
Asgari et al. Journal of Inequalities and Applications 2013, 2013:166
http://www.journalofinequalitiesandapplications.com/content/2013/1/166

RESEARCH Open Access

Fixed points and stability of functional
equations in fuzzy ternary Banach algebras
G Asgari1, YJ Cho2*, YW Lee3 and M Eshaghi Gordji4*

*Correspondence: yjcho@gnu.ac.kr;
meshaghi@semnan.ac.ir
2Department of Mathematics
Education and the RINS,
Gyeongsang National University,
Chinju, 660-701, Korea
4Department of Mathematics,
Semnan University, P.O. Box
35195-363, Semnan, Iran
Full list of author information is
available at the end of the article

Abstract
By using Diaz and Margolis fixed point theorem, we establish the generalized
Hyers-Ulam-Rassias stability of the ternary homomorphisms and ternary derivations
between fuzzy ternary Banach algebras associated to the following
(m,n)-Cauchy-Jensen additive functional equation:

∑
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1 Introduction
A classical question in the theory of functional equations is the following:
When is it true that a function which approximately satisfies a functional equation E

must be close to an exact solution of E?
If the problem admits a solution, we say that the equation E is stable. Such a problem

was formulated by Ulam [] in  and solved in the next year for the Cauchy functional
equation by Hyers []. Since Hyers, many authors have studied the stability theory for
functional equations. The result of Hyers was extended by Aoki [] in , by considering
the unbounded Cauchy differences. Also, Hyers’ theorem was generalized by Rassias []
for linear mappings by considering an unbounded Cauchy difference.

Theorem . (TMRassias) Let f : E → E′ be amapping from a normed vector space E into
a Banach space E′ subject to the following inequality:

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ ε

(‖x‖p + ‖y‖p)

for all x, y ∈ E, where ε and p are constants with ε >  and  ≤ p < . Then the limit L(x) =
limn→∞ f (nx)

n exists for all x ∈ E, and L : E → E′ is the unique additive mapping which
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satisfies

∥∥f (x) – L(x)
∥∥ ≤ ε

 – p
‖x‖p

for all x ∈ E.Also, if for each x ∈ E, the function f (tx) is continuous in t ∈R, then L is linear.

Găvruta [] generalized the Rassias’ result. Beginning around the year , the stability
problems of several functional equations and approximate homomorphisms have been
extensively investigated by a number of authors, and there are many interesting results
concerning this problem (see [–]).
Katsaras [] defined a fuzzy norm on a vector space to construct a fuzzy vector topo-

logical structure on the space. Somemathematicians have defined fuzzy norms on a vector
space from various points of view (see [, ]). In particular, Bag and Samanta [], fol-
lowing Cheng and Mordeson [], gave an idea of a fuzzy norm in such a manner that
the corresponding fuzzy metric is of Karmosil and Michalek type []. They established
a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated
some properties of fuzzy normed spaces [].
Now, we consider a mapping f : X → Y satisfying the following functional equation,

which is introduced by Rassias and Kim [] (see also []):

∑
≤i<···<im≤n

≤kl≤n
kl �=ij , ∀j∈{,...,m}

f

(∑m
j= xij
m

+
n–m∑
l=

xkl

)
=
(n –m + )

n

(
n
m

) n∑
i=

f (xi) (.)

for all x, . . . ,xn ∈ X, wherem,n ∈N are fixed integerswith n≥  and ≤ m ≤ n. Especially,
we observe that, in the casem = , equation (.) yields the Cauchy additive equation

f

( n∑
l=

xkl

)
=

n∑
l=

f (xi).

Also, we observe that, in the casem = n, equation (.) yields the Jensen additive equation

f
(∑n

j= xj
n

)
=

n

n∑
l=

f (xi).

Therefore, equation (.) is a generalized form of the Cauchy-Jensen additive equation and
thus every solution of equation (.) may be analogously called the general (m,n)-Cauchy-
Jensen additive. For the casem = , the authors have established new theorems about the
Ulam-Hyers-Rassias stability in quasi-β-normed spaces [].
Let X and Y be linear spaces. For eachm with  ≤ m ≤ n, a mapping f : X → Y satisfies

equation (.) for all n≥  if and only if f (x)– f () = A(x) is Cauchy additive, where f () = 
if m < n. In particular, we have f ((n –m + )x) = (n –m + )f (x) and f (mx) =mf (x) for all
x ∈ X.

Definition . Let X be a real vector space. A functionN : X×R → [, ] is called a fuzzy
norm on X if for all x, y ∈ X and s, t ∈R,
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(N) N(x, t) =  for t ≤ ;
(N) x =  if and only if N(x, t) =  for all t > ;
(N) N(cx, t) =N(x, t

|c| ) if c �= ;
(N) N(x + y, s + t)≥ min{N(x, s),N(y, t)};
(N) N(x, ·) is a non-decreasing function of R and limt→∞ N(x, t) = ;
(N) for any x �= , N(x, ·) is continuous on R.

Example . Let (X,‖ · ‖) be a normed linear space and β > . Then

N(x, t) =

⎧⎨
⎩

t
t+β‖x‖ , t > ,x ∈ X,

, t ≤ ,x ∈ X

is a fuzzy norm on X.

Definition . Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is said to
be convergent if there exists x ∈ X such that

lim
n→∞N(xn – x, t) = 

for all t > . In this case, x is called the limit of the sequence {xn} in X, which is denoted
by N – limt→∞ xn = x.

Definition . Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called
a Cauchy sequence if for each ε >  and each t > , there exists n ∈ N such that, for all
n≥ n and p > ,

N(xn+p – xn, t) >  – ε.

It is well known that every convergent sequence in a fuzzy normed vector space is a
Cauchy sequence. If each Cauchy sequence is convergent, then the fuzzy norm is said to
be complete and the fuzzy normed vector space is called a fuzzy Banach space.
We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is con-

tinuous at a point x ∈ X if for each sequence {xn} converging to x ∈ X, the sequence {f (xn)}
converges to f (x). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said to be
continuous on X (see []).
Ternary algebraic operationswere considered in the nineteenth century by severalmath-

ematicians such as Cayley [] who introduced the notion of cubic matrix which in turn
was generalized by Kapranov, Gelfand and Zelevinskii in  []. The comments on
physical applications of ternary structures can be found in [–].

Definition . Let X be a ternary algebra and (X,N) be a fuzzy normed space.
() The fuzzy normed space (X,N) is called a ternary fuzzy normed algebra if

N
(
[xyz], stu

) ≥ N(x, s)N(y, t)N(z,u)

for all x, y, z ∈ X and s, t,u > ;
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() A complete ternary fuzzy normed algebra is called a ternary fuzzy Banach algebra.

Example . Let (X,‖ · ‖) be a ternary normed (Banach) algebra. Let

N(x, t) =

⎧⎨
⎩

t
t+‖x‖ , t > ,x ∈ X,

, t ≤ ,x ∈ X.

Then N(x, t) is a fuzzy norm on X and (X,N) is a ternary fuzzy normed (Banach) algebra.

Definition . Let (X,N) and (Y ,N ′) be two ternary fuzzy normed algebras.
() A C-linear mapping H : (X,N)→ (Y ,N ′) is called a ternary homomorphism if

H
(
[xyz]

)
=

[
H(x)H(y)H(z)

]

for all x, y, z ∈ X ;
() A C-linear mapping D : (X,N)→ (X,N) is called a ternary fuzzy derivation if

D
(
[xyz]

)
=

[
D(x)yz

]
+

[
xD(y)z

]
+

[
xyD(z)

]

for all x, y, z ∈ X .

We apply the following theorem on weighted spaces (see [–]).

Theorem . (The generalized fixed point theorem of Diaz and Margolis) Let (X,d) be a
complete metric space and T : X → X be a contraction, i.e., there exists α ∈ [, ) such that

d(Tx,Ty) ≤ αd(x, y)

for all x, y ∈ X. Then there exists a unique a ∈ X such that Ta = a. Moreover, a =
limn→∞ Tnx and

d(a,x)≤ 
 – α

d(x,Tx)

for all x ∈ X.

Throughout this paper, we suppose that X is a ternary fuzzy normed algebra and Y is
a ternary fuzzy Banach algebra. Moreover, we assume that n ∈ N is a positive integer
and T



no

:= {eiθ :  ≤ θ ≤ π
no }. For the convenience, we use the following abbreviation for a

given mapping f : X → Y :

�f (x, . . . ,xn)

=
∑

≤i<···<im≤n
≤kl≤n

kl �=ij , ∀j∈{,...,m}

f

(∑m
j= μxij
m

+
n–m∑
l=

μxkl

)
–
(n –m + )

(n
m
)∑n

i= μf (xi)
n

.
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2 Main results
In this section, by using the idea of Gavruta and Gavruta [], we prove the generalized
Hyers-Ulam-Rassias stability of ternary homomorphisms related to functional equation
(.) on ternary fuzzy Banach algebras (see also []).

Theorem . Let n ≥  and ϕ : Xn → [,∞) be a mapping such that there exists L <


(n–m+)n– such that

ϕ

(
x

n –m + 
, . . . ,

xn
n –m + 

)
≤ Lϕ(x,x, . . . ,xn)

n –m + 

for all x, . . . ,xn ∈ X. Let f : X → Y with f () =  be a mapping satisfying

N
(
�f (x, . . . ,xn), t

) ≥ t
t + ϕ(x, . . . ,xn)

(.)

and

N
(
f
(
[abc]

)
–

[
f (a)f (b)f (c)

]
, t

) ≥ t
t + ϕ(a,b, c, , . . . , )

(.)

for all μ ∈ T


no
, x, . . . ,xn,a,b, c ∈ X and t > . Then there exists a unique ternary homo-

morphism H : X → Y such that

N
(
f (x) –H(x), t

) ≥ (n –m + )
(n
m
)
( – L)t

(n –m + )
(n
m
)
( – L)t + Lϕ(x, . . . ,x)

(.)

for all x ∈ X and t > .

Proof Letting μ =  and putting x = x = · · · = xn = x in (.), we have

N
((

n
m

)
f
(
(n –m + )x

)
–

(
n
m

)
(n –m + )f (x), t

)
≥ t

t + ϕ(x, . . . ,x)
(.)

for all x ∈ X and t > . Set S := {h : X → Y : h() = } and define a mapping d : S × S →
[,∞] by

d(f , g) = inf

{
μ ∈R

+ :N
(
g(x) – h(x),μt

) ≥ t
t + ϕ(x, . . . ,x)

, ∀x ∈ X, t > 
}
,

where inf∅ = +∞. Also, put S := {h ∈ S : d(h, f ) < ∞}. Suppose that d is the restriction of
d on S × S. By using the same technique in the proof of Theorem . [], we can show
that (S,d) is a complete metric space. Now, we define a mapping J : S → S by

Jg(x) := (n –m + )g
(

x
n –m + 

)

for all x ∈ X. It is easy to see that d(Jg, Jh) ≤ Ld(g,h) for all g,h ∈ S. This implies that

d(f , Jf ) ≤ L
(n –m + )

(n
m
) .
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Thus, by Banach’s fixed point theorem (Theorem .), J has a unique fixed pointH : X → Y
in S satisfying

H
(

x
n –m + 

)
=

H(x)
n –m + 

(.)

for all x ∈ X. This implies that H is a unique mapping with (.) such that there exists
μ ∈ (,∞) satisfying

N
(
f (x) –H(x),μt

) ≥ t
t + ϕ(x, . . . ,x)

for all x ∈ X and t > .
Moreover, we have d(Jpf ,H)→  as p → ∞, which implies

N- lim
p→∞

f ( x
(n–m+)p )

(n –m + )–p
=H(x) (.)

for all x ∈ X. Thus it follows from (.) and (.) that

∑
≤i<···<im≤n

≤kl≤n
kl �=ij , ∀j∈{,...,m}

H

(∑m
j= μxij
m

+
n–m∑
l=

μxkl

)
=
(n –m + )

n

(
n
m

) n∑
i=

μH(xi)

for all μ ∈ T


no

and x, . . . ,xn ∈ X. This means that H : X → Y is additive. By using the
same technique as in the proof of Theorem . [], we can show that H is C-linear. On
the other hand, by (.), we have

N(α,β)≥ t
t + ϕ( a

(n–m+)p ,
b

(n–m+)p ,
c

(n–m+)p , , , . . . , )

for all a,b, c ∈ X and t > , where

α =
f ( [abc]

(n–m+)(n–)p )

(n –m + )–(n–)p
–
[f ( a

(n–m+)p )f (
b

(n–m+)p )f (
c

(n–m+)p )]
(n –m + )–(n–)p

,

β =
t

(n –m + )–(n–)p
.

Then we have, as p → +∞,

N
( f ( [abc]

(n–m+)(n–)p )

(n –m + )–(n–)p
–
[f ( a

(n–m+)p )f (
b

(n–m+)p )f (
c

(n–m+)p )]
(n –m + )–(n–)p

, t
)

≥
t

(n–m+)(n–)p
t

(n–m+)(n–)p + ϕ( a
(n–m+)p ,

b
(n–m+)p ,

c
(n–m+)p , , , . . . , )

≥
t

(n–m+)(n–)p

t
(n–m+)(n–)p +

Lpϕ(a,b,c,,,...,)
(n–m+)p

→ 
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for all a,b, c ∈ X and t > . So, it follows that

N
(
H

(
[abc]

)
–

[
H(a)H(b)H(c)

]
, t

)
= 

for all a,b, c ∈ X and t > . Hence we have H([abc]) = [H(a)H(b)H(c)] for all a,b, c ∈ X.
This means that H is a ternary homomorphism. This completes the proof. �

Theorem . Let ϕ : Xn → [,∞) be a mapping such that there exists L <  with

ϕ(x, . . . ,xn)≤ (n –m + )Lϕ

(
x

n –m + 
, . . . ,

xn
n –m + 

)

for all x,x, . . . ,xn ∈ X. Let f : X → Y be a mapping with f () =  satisfying (.). Then
the limit H(x) := N- limp→∞ f ((n–m+)px)

(n–m+)p exists for all x ∈ X and H : X → Y is defined as a
ternary homomorphism such that

N
(
f (x) –H(x), t

) ≥ (n –m + )
(n
m
)
( – L)t

(n –m + )
(n
m
)
( – L)t + ϕ(x, . . . ,x)

(.)

for all x ∈ X and t > .

Proof Let (S,d) be the metric space defined as in the proof of Theorem .. Consider the
mappingT : S → S definedbyTg(x) := g((n–m+)x)

n–m+ for all x ∈ X. One can show that d(g,h) = ε

implies that d(Tg,Th) ≤ Lε for all positive real numbers ε. This means that T is a contrac-
tion on (S,d). The mapping

H(x) :=N- lim
p→∞

f ((n –m + )px)
(n –m + )p

is the unique fixed point of T in S and H has the following property:

(n –m + )H(x) =H
(
(n –m + )x

)
(.)

for all x ∈ X. This implies thatH is a unique mapping satisfying (.) such that there exists
μ ∈ (,∞) satisfying N(f (x) –H(x),μt)≥ t

t+ϕ(x,...,x) for all x ∈ X and t > .
The rest of the proof is similar to the proof of Theorem .. This completes the proof.�

Now, we investigate the Hyers-Ulam-Rassias stability of ternary derivations in ternary
fuzzy Banach algebras.

Theorem . Let X be a fuzzy Banach algebra. Let ϕ : Xn → [,∞) be a function such
that there exists L < 

(n–m+)n– with

ϕ

(
x

n –m + 
, . . . ,

xn
n –m + 

)
≤ Lϕ(x,x, . . . ,xn)

n –m + 

for all x, . . . ,xn ∈ X. Let f : X → X be a mapping with f () =  satisfying (.) and

N
(
f
(
[abc]

)
–

[
f (a)bc

]
–

[
af (b)c

]
–

[
abf (c)

]
, t

) ≥ t
t + ϕ(a,b, c, , , . . . , )

(.)
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for all a,b, c ∈ X and t > . Then D(x) := N- limp→∞
f ( x

(n–m+)p )
(n–m+)–p exists for all x ∈ X and D :

X → X is defined as a unique ternary derivation such that

N
(
f (x) –D(x), t

) ≥ (n –m + )
(n
m
)
( – L)t

(n –m + )
(n
m
)
( – L)t + Lϕ(x, . . . ,x)

(.)

for all x ∈ X and t > .

Proof By the same reasoning as that in the proof of Theorem ., the mapping D : X → X
is a unique C-linear mapping which satisfies (.).
Now, we show that D is a ternary derivation. By (.), we have

N
( f ( [abc]

(n–m+)(n–)p )

(n –m + )–(n–)p
–
[f ( a

(n–m+)p )bc] – [af ( b
(n–m+)p )c] – [abf ( c

(n–m+)p )]
(n –m + )–(n–)p

,

t
(n –m + )–(n–)p

)

≥ t
t + ϕ( a

(n–m+)p ,
b

(n–m+)p ,
c

(n–m+)p , , , . . . , )
(.)

for all a,b, c ∈ X and t > . Then we have

N
( f ( [abc]

(n–m+)(n–)p )

(n –m + )–(n–)p
–
[f ( a

(n–m+)p )bc] – [af ( b
(n–m+)p )c] – [abf ( c

(n–m+)p )]
(n –m + )–(n–)p

, t
)

≥
t

(n–m+)(n–)p
t

(n–m+)(n–)p + ϕ( a
(n–m+)p ,

b
(n–m+)p ,

c
(n–m+)p , , , . . . , )

≥
t

(n–m+)(n–)p

t
(n–m+)(n–)p +

Lpϕ(a,b,c,,,...,)
(n–m+)p

→  when p→ +∞

for all a,b, c ∈ X and t > . So, we have

N
(
D

(
[abc]

)
–

[
D(a)bc

]
–

[
aD(b)c

]
–

[
abH(c)

]
, t

)
= 

for all a,b, c ∈ X and t > . Hence we have D([abc]) = [D(a)bc] + [aD(b)c] + [abD(c)] for all
a,b, c ∈ X . This means that D is a ternary derivation. This completes the proof. �

Theorem . Let X be a fuzzy Banach algebra. Let ϕ : Xn → [,∞) be a function such
that there exists L <  with

ϕ(x, . . . ,xn)≤ (n –m + )Lϕ

(
x

n –m + 
, . . . ,

xn
n –m + 

)

for all x,x, . . . ,xn ∈ X. Let f : X → X be a mapping with f () =  satisfying (.) and (.).
Then the limit D(x) := N- limp→∞ f ((n–m+)px)

(n–m+)p exists for all x ∈ X and D : X → X is defined
as a ternary derivation such that

N
(
f (x) –D(x), t

) ≥ (n –m + )
(n
m
)
( – L)t

(n –m + )
(n
m
)
( – L)t + ϕ(x, . . . ,x)

(.)

for all x ∈ X and t > .
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