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Abstract
Let {Xn,n ≥ 1} be a sequence of strictly stationary φ-mixing positive random variables
which are in the domain of attraction of the normal law with EX1 =μ > 0, possibly
infinite variance and mixing coefficient rates φ(n) satisfying

∑
n≥1 φ

1/2(2n) <∞.
Under suitable conditions, we here give an almost sure central limit theorem for
self-normalized products of partial sums, i.e.,

lim
n→∞

1
Dn

n∑
m=1

dmI

(( m∏
k=1

Sk
kμ

)μ/(βVm)

≤ x

)
= F(x) a.s. for any x ∈ R,

where F is the distribution function of the random variable e
√
2N andN is a standard

normal random variable.
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1 Introduction andmain results
The almost sure central limit theorem (ASCLT) was first introduced independently by
Brosamler [] and Schatte []. Since then, many interesting results have been discovered
in this field. The classical ASCLT states that when EX = , Var(X) = σ ,

lim
n→∞


logn

n∑
k=


k
I
{

Sk√
kσ

≤ x
}
= �(x) a.s. for any x ∈ R. (.)

Here and in the sequel, I{·} denotes an indicator function and�(·) is the distribution func-
tion of the standard normal random variable. It is known (see Berkes []) that the class of
sequences satisfying the ASCLT is larger than the class of sequences satisfying the cen-
tral limit theorem. In recent years, the ASCLT for products of partial sums has received
more and more attention. We refer to Gonchigdanzan and Rempala [] on the ASCLT
for the products of partial sums, Gonchigdanzan [] on the ASCLT for the products of
partial sums with stable distribution. Li and Wang [] and Zhang et al. [] showed AS-
CLT for products of sums and products of sums of partial sums under association. Huang
and Pang [], Zhang and Yang [] obtained the ASCLT results of self-normalized versions.
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Zhang and Yang [] proved the following ASCLT for self-normalized products of sums of
i.i.d. random variables.

Theorem A Let {X,Xn,n ≥ } be a sequence of i.i.d. positive random variables with μ =
EX > , and assume that X is in the domain of attraction of the normal law. Then

lim
n→∞


logn

n∑
k=


k
I

(( k∏
j=

Sj
jμ

)μ/Vk

≤ x

)
= F(x) a.s. for any x ∈ R, (.)

where F(·) is the distribution function of the random variable e
√
N and N is a standard

normal random variable.

A wide literature concerning the ASCLT of self-normalized versions of independent
random variables is now available, while the ASCLT for self-normalized versions of
weakly dependent random variables is worth studying. Recalling that {Xn,n ≥ } is a se-
quence of random variables andFb

a denotes the σ -field generated by the random variables
Xa,Xa+, . . . ,Xb. The sequence {Xn,n≥ } is called φ-mixing if

φ(n) = sup
k≥

sup
A∈Fk

 ,B∈F∞
k+n

∣∣P(B|A) – P(B)
∣∣ →  as n→ ∞.

The sequence {Xn,n≥ } is called ρ-mixing if

ρ(n) = sup
k≥

sup
ξ∈L(Fk

 ),η∈L(F∞
k+n)

|Cov(ξ ,η)|
(Eξ )/(Eη)/

→  as n→ ∞,

where L(Fb
a ) is a set of all Fb

a -measurable random variables with second moments. It is
well known that ρ(n)≤ φ/(n), and hence a φ-mixing sequence is ρ-mixing.

Theorem B (Balan and Kulik [, ]) Let {Xn,n ≥ } be a strictly stationary φ-mixing se-
quence of nondegenerate random variables such that EX =  and X belongs to the domain
of attraction of the normal law. Let Sn =

∑n
i=Xi and V̄  =

∑n
i=X

i . Suppose that φ() < 
and the mixing coefficients φ(n) satisfy

∑
n≥ φ

/(n) < ∞, then

(i)
Sn
An

d→N (, ) and
Vn

Bn

p→ ,

where

A
n =Var

( n∑
i=

XiI
{|Xi| ≤ τi

})
, B

n =
n∑
i=

Var
(
XiI

{|Xi| ≤ τi
})
,

and τi = inf{s : s≥ , L(s)s ≤ 
i } for i = , , . . . .

In this paper we study the almost sure central limit theorem, containing the general
weight sequences, for weakly dependent random variables. Let {Xn,n ≥ } be a sequence
of strictly stationaryφ-mixing positive randomvariableswhich are in the domain of attrac-
tion of the normal law with EX = μ > , possibly infinite variance and mixing coefficients
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φ(n) satisfying
∑

n≥ φ
/(n) < ∞. We here give an almost sure central limit theorem for

self-normalized products of partial sums under a fairly general condition.
Throughout this paper, the following notations are frequently used. For any two positive

sequences, an � bn means that for a certain numerical constant C not depending on n, we
have an ≤ Cbn for all n, and an ∼ bn means an/bn →  as n → ∞. [x] denotes the largest
integer smaller or equal to x, and C denotes a generic positive constant, whose value can
differ in different places.
We let l(x) = E(X –μ)I{|X –μ| ≤ x}, b = inf{x≥  : l(x) > } and

ηn = inf

{
s : s≥ b + ,

l(s)
s

≤ 
n

}
, n = , , . . . , (.)

then it is easy to see that nl(ηn) ∼ η
n and ηn ≤ ηn+ (cf. de la Pena et al. []). We denote

A
n =Var

( n∑
j=

(Xj –μ)I
{|Xj –μ| ≤ ηn

})
, B

n =
n∑
j=

Var
(
(Xj –μ)I

{|Xj –μ| ≤ ηn
})
.

Our main theorem is as follows.

Theorem . Let {Xn,n≥ } be a sequence of strictly stationary φ-mixing positive random
variables with EX = μ > , possibly infinite variance.Assume that X belongs to the domain
of attraction of the normal law, and the mixing coefficients φ(n) satisfy

∑
n≥ φ

/(n) < ∞.
Denote Sn =

∑n
i=Xi and V 

n =
∑n

i=(Xi –μ). If,moreover,

A
n ∼ βB

n for some β ∈ (,∞),

then we have

lim
n→∞


Dn

n∑
k=

dkI

(( k∏
j=

Sj
jμ

)μ/(βVk )

≤ x

)
= F(x) a.s. for any x ∈ R, (.)

where F(·) is the distribution function of the randomvariable e
√
N ,N is a standard normal

random variable and

dk = k– exp
(
lnα k

)
,  ≤ α < /, Dn =

n∑
k=

dk . (.)

Remark . If we assume that

lim
n→∞


l(ηn)

n∑
j=

Cov
(
XI

{|X| ≤ ηn
}
,XjI

{|Xj| ≤ ηn
})

= α > –/,

then A
n ∼ βB

n with β =  + α.

We have the following corollaries.

Corollary . Let {Xn,n≥ } be a strictly stationary φ-mixing sequence of positive random
variables such that EX = μ > , Var(X) = σ  < ∞ and

∑
j≥ |EXXj| < ∞, then (.) holds.
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Corollary . Let {Xn,n≥ } be a strictly stationary φ-mixing sequence of positive random
variables such that EX = μ > ,Var(X) = σ  < ∞ and

∑
n≥ φ

/(n) <∞. Set Sn =
∑n

i=Xi

and σ 
n =Var(Sn), then (.) holds.

Remark . Let dk = /k and β = . If {Xn,n ≥ } is a sequence of i.i.d. positive random
variables such that EX = μ >  and X belongs to the domain of attraction of the normal
law, then Theorem . is just Theorem A.

Remark . By the terminology of summation procedures (see [, p.]), Theorem .
remains valid if we replace the weight sequence {dk}k≥ by any {d∗

k}k≥ such that  ≤ d∗
k ≤

dk and
∑

k≥ d∗
k = ∞.

2 Lemmas
In this section, we introduce some lemmas which are used to prove our theorem.

Lemma . (Csörgő et al. []) Let X be a random variable, and denote l(y) = E(X –
μ)I{|X –μ| ≤ y}. The following statements are equivalent:
(a) X is in the domain of attraction of the normal law,
(b) yP{|X –μ| > y} = o(l(y)),
(c) yE|X –μ|I{|X –μ| > y} = o(l(y)),
(d) E|X –μ|αI{|X –μ| ≤ y} = o(yα–l(y)) for α > .

For all positive integers  ≤ i≤ k < ∞, we denote

X̃ik = (Xi –μ)I
{|Xi –μ| ≤ ηk

}
, X̂ik = (Xi –μ)I

{|Xi –μ| > ηk
}
,

X̃∗
ik = X̃ik – EX̃ik , X̂∗

ik = X̂ik – EX̂ik , bi,k =
k∑
l=i


l
, (.)

Ỹk =
k∑
i=

bi,kX̃∗
ik , Ŷk =

k∑
i=

bi,kX̂∗
ik , Ṽ 

k =
k∑
i=

X̃
ik .

Lemma . Let f be a nonnegative, bounded Lipschitz function such that

f (x)≤ C and
∣∣f (x) – f (y)

∣∣ ≤ C|x – y| for every x, y ∈ R.

If the assumptions of Theorem . hold and there exists a positive constant ε such that

Var

( n∑
k=

dkf
(

Ỹk

β
√
kl(ηk)

))
� D

n(lnDn)––ε , (.)

then we have

lim
n→∞


Dn

n∑
k=

dkf
(

Ỹk

β
√
kl(ηk)

)
= Ef

(
N (, )

)
a.s. (.)

Proof From the formula (.) in Liu and Lin [], we have

Ỹk

β
√
kl(ηk)

d→N (, ) (.)
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as k → ∞ under the hypotheses of Theorem .. Then

Ef
(

Ỹk

β
√
kl(ηk)

)
→ Ef

(
N (, )

)
as k → ∞, which implies from Toeplitz’s lemma that


Dn

n∑
k=

dkEf
(

Ỹk

β
√
kl(ηk)

)
→ Ef

(
N (, )

)
as n→ ∞. To prove (.), we only need to show that

lim
n→∞


Dn

n∑
k=

dk
[
f
(

Ỹk

β
√
kl(ηk)

)
– Ef

(
Ỹk

β
√
kl(ηk)

)]
=  a.s. (.)

Let

νn =

Dn

n∑
k=

dk
(
f
(

Ỹk

β
√
kl(ηk)

)
– Ef

(
Ỹk

β
√
kl(ηk)

))
for n≥ .

By (.), we have

Eν
n =


D

n
Var

( n∑
k=

dkf
(

Ỹk

β
√
kl(ηk)

))
� (lnDn)––ε .

Note that for α = , we get dk = e/k, Dn ∼ e lnn. For α > , we get

Dn ∼
∫ lnn


exp

(
tα

)
dt

∼
∫ lnn



(
exp

(
tα

)
+
 – α

α
t–α exp

(
tα

))
dt

=

α
(lnn)–α exp

(
lnα n

)
, (.)

and using Karamata’s theorem (see Seneta []),

exp
(
lnα x

)
= exp

(∫ x


α(lnu)α–/udu

)
, α < , (.)

is a slowly varying function at ∞. Hence Dn+ ∼ Dn. Let γ be such that  < γ < ε/( + ε),
and nk = inf{n :Dn ≥ exp(k–γ )}, then

Dnk ≥ exp
(
k–γ

)
>Dnk–,

and thus

 ≤ Dnk
exp(k–γ )

∼ Dnk–

exp(k–γ )
< ,
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which means that Dnk ∼ exp(k–γ ). Since ( – γ )( + ε) > , we have

∞∑
k=

Eν
nk ≤ C

∞∑
k=


k(–γ )(+ε) < ∞,

which implies νnk →  a.s. For any given n, there exists k such that nk ≤ n < nk+. It is easy
to see that by the boundedness of f ,

|νn| ≤ |νnk | +


Dnk

nk+∑
i=nk

di ≤ |νnk | +C
(
Dnk+
Dnk

– 
)

→  a.s.,

which yields (.). Hence (.) holds true. �

Lemma . Assume f is a nonnegative, bounded Lipschitz function such that f (x)≤ C and
|f (x) – f (y)| ≤ C|x – y| for every x, y ∈ R. If there exists a positive constant ε such that

Var

( n∑
k=

dkf
(

Ŷk

β
√
kl(ηk)

))
� D

n(lnDn)––ε , (.)

Var

( n∑
k=

dkf
(

Ṽ 
k

kl(ηk)

))
� D

n(lnDn)––ε , (.)

Var

( n∑
k=

dkI

{ k⋃
i=

{|Xi –μ| > ηk
}})

� D
n(lnDn)––ε . (.)

Then, under the assumptions of Theorem ., we have

lim
n→∞


Dn

n∑
k=

dkf
(

Ŷk

β
√
kl(ηk)

)
= lim

k→∞
Ef

(
Ŷk

β
√
kl(ηk)

)
a.s., (.)

lim
n→∞


Dn

n∑
k=

dkf
(

Ṽ 
k

kl(ηk)

)
= lim

k→∞
Ef

(
Ṽ 
k

kl(ηk)

)
a.s., (.)

lim
n→∞


Dn

n∑
k=

dkI

{ k⋃
i=

{|Xi –μ| > ηk
}}

= lim
k→∞

P

( k⋃
i=

{|Xi –μ| > ηk
})

a.s. (.)

Proof The relations (.)-(.) follow by the samemethod as in the proof of Lemma .,
and the details are omitted here. �

To prove that under the hypotheses of Theorem ., the relations (.) and (.)-(.)
hold true, we show them by using the following four lemmas.

Lemma. Assume that f is a nonnegative, bounded Lipschitz function such that f (x)≤ C
and |f (x) – f (y)| ≤ C|x – y| for every x, y ∈ R. Then, under the assumptions of Theorem .,
there exists a positive constant ε such that

Var

( n∑
k=

dkf
(

Ỹk

β
√
kl(ηk)

))
� D

n(lnDn)––ε . (.)
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Proof Write

Var

( n∑
i=

dif
(

Ỹi

β
√
il(ηi)

))

≤ 
( ∑
≤i≤j≤(i)∧n

+
∑

≤i<j≤n

)
didj

∣∣∣∣Cov(f( Ỹi

β
√
il(ηi)

)
, f

(
Ỹj

β
√
jl(ηj)

))∣∣∣∣
=: I + I. (.)

From (.), we get

lnDn ∼ lnα n, exp
(
lnα n

) ∼ Dn

(lnDn)(–α)/α . (.)

Since f is a nonnegative, bounded Lipschitz function, it follows from (.) that for any
 < ε < ( – α)/α with  ≤ α < /,

I ≤ C
∑

≤i≤j≤(i)∧n
didj ≤ C

D
n

(lnDn)(–α)/α

i∑
j=i


j

� D
n(lnDn)––ε . (.)

Consider I now. Let Ỹi,j =
∑j

k=i+ bk,jX̃
∗
kj =

∑j
k=i+

∑j
l=k


l X̃

∗
kj for  ≤ i < j = ,, . . . , then

∣∣∣∣Cov(f( Ỹi

β
√
il(ηi)

)
, f

(
Ỹj

β
√
jl(ηj)

))∣∣∣∣
≤

∣∣∣∣Cov(f( Ỹi

β
√
il(ηi)

)
, f

(
Ỹi,j

β
√
jl(ηj)

))∣∣∣∣
+

∣∣∣∣Ef( Ỹi

β
√
il(ηi)

)(
f
(

Ỹj

β
√
jl(ηj)

)
– f

(
Ỹi,j

β
√
jl(ηj)

))

– Ef
(

Ỹi

β
√
il(ηi)

)
E
(
f
(

Ỹj

β
√
jl(ηj)

)
– f

(
Ỹi,j

β
√
jl(ηj)

))∣∣∣∣ =: I + I.

The well-known property of a φ-mixing sequence (see [, Lemma ..]) and the bound-
edness of f imply |I| ≤ Cφ(i). Since

∑
n≥ φ

/(n) <∞ implies φ(n) � (lnn)–, it follows
that for any  < ε < ( – α)/α with  ≤ α < /,

∑
≤i<j≤n

didjI ≤ C
D

n
(lnDn)(–α)/α

n∑
i=


i ln i

� D
n(lnDn)––ε . (.)

Estimate I. Since {Xn}n≥ is stationary and
∑∞

n= φ
/(n) < ∞, it follows from the relation

(.) in Li and Wang [] that

E

( i∑
k=

bk,jX̃∗
kj

)

=
i∑
k=

bk,jE
(
X̃∗
kj
) + 

i–∑
k=

i∑
l=k+

bk,jbl,jEX̃∗
kjX̃

∗
lj

=
i∑
k=

bk,jE
(
X̃∗
kj
) + 

i∑
k=

i∑
l=

bl,jEX̃
∗
jX̃

∗
kj – 

i∑
k=

i∑
l=i–k+

bl,jEX̃
∗
jX̃

∗
kj

http://www.journalofinequalitiesandapplications.com/content/2013/1/155
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– 
i∑
k=

i+–k∑
l=

bl,jbl,l+k–EX̃∗
jX̃

∗
kj

≤
i∑
k=

bk,j

(
E
(
X̃∗
kj
) + 

i∑
l=

∣∣EX̃∗
jX̃

∗
lj
∣∣)

≤
i∑
k=

bk,j

(
l(ηj) +Cl(ηj)

∞∑
l=

φ/(l)

)

≤ Cl(ηj)
i∑
k=

bk,j

by using Lemma .. in Lin and Lu []. Note that for n ≥ k,
∑k

i= log
(n/i) ≤ Ck( +

log(n/k)). Using the fact that {Xn}n≥ is stationary and that f is bounded and Lipschitzian,
we get

I ≤ C
E|∑i

k= bk,jX̃∗
kj|

β
√
jl(ηj)

≤ C√
jl(ηj)

(
E

∣∣∣∣∣
i∑
k=

bk,jX̃∗
kj

∣∣∣∣∣
)/

≤ C
√
l(ηj)√
jl(ηj)

( i∑
k=

( j∑
l=k


l

))/

≤ C√
j

( i∑
k=

log
(
j
k

))/

≤ C
√
i√
j
(
 + log

(
j/(i)

))/
≤ C

√
i√
j
(
 + log

(
j/(i)

))
≤ C(i/j)δ ,

where δ ∈ (, /). It follows that

∑
≤i<j≤n

didjI ≤
∑

≤i<j≤n
j/(i)≥(lnDn)/δ

didj
(
i
j

)δ

+C
∑

≤i<j≤n
j/(i)≤(lnDn)/δ

didj
(
i
j

)δ

≤ (lnDn)–
n∑
i=

di
n∑
j=

dj +C
n∑
i=

di
[i(lnDn)/δ ]∑

j=i

dj

≤ CD
n(lnDn)– +C exp

(
lnα n

) n∑
i=

di
[i(lnDn)/δ ]∑

j=i


j

≤ CD
n(lnDn)– +CD

n
ln lnDn

(lnDn)(–α)/α

≤ CD
n(lnDn)––ε (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/155
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for any  < ε < ( – α)/α with  ≤ α < /. From (.) and (.), we get

J ≤ CD
n(lnDn)––ε . (.)

Hence, combining (.) with (.) and (.) yields (.). �

Lemma . Under the hypotheses of Lemma ., there exists a positive constant ε such
that

Var

( n∑
k=

dkf
(

Ŷk

β
√
kl(ηk)

))
� D

n(lnDn)––ε . (.)

Proof By the same method as in the proof of Lemma ., we show (.). We have

Var

( n∑
i=

dif
(

Ŷi

β
√
il(ηi)

))

≤ 
( ∑
≤i≤j≤(i)∧n

+
∑

≤i<j≤n

)
didj

∣∣∣∣Cov(f( Ŷi

β
√
il(ηi)

)
, f

(
Ŷj

β
√
jl(ηj)

))∣∣∣∣ =: J + J.

In the same manner as in (.), we can see that J ≤ CD
n(lnDn)––ε . Consider J now. Let

Ŷi,j =
∑j

k=i+ bk,jX̂
∗
kj =

∑j
k=i+

∑j
l=k


l X̂

∗
kj for  ≤ i < j = ,, . . . , then

∣∣∣∣Cov(f( Ŷi

β
√
il(ηi)

)
, f

(
Ŷj

β
√
jl(ηj)

))∣∣∣∣
≤

∣∣∣∣Cov(f( Ŷi

β
√
il(ηi)

)
, f

(
Ŷi,j

β
√
jl(ηj)

))∣∣∣∣
+

∣∣∣∣Ef( Ŷi

β
√
il(ηi)

)(
f
(

Ŷj

β
√
jl(ηj)

)
– f

(
Ŷi,j

β
√
jl(ηj)

))

– Ef
(

Ŷi

β
√
il(ηi)

)
E
(
f
(

Ŷj

β
√
jl(ηj)

)
– f

(
Ŷi,j

β
√
jl(ηj)

))∣∣∣∣ =: J + J.

As in (.), we can see that
∑

≤i<j≤n didjJ � D
n(lnDn)––ε . Estimate J. By Lemma .

and η
j ∼ jl(ηj), there exists j such that E|X –μ|I{|X –μ| > ηj} ≤ l(ηj)/ηj for every j > j.

Using the fact that {Xn}n≥ is stationary and that f is bounded and Lipschitzian, we get

J ≤ C
E|∑i

k= bk,jX̂∗
kj|

β
√
jl(ηj)

≤ C
E|X̂∗

j|√
jl(ηj)

i∑
k=

bk,j

≤ C
E|X –μ|I{|X –μ| > ηj}√

jl(ηj)

( i∑
k=

i∑
l=k


l
+ ibi+,j

)

≤ C√
jl(ηj)

l(ηj)
ηj

(
i + i log

(
j/(i)

))
≤ C

(
i
j

)δ
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for large enough i with i < j, where δ ∈ (, ), since for any γ > , logn ≤ nγ for large n.
Similarly, we get by (.)

∑
≤i<j≤n

didjJ � D
n(lnDn)––ε ,

which means J ≤ CD
n(lnDn)––ε , and hence (.) is proved. �

Lemma . Under the hypotheses of Lemma ., there exists a positive constant ε such
that

Var

( n∑
k=

dkf
(

Ṽ 
k

kl(ηk)

))
� D

n(lnDn)––ε .

Proof This follows by the same method as the proof of Lemma ., and the details are
omitted. �

Lemma . Under the hypotheses of Theorem ., there exists a positive constant ε such
that

Var

( n∑
i=

diI

{ i⋃
k=

{|Xk –μ| > ηi
}})

�D
n(lnDn)–ε . (.)

Proof We have divided the proof into three parts:

Var

( n∑
i=

diI

{ i⋃
k=

{|Xk –μ| > ηk
}})

≤
n∑
i=

d
i Var

(
I

{ i⋃
k=

{|Xk –μ| ≥ ηk
}})

+ 
( ∑
≤i<j≤(i)∧n

+
∑

≤i<j≤n

)
didj

×
∣∣∣∣∣Cov

(
I

{ i⋃
k=

{|Xk –μ| > ηk
}}

, I

{ j⋃
k=

{|Xk –μ| > ηk
}})∣∣∣∣∣

=: L + L + L. (.)

It is clear from (.) and (.) that

L ≤
n∑
i=

exp( lnα i)
i

≤ C, L � D
n(lnDn)––ε . (.)

Consider L now. It is clear that I(E ∪ F) – I(F) ≤ I(E) for any sets E and F , then we note
that for  ≤ i < j ≤ n,

∣∣∣∣∣Cov
(
I

{ i⋃
k=

{|Xk –μ| ≥ ηi
}}

, I

{ j⋃
k=

{|Xk –μ| ≥ ηj
}})∣∣∣∣∣

≤
∣∣∣∣∣Cov

(
I

{ i⋃
k=

{|Xk –μ| ≥ ηi
}}

, I

{ j⋃
k=i+

{|Xk –μ| ≥ ηj
}})∣∣∣∣∣

http://www.journalofinequalitiesandapplications.com/content/2013/1/155
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+

∣∣∣∣∣EI
{ i⋃

k=

{|Xk –μ| ≥ ηi
}}(

I

{ j⋃
k=

{|Xk –μ| ≥ ηj
}}

– I

{ j⋃
k=i+

{|Xk –μ| ≥ ηj
}})

– EI

{ i⋃
k=

{|Xk –μ| ≥ ηi
}}

× E

(
I

{ j⋃
k=

{|Xk –μ| ≥ ηj
}}

– I

{ j⋃
k=i+

{|Xk –μ| ≥ ηj
}})∣∣∣∣∣

≤
∣∣∣∣∣Cov

(
I

{ i⋃
k=

{|Xk –μ| ≥ ηi
}}

, I

{ j⋃
k=i+

{|Xk –μ| ≥ ηj
}})∣∣∣∣∣

+ C

∣∣∣∣∣EI
{ i⋃

k=

{|Xk –μ| ≥ ηj
}}∣∣∣∣∣.

From the property of a φ-mixing sequence and φ(i) � (log i)–, we have

∣∣∣∣∣Cov
(
I

{ i⋃
k=

{|Xk –μ| ≥ ηi
}}

, I

{ j⋃
k=i+

{|Xk –μ| ≥ ηj
}})∣∣∣∣∣ ≤ Cφ(i),

and hence

∑
≤i<j≤n

didjφ(i) ≤ C
D

n
(lnDn)(–α)/α

n∑
i=


i ln i

≤ C
D

n ln lnn
(lnDn)(–α)/α � D

n(lnDn)––ε (.)

for any  < ε < ( – α)/α. By the stationarity of {Xn}n≥ and Lemma .(b), we get∑n
k= P{|Xk – μ| ≥ ηn} = nP{|X – μ| ≥ ηn} = o(), which yields EI{⋃i

k={|Xk – μ| ≥ ηj}} ≤∑i
k= P{|Xk –μ| ≥ ηj} = iP{|X –μ| ≤ ηj} � i/j, and hence, in the same way as in (.),

∑
≤i<j≤n

didj
i∑
k=

P
{|Xk –μ| ≥ ηj

} ≤ CD
n(lnDn)––ε . (.)

From (.) and (.), it follows that

L �D
n(lnDn)––ε . (.)

Therefore, combining (.) with (.) and (.), we obtain (.), which is our claim.
�

3 Proof of Theorem 1.1
Let Ci = Si/(iμ). To prove Theorem ., it suffices to show that

lim
n→∞


Dn

n∑
k=

dkI

{
μ

β
√
Vk

k∑
i=

logCi ≤ x

}
= �(x) a.s.
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for any x ∈ R. For any given  < ε < , it is clear that

I

{
μ

β
√
Vk

k∑
i=

logCi ≤ x

}

≤ max

{
I
{

μ
∑k

i= logCi

β
√
( + ε)kl(ηk)

≤ x
}
+ I

{
Ṽ 
k > ( + ε)kl(ηk)

}
,

I
{

μ
∑k

i= logCi

β
√
( – ε)kl(ηk)

≤ x
}
+ I

{
Ṽ 
k < ( – ε)kl(ηk)

}}
+ I

{ k⋃
i=

{|Xi –μ| > ηk
}}

and

I

{
μ

β
√
Vk

k∑
i=

logCi ≤ x

}

≥ min

{
I
{

μ
∑k

i= logCi

β
√
( – ε)kl(ηk)

≤ x
}
– I

{
Ṽ 
k < ( – ε)kl(ηk)

}
,

I
{

μ
∑k

i= logCi

β
√
( + ε)kl(ηk)

≤ x
}
– I

{
Ṽ 
k > ( + ε)kl(ηk)

}}
– I

{ k⋃
i=

{|Xi –μ| > ηk
}}

.

Hence it suffices to show


Dn

n∑
k=

dkI
{

μ
∑k

i= logCi

β
√
kl(ηk)

≤ x
}

→ �(
√
± ε · x) a.s., (.)


Dn

n∑
k=

dkI

{ k⋃
i=

{|Xi –μ| > ηk
}} →  a.s., (.)


Dn

n∑
k=

dkI
{
Ṽ 
k > ( + ε)kl(ηk)

} →  a.s., (.)


Dn

n∑
k=

dkI
{
Ṽ 
k < ( – ε)kl(ηk)

} →  a.s. (.)

Let  < δ < / and f be a real function such that for any given x ∈ R,

I{y≤ √
± ε · x – δ} ≤ fx(y) = f (y) ≤ I{√± ε · x + δ}.

We first prove that (.) holds under condition (.). Note that E|X|p < ∞ for all  < p < 
since X belongs to the domain of attraction of the normal law. For our purpose, we fix
/ < p < . By the Marcinkiewicz-Zygmund strong law of a large number for φ-mixing
sequences (see [, Remark ..], []), for i large enough, we have

|Ci – | ≤ i/p –  a.s.

It is easy to see that log( + x) – x =O(x) as x→ . Thus∣∣∣∣∣
k∑
i=

logCi –
k∑
i

(Ci – )

∣∣∣∣∣ �
k∑
i=

(Ci – ) � k/p– a.s.
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Hence for almost every event ω and any  < δ < /, there exists k = k(ω, δ,x) such that
for k > k,

I
{

μ
∑k

i=(Ci – )
β
√
kl(ηk)

≤ √
± ε · x – δ

}
≤ I

{
μ

∑k
i= logCi

β
√
kl(ηk)

≤ √
± ε · x

}

≤ I
{

μ
∑k

i=(Ci – )
β
√
kl(ηk)

≤ √
± ε · x + δ

}
. (.)

We note that

μ

k∑
i=

(Ci – ) =
k∑
j=

k∑
l=j


l
X̃∗
jk +

k∑
j=

k∑
l=j


l
X̂∗
jk = Ỹk + Ŷk .

So, for any  < δ < /, we have

I
{

μ
∑k

i=(Ci – )
β
√
kl(ηk)

≤ √
± ε · x + δ

}
≤ I

{
Ỹk

β
√
kl(ηk)

≤ √
± ε · x + δ + δ

}

+ I
{ |Ŷk|

β
√
kl(ηk)

> δ

}
(.)

and

I
{

μ
∑k

i=(Ci – )
β
√
kl(ηk)

≤ √
± ε · x – δ

}
≥ I

{
Ỹk

β
√
kl(ηk)

≤ √
± ε · x – δ – δ

}

– I
{ |Ŷk|

β
√
kl(ηk)

> δ

}
. (.)

Let λ = δβ
√
 with  < δ < /. By using the fact that {Xk}k≥ is stationary and

Lemma .(c), we have

P
{|Ŷk| ≥ λ

√
kl(ηk)

} ≤ P

{ k∑
i=

bi,k
∣∣X̂∗

k
∣∣ ≥ λ

√
kl(ηk)

}
≤ (

∑k
i= bi,k)E|X̂∗

k|
λ
√
kl(ηk)

≤ kE|X –μ|I{|X –μ| ≥ ηk}
λ
√
kl(ηk)

= o(), (.)

and by (.) in Lemma ., we get


Dn

n∑
k=

dkI
{

Ỹk

β
√
kl(ηk)

≤ x
}

→ �(
√
± ε · x± δ ± δ) a.s. (.)

for any x ∈ R. Hence, combining (.)-(.) yields (.) by the arbitrariness of δ, δ. For
(.), it is clear from (.) in Lemma . that (.) holds true since P(

⋃k
i={|Xi – μ| ≥

ηk}) ≤ kP{|X –μ| ≥ ηk} = o(). Consider (.). By (.) in Lemma ., it suffices to show
that

P
{
Ṽ 
k > ( + ε)kl(ηk)

} →  as k → ∞.
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We note that {X̃
jk –EX̃

jk}kj= is a φ-mixing sequence with the samemixing coefficient φ(k).
Using again Lemma . in Shao [] and Lemma (d), we obtain

η–
k E

( k∑
j=

(
X̃
jk – EX̃

jk
))

≤ Ckη–
k max

≤j≤k
E
(
X̃
jk – EX̃

jk
) ≤ Ckη–

k EX̃
k = o().

Hence, by Chebyshev’s inequality and again recalling η
k ∼ kl(ηk), we have

P
{∣∣Ṽ 

k – EṼ 
k
∣∣ > εkl(ηk)

} ≤ E|Ṽ 
k – EṼ 

k |
ε(kl(ηk))

≤ Cε–η–
k E

( k∑
j=

(
X̃
jk – EX̃

jk
))

= o()

and EṼ 
k =

∑k
i= l(ηi) ∼ kl(ηk), which implies that

P
{
Ṽ 
k > ( + ε)kl(ηk)

} ≤ P
{
Ṽ 
k – EṼ 

k >
ε


kl(ηk)

}
= o(),

and hence (.) holds true. Similarly,

P
{
Ṽ 
k < ( – ε)kl(ηk)

}
= o(),

which implies that (.). The proof is completed.

Competing interests
The author did not provide this information.

Received: 21 December 2012 Accepted: 12 March 2013 Published: 4 April 2013

References
1. Brosamler, GA: An almost everywhere central limit theorem. Math. Proc. Camb. Philos. Soc. 104, 561-574 (1988)
2. Schatte, P: On strong versions of the central limit theorem. Math. Nachr. 137, 249-256 (1988)
3. Berkes, I: Results and problems related to the pointwise central limit theorem. In: Szyszkowicz, B (ed.) Asymptotic

Results in Probability and Statistics (A Volume in Honor of Miklós Csörgő), pp. 59-60. Elsevier, Amsterdam (1998)
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14. Csörgő, M, Szyszkowicz, B, Wang, Q: Donsker’s theorem for self-normalized partial sums processes. Ann. Probab.

31(3), 1228-1240 (2003)
15. Liu, W, Lin, ZY: Asymptotics for self-normalized random products of sums for mixing sequences. Stoch. Anal. Appl. 25,

739-762 (2007)
16. Seneta, E: Regularly Varying Functions. Springer, Berlin (1976)
17. Lin, Z, Lu, C: Limit Theory for Mixing Dependent Random Variables. Kluwer Academic, Boston (1996)
18. Xue, LG: Convergence rates of the strong law of large numbers for a mixing sequence. J. Syst. Sci. Math. Sci. 14,

213-221 (1994) (in Chinese)
19. Shao, QM: Almost sure invariance principle for mixing sequences of random variables. Stoch. Process. Appl. 48,

319-334 (1993)

http://www.journalofinequalitiesandapplications.com/content/2013/1/155


Hwang Journal of Inequalities and Applications 2013, 2013:155 Page 15 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/155

doi:10.1186/1029-242X-2013-155
Cite this article as: Hwang: On the almost sure central limit theorem for self-normalized products of partial sums of
φ-mixing random variables. Journal of Inequalities and Applications 2013 2013:155.

http://www.journalofinequalitiesandapplications.com/content/2013/1/155

	On the almost sure central limit theorem for self-normalized products of partial sums of phi-mixing random variables
	Abstract
	MSC
	Keywords

	Introduction and main results
	Lemmas
	Proof of Theorem 1.1
	Competing interests
	References


