condition (a), one can
show that

E
(
sup

t≤s≤t

∣∣Jn,m(s)∣∣)

≤ 
[
(T – t)E

∫ t

t

∣∣f (s,xns ) – f
(
s,xms

)∣∣ ds + E
∫ t

t

∣∣g(s,xns ) – g
(
s,xms

)∣∣ ds
]

≤ (T – t + )
∫ t

t
�

(
s,E

(
sup

t≤u≤s

∣∣xn(u) – xm(u)
∣∣))

ds,

where used an elementary inequality (u + v) ≤ (u + v). This yields that

max
≤n≤k

E
(
sup
t<s≤t

∣∣xn+(s) – xm+(s)
∣∣)

≤ α(T – t + )
( – α)(α –K)

∫ t

t
�

(
s, max

≤n≤k
E
(

sup
t≤u≤s

∣∣xn+(u) – xm+(u)
∣∣))

ds.

Let

Z(t) = lim sup
n,m→∞

max
≤n≤k

E
(
sup

t≤s≤t

∣∣xn+(s) – xm+(s)
∣∣).

We get

Z(t) ≤ α(T – t + )
( – α)(α –K)

∫ t

t
�

(
s,Z(s)

)
ds.

By assumption (b), we get Z(t) = . This shows the sequence {xn(t),n ≥ } is a Cauchy
sequence in L. Hence, as n→ ∞, xn(t)→ x(t), that is E|xn(t)–x(t)| → . Letting n→ ∞
in (.) then yields that

E
(
sup

t≤s≤t

∣∣x(s)∣∣) ≤ ut ≤ uT <∞. (.)

Therefore, we obtain that x(t) ∈M((–∞,T];Rd). Now to show that x(t) satisfy (.).

E
∣∣∣∣
∫ t

t

[
f
(
s,xns

)
– f (s,xs)

]
ds +

∫ t

t

[
g
(
s,xns

)
– g(s,xs)

]
dB(s)

∣∣∣∣


≤ 
[
(T – t)E

∫ t

t

∣∣f (s,xns ) – f (s,xs)
∣∣ ds + E

∫ t

t

∣∣g(s,xns ) – g(s,xs)
∣∣ ds

]

≤ (T – t + )
∫ t

t
�

(
s,E

(
sup

t≤u≤s

∣∣xn(u) – x(u)
∣∣))

ds.

Noting that sequence xn(t) is uniformly converge on (–∞,T], it means that

E
(

sup
t≤u≤s

∣∣xn(u) – x(u)
∣∣) → 

as n→ ∞, further

�
(
s,E

(
sup

t≤u≤s

∣∣xn(u) – x(u)
∣∣))

→ 
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as n→ ∞. Hence, taking limits on both sides in the Picard sequence, we obtain that

x(t) = ξ () +G(t,xt) –G(t,xt ) +
∫ t

t
f (s,xs)ds +

∫ t

t
g(s,xs)dB(s).

The above expression demonstrates that x(t) is a solution of equation (.) satisfying the
initial condition (.). So far, the existence of theorem is complete. �

In the proof of Theorem ., we have shown that the Picard iterations xn(t) converge
to the unique solution x(t) of equation (.). The following theorem gives an estimate on
the difference between xn(t) and x(t) under some special condition, and it clearly shows
that one can use the Picard iteration procedure to obtain the approximate solutions to
equations (.).

Theorem . Let x(t) be the unique solution of equation (.) with initial data (.), xn(t)
be the Picard iterations defined by previous section, and the function � satisfy �(t,u) = au

t ,
a > . Then, for all n ≥ ,

E
(

sup
t≤t≤T

∣∣xn(t) – x(t)
∣∣) ≤ M exp

(
α(T – t + )

t( – α)(α –K)
(T – t)

)
.

Proof From the Picard sequence and the solution of equation (.), we have

xn(t) – x(t) = G
(
t,xn–t

)
–G(t,xt)

+
∫ t

t

[
f
(
s,xn–s

)
– f (s,xs)

]
ds +

∫ t

t

[
g
(
s,xn–s

)
– g(s,xs)

]
dB(s).

We can derive that

E
(
sup

t≤s≤t

∣∣xn(s) – x(s)
∣∣) (.)

≤ K

α
E
(
sup

t≤s≤t

∥∥xn–s – xs
∥∥

)
+


 – α

E
(
sup

t≤s≤t

∣∣J∗(s)∣∣), (.)

where

J∗(t) =
∫ t

t

[
f
(
s,xn–s

)
– f (s,xs)

]
ds +

∫ t

t

[
g
(
s,xn–s

)
– g(s,xs)

]
dB(s).

On the other hand, by Hölder’s inequality, and the assumption, one can show that

E
(
sup

t≤s≤t

∣∣J∗(s)∣∣)

≤ 
[
(T – t)E

∫ t

t

∣∣f (s,xn–s
)
– f (s,xs)

∣∣ ds + E
∫ t

t

∣∣g(s,xn–s
)
– g(s,xs)

∣∣ ds
]

≤ (T – t + )
∫ t

t
�

(
s,E

(
sup

t≤u≤s

∣∣xn–(u) – x(u)
∣∣))

ds,

≤ (T – t + )
∫ t

t


s
E
(

sup
t≤u≤s

∣∣xn–(u) – x(u)
∣∣)ds.
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Without loss of generality, we may assume t > . This yields that

E
(
sup

t≤s≤t

∣∣J∗(s)∣∣) ≤ 
t
(T – t + )

∫ t

t
E
(

sup
t≤u≤s

∣∣xn–(u) – x(u)
∣∣)ds.

Substituting this into (.) yields that

E
(
sup
t<s≤t

∣∣xn(s) – x(s)
∣∣) ≤ M +

α(T – t + )
t( – α)(α –K)

∫ t

t
E
(

sup
t≤u≤s

∣∣xn(u) – x(u)
∣∣)ds,

where

M =
αK

( – α)(α –K)
E
(
sup
t<s≤t

∣∣xn–(s) – xn(s)
∣∣)

+
α(T – t + )

t( – α)(α –K)

∫ t

t
E
(
sup

t≤r≤s

∣∣xn(r) – xn–(r)
∣∣)ds.

Now follows by applying the Gronwall inequality,

E
(

sup
t≤t≤T

∣∣xn(t) – x(t)
∣∣) ≤ M exp

(
α(T – t + )

t( – α)(α –K)
(T – t)

)
.

The proof is complete. �
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