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1 Introduction
Fixed-point theory as an important branch of nonlinear analysis has been applied in the
study of nonlinear phenomena. The theory itself is a beautiful mixture of analysis, topol-
ogy, and geometry. Recently, iterative algorithms for finding common fixed points of non-
linear mappings have been considered by many authors. The well-known convex feasi-
bility problem capture application in various disciplines such as image restorations, and
radiation therapy treatment planning is to find a point in the intersection of common
fixed-point sets of nonlinear mappings (see, [–]).
From the method of generating iterative sequence, we can divide iterative algorithms

into explicit algorithms. Recently, both explicit Mann iterative algorithms and implicit
Mann-iterative algorithms have been extensively studied for approximating commonfixed
points of nonlinear mappings (see [–]).
In this paper, we consider the problemof approximating a commonfixedpoint of asymp-

totically nonexpansive mappings based on a general implicit iterative algorithm, which
includes an explicit process as a special case. The organization of this paper is as follows.
In Section , we provide some necessary preliminaries. In Section , weak convergence
theorems are established in a uniformly convex Banach space.

2 Preliminaries
Let E be a real Banach space. E is said to be uniformly convex if for any two sequences {xn}
and {yn} in E such that ‖xn‖ = ‖yn‖ =  and limn→∞ ‖xn+yn‖ = , then limn→∞ ‖xn–yn‖ = 
holds. It is known that a uniformly convex Banach space is reflexive.
In this paper, we use the symbols ⇀ and → denote weak convergence and strong con-

vergence, respectively. E is said to have Opial’s condition (see []) if, for each sequence
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{xn} in E, xn ⇀ x implies that

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖, ∀y ∈ E (y �= x).

Let C be a nonempty subset of E, and T : C → C a mapping. In this paper, the symbol
F(T) stands for the fixed point set of T . T is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [,∞) with
kn →  as n→ ∞ such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀x, y ∈ C,∀n≥ .

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[] as a generalization of the class of nonexpansive mappings. They proved that if C is a
nonempty, closed, convex, and bounded subset of a real uniformly convex Banach space,
then every asymptotically nonexpansive self mapping has a fixed point (see []).
In order to prove our main results, we still need the following lemmas.

Lemma . [] Let C be a nonempty, closed, and convex subset of a uniformly convex
Banach space E. Let T : C → C be an asymptotically nonexpansive mapping. Then I – T
is demiclosed at zero, that is, xn ⇀ x and xn – Txn →  imply that x = Tx.

Lemma . [] Let {an}, {bn}, and {cn} be three nonnegative sequences satisfying the fol-
lowing condition:

an+ ≤ ( + bn)an + cn, ∀n≥ n,

where n is some nonnegative integer,
∑∞

n= bn < ∞ and
∑∞

n= cn < ∞. Then the limn→∞ an
exists.

Lemma . [] Let E be a uniformly convex Banach space, r >  a positive number and
Br() a closed ball of E with the center at zero. Then there exists a continuous, strictly
increasing, and convex function g : [,∞)→ [,∞) with g() =  such that

∥∥∥∥∥
m∑
s=

(αsxs)

∥∥∥∥∥


≤
m∑
s=

(
αs‖xs‖

)
– αiαjg

(‖xi – xj‖
)
, ∀i, j ∈ {, , . . . , r},

where x,x, . . . ,xm ∈ Br(), and α,α, . . . ,αm ∈ (, ) with
∑m

i= αi = .

3 Main Results
Before starting the main results in this paper, we give the implicit iterative process first.
Let C be a nonempty, closed, and convex subset of a Banach space E. Let T : C → C be
an asymptotically nonexpansive mapping with the sequence {kn}. For every u ∈ C and
tn ∈ (, ), Define a mapping Tn : C → C below

Tn = tnu + ( – tn)Tnx, ∀x ∈ C,∀n≥ .
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If ( – tn)kn < , for every n ≥ , then Tn is a contraction. In the light of the Banach con-
traction principle, we see that there exists a unique fixed point of Tn, for every n≥ .
Let x be chosen arbitrarily and r ≥  a positive integer. Let {αn}, {βn,}, {βn,}, . . . , {βn,r},

{γn,}, {γn,}, . . . , and {γn,r}, {an}, {bn,}, {bn,}, . . . , {bn,r}, {cn,}, {cn,}, . . . , and {cn,r} be real
number sequences in (, ) such that

αn +
r∑

m=

βn,m +
r∑

m=

γn,m = an +
r∑

m=

bn,m +
r∑

m=

cn,m = .

Let Sm,Tm : C → C be asymptotically nonexpansivemappings, for everym ∈ {, , . . . , r}.
Find x, y by solving the following equations:

x = αx +
r∑

m=

β,mSmx +
r∑

m=

γ,mTmy,

y = ax +
r∑

m=

b,mSmx +
r∑

m=

c,mTmx.

Find x, y by solving the following equations:

x = αx +
r∑

m=

β,mSmx +
r∑

m=

γ,mT
my,

y = ax +
r∑

m=

b,mSmx +
r∑

m=

c,mT
mx,

...

Find xn, yn by solving the following equations:

xn = αnxn– +
r∑

m=

βn,mSnmxn– +
r∑

m=

γn,mTn
myn,

yn = anxn +
r∑

m=

bn,mSnmxn +
r∑

m=

cn,mTn
mxn.

In view of the above, we have the following implicit iterative algorithm:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

xn = αnxn– +
∑r

m= βn,mSnmxn– +
∑r

m= γn,mTn
myn,

yn = anxn +
∑r

m= bn,mSnmxn +
∑r

m= cn,mTn
mxn, ∀n≥ .

(ϒ)

Now we show that (ϒ ) can be employed to approximate fixed points of asymptotically
nonexpansive mapplings, which are assumed to be Lipschitz continuous. Let Sm : C → C
be an asymptotically nonexpansive mapping with the sequence {sn,m}, and Tm : C → C an
asymptotically nonexpansive mapping with the sequence {tn,m}, for everym ∈ {, , . . . , r},
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where r ≥  is some positive integer. Define a mapping Cn : C → C by

Cn(x) = αnxn– +
r∑

m=

βn,mSnmxn–

+
m∑
n

γn,mTn
m

(
anx +

r∑
m=

bn,mSnmx +
n∑
m

cn,mTn
mx

)
, ∀n≥ .

It follows that

∥∥Cn(x) –Cn(y)
∥∥

≤
r∑

m=

γn,mtn

∥∥∥∥∥an(x – y) +
r∑

m=

bn,m
(
Snmx – Snmy

)
+

r∑
m=

cn,m
(
Tn
mx – Tn

my
)∥∥∥∥∥

≤
r∑

m=

γn,mtn

(
an +

r∑
m=

bn,msn +
r∑

m=

cn,mtn

)
‖x – y‖, ∀x, y ∈ C,

where tn =max{tn,m :  ≤ m ≤ r} and sn =max{sn,m :  ≤ m≤ r}.
If

∑r
m= γn,mtn(an +

∑r
m= bn,msn +

∑r
m= cn,mtn) <  for all  ≤ m ≤ r, n ≥ , then Cn is a

contraction. Hence, by the Banach contraction principle, there exists a unique fixed point
xn ∈ C such that

xn = Cn(x) = αnxn– +
r∑

m=

βn,mSnmxn–

+
m∑
n

γn,mTn
m

(
anx +

r∑
m=

bn,mSnmx +
n∑
m

cn,mTn
mx

)
, ∀n≥ .

That is, the implicit iterative algorithm (ϒ ) is well defined.
Now, we are in a position to give our main results.

Theorem. Let C be a nonempty, closed,and convex subset of a uniformly convexBanach
space E. Let Sm : C → C be an asymptotically nonexpansive mapping with the sequence
{sn,m}, and Tm : C → C an asymptotically nonexpansive mapping with the sequence {tn,m},
for every m ∈ {, , . . . , r}, where r ≥  is some positive integer. Assume that

F =
r⋂

m=

F(Sm)∩
r⋂

m=

F(Tm) �= ∅.

Let tn =max{tn,m :  ≤ m ≤ r} and sn =max{sn,m :  ≤ m ≤ r}. Assume that
∑∞

n=(kn – ) <
∞, where kn = max{sn, tn :  ≤ m ≤ r}. Let {xn}∞n= be a sequence generated by (ϒ ),
where {αn}, {βn,}, {βn,}, . . . , {βn,r}, {γn,}, {γn,}, . . . , {γn,r}, {an}, {bn,}, {bn,}, . . . , {bn,r}, {cn,},
{cn,}, . . . , {cn,r} be real number sequences in (, ) such that αn +

∑r
m= βn,m +

∑r
m= γn,m =

an +
∑r

m= bn,m +
∑r

m= cn,m = . Assume that the following restrictions imposed on the
control sequence {αn}, {βn,}, {βn,}, . . . , {βn,r}, {γn,}, {γn,}, . . . , {γn,r}, {an}, {bn,}, {bn,}, . . . ,
{bn,r}, {cn,}, {cn,}, . . . , {cn,r} are satisfied
(a) lim infn→∞ αnβn,m > , lim infn→∞ αnγn,m >  and lim infn→∞ anbn,m > ,

∀m ∈ {, , . . . , r};

http://www.journalofinequalitiesandapplications.com/content/2013/1/179
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(b)
∑r

m= γn,mtn(an +
∑r

m= bn,msn +
∑r

m= cn,mtn) < .
Then

lim
n→∞‖xn – Smxn‖ = lim

n→∞‖xn – Tmxn‖ = , ∀m ∈ {, , . . . , r}.

Proof Step . Taking p ∈ F , we see that

‖xn – p‖ ≤ αn‖xn– – p‖ +
r∑

m=

βn,m
∥∥Snmxn– – p

∥∥ +
r∑

m=

γn,m
∥∥Tn

myn – p
∥∥

≤
(

αn +
r∑

m=

βn,mkn

)
‖xn– – p‖ +

r∑
m=

γn,mkn‖yn – p‖ (.)

and

‖yn – p‖ ≤ an‖xn – p‖ +
r∑

m=

bn,m
∥∥Snmxn – p

∥∥ +
r∑

m=

cn,m
∥∥Tn

mxn – p
∥∥

≤ ankn‖xn – p‖ +
r∑

m=

bn,mkn‖xn – p‖ +
r∑

m=

cn,mkn‖xn – p‖

≤ kn‖xn – p‖. (.)

Substituting (.) into (.), we have

‖xn – p‖ ≤
(

αn +
r∑

m=

βn,mkn

)
‖xn– – p‖ +

r∑
m=

γn,mkn‖xn – p‖. (.)

In view of lim infn→∞ αnβn,m > , and αn +
∑r

m= βn,m +
∑r

m= γn,m = , we see that there
exists some positive integer n, and a real number h, where h ∈ (, ), such that

r∑
m=

γn,m ≤ h, n≥ n.

Since
∑∞

n=(kn – ) < ∞, we find that there exists some positive integer n such that kn ≤
 + –h

h , ∀n≥ n. It follows that

r∑
m=

γn,mkn ≤ u < , ∀n≥ n,

where u = h( + –h
h ), and n ≥ max{n,n}. It follows (.) that

‖xn – p‖ ≤
(

αn +
∑r

m= βn,mkn
 –

∑r
m= γn,mkn

)
‖xn– – p‖

≤
(
 +

αn +
∑r

m= βn,mkn +
∑r

m= γn,mkn – 
 –

∑r
m= γn,mkn

)
‖xn– – p‖

≤
(
 +

kn – 
 – u

)
‖xn– – p‖. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/179
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It follows from Lemma . that limn→∞ ‖xn–p‖ exists. This implies that the sequence {xn}
is bounded.
On the other hand, we find from Lemma . that

‖xn – p‖

≤ αn‖xn– – p‖ +
r∑

m=

βn,m
∥∥Snmxn– – p

∥∥

+
r∑

m=

γn,m
∥∥Tn

myn – p
∥∥ – αnβn,mP

(∥∥xn– – Snmxn–
∥∥)

≤
(

αn +
r∑

m=

βn,mkn

)
‖xn– – p‖ +

r∑
m=

γn,mkn‖xn – p‖

– αnβn,mP
(∥∥xn– – Snmxn–

∥∥)
, ∀m ∈ {, , . . . , r}.

It implies that

αnβn,mP
(∥∥xn– – Snmxn–

∥∥)
≤

(
αnkn +

r∑
m=

βn,mkn

)
‖xn– – p‖ +

r∑
m=

γn,mkn‖xn – p‖

– kn‖xn – p‖ + (
kn – 

)‖xn – p‖

≤
(

αnkn +
r∑

m=

βn,mkn

)(‖xn– – p‖ – ‖xn – p‖)
+

(
kn – 

)‖xn – p‖, ∀m ∈ {, , . . . , r}.

Since limn→∞ ‖xn – p‖ exists, we find from restriction (a) that

lim
n→∞P

(∥∥xn– – Snmxn–
∥∥)

= ,

for every m ∈ {, , . . . , r}. It follows that

lim
n→∞

∥∥xn– – Snmxn–
∥∥ = , ∀m ∈ {, , . . . , r}. (.)

In view of Lemma ., we have

‖xn – p‖ ≤ αn‖xn– – p‖ +
r∑

m=

βn,m
∥∥Snmxn– – p

∥∥

+
r∑

m=

γn,m
∥∥Tn

myn – p
∥∥ – αnγn,mP

(∥∥xn– – Tn
myn

∥∥)

≤
(

αn +
r∑

m=

βn,mkn

)
‖xn– – p‖ +

r∑
m=

γn,mkn‖xn – p‖

– αnγn,mP
(∥∥xn– – Tn

myn
∥∥)
, ∀m ∈ {, , . . . , r}.
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It implies that

αnγn,mP
(∥∥xn– – Tn

myn
∥∥)

≤
(

αnkn +
r∑

m=

βn,mkn

)
‖xn– – p‖ +

r∑
m=

γn,mkn‖xn – p‖

– kn‖xn – p‖ + (
kn – 

)‖xn – p‖

≤
(

αnkn +
r∑

m=

βn,mkn

)(‖xn– – p‖ – ‖xn – p‖)
+

(
kn – 

)‖xn – p‖, ∀m ∈ {, , . . . , r}.

Since limn→∞ ‖xn – p‖ exists, from the condition (a), we have that

lim
n→∞P

(∥∥xn– – Tn
myn

∥∥)
= ,

for every m ∈ {, , . . . , r}. It follows that

lim
n→∞

∥∥xn– – Tn
myn

∥∥ = , ∀m ∈ {, , . . . , r}. (.)

Notice that

‖xn – xn–‖ ≤
r∑

m=

βn,m
∥∥Snmxn– – xn–

∥∥ +
r∑

m=

γn,m
∥∥Tn

myn – xn–
∥∥

In the light of (.), and (.), we find that

lim
n→∞‖xn– – xn‖ = . (.)

Step . Notice that

∥∥xn – Tn
myn

∥∥ ≤ ‖xn – xn–‖ +
∥∥xn– – Tn

myn
∥∥, ∀m ∈ {, , . . . , r}.

It implies from (.), and (.) that

lim
n→∞

∥∥xn – Tn
myn

∥∥ = , ∀m ∈ {, , . . . , r}. (.)

On the other hand, we have

∥∥xn – Snmxn
∥∥ ≤ ‖xn – xn–‖ +

∥∥xn– – Snmxn–
∥∥

+
∥∥Snmxn– – Snmxn

∥∥, ∀m ∈ {, , . . . , r}.

Since Sm is Lipschitz for every m ∈ {, , . . . , r}, we see from (.) and (.) that

lim
n→∞

∥∥xn – Snmxn
∥∥ = , ∀m ∈ {, , . . . , r}. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/179
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Step . In view of lim infn→∞ anbn,m > , and

an +
r∑

m=

bn,m +
r∑

m=

cn,m = ,

we see that there exists some positive integer n, and a real number h′, where h′ ∈ (, ),
such that

r∑
m=

cn,m ≤ h′, n≥ n.

Since
∑∞

n=(kn–) <∞, we find that there exists a positive integer n such that kn ≤ + –h′
h′ ,

∀n≥ n. It follows that

r∑
m=

cn,mkn ≤ u′ < , ∀n≥ n,

where u′ = h′( + –h′
h′ ), and n ≥ max{n,n}. It follows that

‖xn – yn‖ ≤
r∑

m=

bn,m
∥∥Snmxn – xn

∥∥ +
r∑

m=

cn,m
∥∥Tn

mxn – xn
∥∥

≤
r∑

m=

bn,m
∥∥Snmxn – xn

∥∥ +
r∑

m=

cn,m
∥∥Tn

mxn – Tn
myn

∥∥ +
r∑

m=

cn,m
∥∥Tn

myn – xn
∥∥

≤
r∑

m=

bn,m
∥∥Snmxn – xn

∥∥ +
r∑

m=

cn,mkn‖xn – yn‖ +
r∑

m=

cn,m
∥∥Tn

myn – xn
∥∥.

This implies that

(
 –

r∑
m=

cn,mkn

)
‖xn – yn‖

≤
r∑

m=

bn,m
∥∥Snmxn – xn

∥∥ +
r∑

m=

cn,m
∥∥Tn

myn – xn
∥∥.

It follows from (.) and (.) that

lim
n→∞‖xn – yn‖ = . (.)

Step . Notice that

‖yn – yn–‖ ≤ an‖xn – xn–‖ +
r∑

m=

bn,m
∥∥Snmxn – xn–

∥∥

+
r∑

m=

cn,m
∥∥Tn

mxn – xn–
∥∥ + ‖xn– – yn–‖

≤ an‖xn – xn–‖ +
r∑

m=

bn,m
∥∥Snmxn – xn

∥∥

http://www.journalofinequalitiesandapplications.com/content/2013/1/179
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+
r∑

m=

bn,m‖xn – xn–‖ +
r∑

m=

cn,m
∥∥Tn

mxn – Tn
myn

∥∥

+
r∑

m=

cn,m
∥∥Tn

myn – xn–
∥∥ + ‖xn– – yn–‖.

Since Tm is Lipschitz for every m ∈ {, , . . . , r}, we see from (.), (.), (.), and (.)
that

lim
n→∞‖yn – yn–‖ = . (.)

Step . Notice that

‖xn – Smxn‖ ≤ ‖xn – xn+‖ +
∥∥xn+ – Sn+m xn+

∥∥
+

∥∥Sn+m xn+ – Sn+m xn
∥∥ +

∥∥Sn+m xn – Smxn
∥∥

≤ ( +M)‖xn – xn+‖ +
∥∥xn+ – Sn+m xn+

∥∥
+M

∥∥Snmxn – xn
∥∥,

whereM = supn≥{kn}. It follows from (.) and (.) that

lim
n→∞‖xn – Smxn‖ = , ∀m ∈ {, , . . . , r}. (.)

On the other hand, we have

‖xn – Tmxn‖ ≤ ‖xn – xn+‖ +
∥∥xn+ – Tn+

m yn+
∥∥

+
∥∥Tn+

m yn+ – Tn+
m yn

∥∥ +
∥∥Tn+

m yn – Tmxn
∥∥

≤ ‖xn – xn+‖ +
∥∥xn+ – Tn+

m yn+
∥∥ +M‖yn+ – yn‖

+M
∥∥Tn

myn – xn
∥∥.

It follows from (.), (.), and (.) that

lim
n→∞‖xn – Tmxn‖ = , ∀m ∈ {, , . . . , r}. (.)

This completes the proof. �

Next, we give the following weak convergence theorems with the help of Opial’s condi-
tion.

Theorem . Let C be a nonempty, closed, and convex subset of a uniformly convex Ba-
nach space E with Opial’s condition. Let Sm : C → C be an asymptotically nonexpansive
mapping with the sequence {sn,m}, and Tm : C → C an asymptotically nonexpansive map-
ping with the sequence {tn,m}, for every m ∈ {, , . . . , r}, where r ≥  is some positive integer.
Assume that

F =
r⋂

m=

F(Sm)∩
r⋂

m=

F(Tm) �= ∅.

http://www.journalofinequalitiesandapplications.com/content/2013/1/179


Kim and Lim Journal of Inequalities and Applications 2013, 2013:179 Page 10 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/179

Let tn =max{tn,m :  ≤ m ≤ r}, and sn =max{sn,m :  ≤ m ≤ r}. Assume that
∑∞

n=(kn – ) <
∞, where kn = max{sn, tn :  ≤ m ≤ r}. Let {xn}∞n= be a sequence generated by (ϒ ),
where {αn}, {βn,}, {βn,}, . . . , {βn,r}, {γn,}, {γn,}, . . . , and {γn,r}, {an}, {bn,}, {bn,}, . . . , {bn,r},
{cn,}, {cn,}, . . . , and {cn,r} be real number sequences in (, ) such that

αn +
r∑

m=

βn,m +
r∑

m=

γn,m = an +
r∑

m=

bn,m +
r∑

m=

cn,m = .

Assume that restrictions (a) and (b) as in Theorem . are satisfied. Then {xn} converges
weakly to some point in F .

Proof Since {xn} is bounded, there exists a subsequence {xni} ⊂ {xn} such that {xni} con-
verges weakly to a point x̄ ∈ C. It follows from Lemma . that x̄ ∈ F . Assume that there
exists another subsequence {xnj} ⊂ {xn} such that {xnj} converges weakly to a point x̂ ∈ C.
It follows from Lemma . that x̂ ∈ F . If x̄ �= x̂, then

lim
n→∞‖xn – x̄‖ = lim inf

i→∞ ‖xni – x̄‖ < lim inf
i→∞ ‖xni – x̂‖

= lim inf
j→∞ ‖xnj – x̂‖ < lim inf

j→∞ ‖xnj – x̄‖
= lim

n→∞‖xn – x̄‖.

This is a contradiction. Hence, x̄ = x̂. This completes the proof. �

If r = , then Theorem . is reduced to the following.

Corollary . Let C be a nonempty, closed, and convex subset of a uniformly convex Ba-
nach space E with Opial’s condition. Let S : C → C be an asymptotically nonexpansive
mapping with the sequence {sn}, and T : C → C an asymptotically nonexpansive mapping
with the sequence {tn}. Assume that

F = F(S)∩ F(T) �= ∅.

Assume that
∑∞

n=(kn –) <∞,where kn =max{sn, tn :  ≤ m≤ r}. Let {xn}∞n= be a sequence
generated by the following:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

xn = αnxn– + βnSnxn– + γnTnyn,

yn = anxn + bnSnxn + cnTnxn, ∀n≥ .

where {αn}, {βn}, {γn}, {an}, {bn}, and {cn} are real number sequences in (, ) such that
αn +βn +γn = an +bn + cn = .Assume that the following restrictions imposed on the control
sequences {αn}, {βn}, {γn}, {an}, {bn}, and {cn} are satisfied:
(a) lim infn→∞ αnβn > , lim infn→∞ αnγn >  and lim infn→∞ anbn > ;
(b) γntn(an + bnsn + cntn) < .

Then {xn} converges weakly to some point in F .

If bn,m = cn,m = , than Theorem . reduced the following.

http://www.journalofinequalitiesandapplications.com/content/2013/1/179
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Corollary . Let C be a nonempty, closed, and convex subset of a uniformly convex Ba-
nach space E with Opial’s condition. Let Sm : C → C be an asymptotically nonexpansive
mapping with the sequence {sn,m}, and Tm : C → C an asymptotically nonexpansive map-
ping with the sequence {tn,m}, for every m ∈ {, , . . . , r}. where r ≥  is some positive integer.
Assume that

F =
r⋂

m=

F(Sm)∩
r⋂

m=

F(Tm) �= ∅.

Let tn =max{tn,m :  ≤ m ≤ r}, and sn =max{sn,m :  ≤ m ≤ r}. Assume that
∑∞

n=(kn – ) <
∞, where kn =max{sn, tn : ≤ m ≤ r}. Let {xn}∞n= be a sequence generated by the following:

x ∈ C, xn = αnxn– +
r∑

m=

βn,mSnmxn– +
r∑

m=

γn,mTn
mxn, ∀n≥ 

where {αn}, {βn,}, {βn,}, . . . , {βn,r}, {γn,}, {γn,}, . . . , and {γn,r}, are real number sequences in
(, ) such that αn +

∑r
m= βn,m +

∑r
m= γn,m = . Assume that the following restrictions im-

posed on the control sequences {αn}, {βn,}, {βn,}, . . . , {βn,r}, {γn,}, {γn,}, . . . , and {γn,r} are
satisfied
(a) lim infn→∞ αnβn,m > , and lim infn→∞ αnγn,m > , ∀m ∈ {, , . . . r};
(b)

∑r
m= γn,mtn < .

Then {xn} converges weakly to some point in F .

If βn,m = bn,m = , than Theorem . reduced the following.

Corollary . Let C be a nonempty, closed, and convex subset of a uniformly convex Ba-
nach space E with Opial’s condition. Let Tm : C → C be an asymptotically nonexpansive
mapping with the sequence {tn,m}, for every m ∈ {, , . . . , r}, where r ≥  is some positive
integer. Assume that

F =
r⋂

m=

F(Tm) �= ∅.

Assume that
∑∞

n=(tn – ) < ∞, where tn =max{tn,m :  ≤ m ≤ r}. Let {xn}∞n= be a sequence
generated by the following:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

xn = αnxn– +
∑r

m= γn,mTn
myn,

yn = anxn +
∑r

m= cn,mTn
mxn, ∀n≥ ,

where {αn}, {γn,}, {γn,}, . . . , {γn,r}, {an}, {cn,}, {cn,}, . . . , {cn,r} be real number sequences in
(, ) such that

αn +
r∑

m=

γn,m = an +
r∑

m=

cn,m = .

Assume that the following restrictions imposed on the control sequence {αn}, {γn,}, {γn,},
. . . , {γn,r}, {an}, {cn,}, {cn,}, . . . , {cn,r} are satisfied

http://www.journalofinequalitiesandapplications.com/content/2013/1/179
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(a) lim infn→∞ αn > , lim infn→∞ αnγn,m >  and lim infn→∞ an > , ∀m ∈ {, , . . . , r};
(b)

∑r
m= γn,mtn(an +

∑r
m= cn,mtn) < .

Then {xn} converges weakly to some point in F .

If Sm = I , where I stands for the identity mappings, then Theorem . reduced the fol-
lowing.

Corollary . Let C be a nonempty, closed, and convex subset of a uniformly convex Ba-
nach space E with Opial’s condition. Let Tm : C → C be an asymptotically nonexpansive
mapping with the sequence {tn,m}, for every m ∈ {, , . . . , r}, where r ≥  is some positive
integer. Assume that

F =
r⋂

m=

F(Tm) �= ∅.

Asume that
∑∞

n=(tn – ) < ∞, where tn =max{tn,m :  ≤ m ≤ r}. Let {xn}∞n= be a sequence
generated by the following:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

xn = (αn +
∑r

m= βn,m)xn– +
∑r

m= γn,mTn
myn,

yn = (an +
∑r

m= bn,m)xn +
∑r

m= cn,mTn
mxn, ∀n≥ ,

where {αn}, {βn,}, {βn,}, . . . , {βn,r}, {γn,}, {γn,}, . . . , {γn,r}, {an}, {bn,}, {bn,}, . . . , {bn,r}, {cn,},
{cn,}, . . . , {cn,r} be real number sequences in (, ) such that αn +

∑r
m= βn,m +

∑r
m= γn,m =

an +
∑r

m= bn,m +
∑r

m= cn,m = . Assume that the following restrictions imposed on the
control sequences {αn}, {βn,}, {βn,}, . . . , {βn,r}, {γn,}, {γn,}, . . . , {γn,r}, {an}, {bn,}, {bn,}, . . . ,
{bn,r}, {cn,}, {cn,}, . . . , {cn,r} are satisfied
(a) lim infn→∞ αnβn,m > , lim infn→∞ αnγn,m >  and lim infn→∞ anbn,m > ,

∀m ∈ {, , . . . , r};
(b)

∑r
m= γn,mtn(an +

∑r
m= bn,m +

∑r
m= cn,mtn) < .

Then {xn} converges weakly to some point in F .

If Tm = I , bn,m = , where I stands for the identity mappings, then Theorem . reduced
the following.

Corollary . Let C be a nonempty, closed, and convex subset of a uniformly convex Ba-
nach spaces E with Opial’s condition. Let Sm : C → C be an asymptotically nonexpansive
mapping with the sequence {sn,m}, for every m ∈ {, , . . . , r}, where r ≥  is some positive
integer. Assume that

F =
r⋂

m=

F(Sm) �= ∅.

http://www.journalofinequalitiesandapplications.com/content/2013/1/179
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Assume that
∑∞

n=(sn – ) < ∞, where sn =max{sn,m :  ≤ m ≤ r}. Let {xn}∞n= be a sequence
generated by the following:

⎧⎨
⎩x ∈ C,

xn = αn
–

∑r
m=(an+

∑r
m= cn,m)xn– +

∑r
m= βn,mSnm

–
∑r

m=(an+
∑r

m= cn,m)xn–, ∀n≥ ,

where {αn}, {βn,}, {βn,}, . . . , {βn,r}, {γn,}, {γn,}, . . . , {γn,r}, {an}, {cn,}, {cn,}, . . . , {cn,r} be real
number sequences in (, ) such that

αn +
r∑

m=

βn,m +
r∑

m=

γn,m = an +
r∑

m=

cn,m = .

Assume that the following restrictions imposed on the control sequences {αn}, {βn,}, {βn,},
. . . , {βn,r}, {γn,}, {γn,}, . . . , {γn,r}, {an}, {cn,}, {cn,}, . . . , {cn,r} are satisfied lim infn→∞ αnβn,m >
 and lim infn→∞ αnγn,m >  for all m ∈ {, , . . . , r}. Then {xn} converges weakly to some
point in F .
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