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Abstract

Let {X,,n > 1} be a sequence of strictly stationary ¢>-mixing positive random variables
which are in the domain of attraction of the normal law with £X; = u > 0, possibly
infinite variance and mixing coefficient rates ¢(n) satisfying >_,.., ¢">(2") < oc.
Under suitable conditions, we here give an almost sure central limit theorem for
self-normalized products of partial sums, i.e.,

1 n m S w/(BVm)
nII—QOD_nde/<<H_) §x>—F(X) as.forany x € R,

m=1 k=1 ka

where F is the distribution function of the random variable e¥>N and A/ is a standard
normal random variable.
MSC: 60F15
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1 Introduction and main results

The almost sure central limit theorem (ASCLT) was first introduced independently by
Brosamler [1] and Schatte [2]. Since then, many interesting results have been discovered
in this field. The classical ASCLT states that when EX = 0, Var(X) = 02,

R S T v
nle Togn ; %1{ ﬁ < x} =®(x) as.foranyxeR. (1.1)

Here and in the sequel, I{-} denotes an indicator function and ®(-) is the distribution func-
tion of the standard normal random variable. It is known (see Berkes [3]) that the class of
sequences satisfying the ASCLT is larger than the class of sequences satisfying the cen-
tral limit theorem. In recent years, the ASCLT for products of partial sums has received
more and more attention. We refer to Gonchigdanzan and Rempala [4] on the ASCLT
for the products of partial sums, Gonchigdanzan [5] on the ASCLT for the products of
partial sums with stable distribution. Li and Wang [6] and Zhang et al. [7] showed AS-
CLT for products of sums and products of sums of partial sums under association. Huang
and Pang [8], Zhang and Yang [9] obtained the ASCLT results of self-normalized versions.
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Zhang and Yang [9] proved the following ASCLT for self-normalized products of sums of

i.i.d. random variables.

Theorem A Let {X,X,,n > 1} be a sequence of i.i.d. positive random variables with u =
EX >0, and assume that X is in the domain of attraction of the normal law. Then

n

k Vi
1 1 S;
nlinolo logn Z %1<<H ! ) < x) =F(x) a.s. foranyxeR, 1.2)

k-1 1 IH

where F(-) is the distribution function of the random variable N and N is a standard
normal random variable.

A wide literature concerning the ASCLT of self-normalized versions of independent
random variables is now available, while the ASCLT for self-normalized versions of
weakly dependent random variables is worth studying. Recalling that {X,,,n > 1} is a se-
quence of random variables and F? denotes the o -field generated by the random variables
X4 X441, - -, Xp. The sequence {X,,, n > 1} is called ¢-mixing if

¢(m)=sup  sup ‘P(B|A) —P(B)‘ — 0 asn— oo.
k=1 Ac Fk,BeFE®

k+n
The sequence {X,,,n > 1} is called p-mixing if

| Cov(§,n)l

———" 50 asu— o0,
: (EE2)2(En2)1/2

p(n) = sup sup
k21 g ey (F)nely(FRR,

where Ly(F?) is a set of all 2-measurable random variables with second moments. It is
well known that p(n) < 2¢"2(n), and hence a ¢-mixing sequence is p-mixing.

Theorem B (Balan and Kulik [10, 11]) Let {X,,, n > 1} be a strictly stationary ¢-mixing se-
quence of nondegenerate random variables such that EX; = 0 and X, belongs to the domain
of attraction of the normal law. Let S, = Y, X; and V? = Y "' X?. Suppose that $(1) < 1
and the mixing coefficients ¢(n) satisfy Y, $"*(2") < 0o, then

51,

(i) 4 N©,1) and

&
SN

where

n n
A, = Var(ZXJ{|Xi| < ri}), B, =Y Var(X{IXi| <u}),

i=1 i=1

andrizinf{s:szl,% < %}fori:l,Z,....

In this paper we study the almost sure central limit theorem, containing the general
weight sequences, for weakly dependent random variables. Let {X,,, 7 > 1} be a sequence
of strictly stationary ¢-mixing positive random variables which are in the domain of attrac-
tion of the normal law with EX; = > 0, possibly infinite variance and mixing coefficients
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¢(n) satisfying Y, #V2(2") < 0o. We here give an almost sure central limit theorem for
self-normalized pr(;ducts of partial sums under a fairly general condition.

Throughout this paper, the following notations are frequently used. For any two positive
sequences, 4, < b, means that for a certain numerical constant C not depending on 7, we
have a, < Cb,, for all n, and a, ~ b, means a,/b, — 1 as n — oo. [x] denotes the largest
integer smaller or equal to x, and C denotes a generic positive constant, whose value can
differ in different places.

We let I(x) = E(X; — u)*I{| X, — n| <«x}, b=inf{x>1:[(x) >0} and

I(s) - 1

nnzinf{s:szb+l,s—2_;}, n=12,..., (1.3)

then it is easy to see that nl(n,) ~ n% and 1, < 9.1 (¢f. de la Pena et al. [12]). We denote

Ap = Var(Z(X; - WIH{|X; - p| < nn}>, B = Var((X; — i)I{IX; — el < na}).

Jj=1 Jj=1

Our main theorem is as follows.

Theorem 1.1 Let {X,,,n > 1} be a sequence of strictly stationary ¢-mixing positive random
variables with EX; = u > 0, possibly infinite variance. Assume that X, belongs to the domain
of attraction of the normal law, and the mixing coefficients ¢(n) satisfy ), #2(2") < o0.
Denote S, =y =y X; and V? =Y 1 (X; — n)?. If, moreover,

A2~ B*B%  for some B € (0,00),

then we have
k

n wl(BVi)
1 S;
nlingo D—n kZ_I: dﬂ((g ]—li> < x) =F(x) a.s.foranyxeR, (1.4)

where F(-) is the distribution function of the random variable eV?N| N is a standard normal
random variable and

de=kexp(n“k), 0<a<l/2, D,=)» d (1.5)
k=1

Remark 1.1 If we assume that

Jim 7 Y Cov(T{ 11 = 0.} X1{1X1 < }) =ar>-172
n Ir=2

then A2 ~ B2B? with % =1+ 2a.
We have the following corollaries.

Corollary 1.1 Let {X,,n > 1} be a strictly stationary ¢-mixing sequence of positive random
variables such that EX; = > 0, Var(Xy) = 0% < 0o and ijz |EX1.X;| < 0o, then (1.4) holds.
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Corollary 1.2 Let {X,, n > 1} be a strictly stationary ¢-mixing sequence of positive random
variables such that EX, = ju > 0, Var(X;) =o* <ooand )", _, $"*(2") < 00. Set S, = Y[, X;
and o? = Var(S2), then (1.4) holds.

Remark 1.2 Let diy = 1/k and 8 = 1. If {X,,,n > 1} is a sequence of i.i.d. positive random
variables such that £X; = i > 0 and X; belongs to the domain of attraction of the normal
law, then Theorem 1.1 is just Theorem A.

Remark 1.3 By the terminology of summation procedures (see [13, p.35]), Theorem 1.1
remains valid if we replace the weight sequence {di}¢>1 by any {d}};>1 such that 0 < 4 <
dyand ) ., di =0

2 Lemmas
In this section, we introduce some lemmas which are used to prove our theorem.

Lemma 2.1 (Csorgé et al. [14]) Let X be a random variable, and denote I(y) = E(X —
W) {|X — | < y}. The following statements are equivalent:
(a) X is in the domain of attraction of the normal law,
(b) ¥*P(IX — | >y} = o(l(y)),
(©) YEIX - pl{IX = 1] > 3} = ol(»)),
(d) EIX = pu|*H{IX = p| <y} = 0 7U(y)) for a > 2.

For all positive integers 1 < i < k < 0o, we denote
Xuo= X=X —pl <me}, Ko = (X = wI{IX; - ul > i},

k
~ ~ ~ ~ —~ ~ 1
X = Xie — EXi, X = Xie — EXi, bix= E 7 (2.1)
I=i

k k
Yo=Y buXp,  Ye=) buX;, o Vi=) X
i=1 i=1
Lemma 2.2 Let f be a nonnegative, bounded Lipschitz function such that

fx)<C and Lf(x)—f(y)|§C|x—y| forevery x,y € R.

If the assumptions of Theorem 1.1 hold and there exists a positive constant € such that

2 —1-€
Var(z kf(ﬂ \/2](17)) <« DX(InD,)™", (2.2)

then we have

n

1
—Y4a ) 5. .
Jim — Z kf(ﬂ 2l<l(nk> Ef(N(0,1) as (2.3)

Proof From the formula (2.5) in Liu and Lin [15], we have

Y

d
_— N(0,1) (2.4)
B2
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as k — oo under the hypotheses of Theorem 1.1. Then

Ef(ﬁm) Ef(N(0,1))

as k — oo, which implies from Toeplitz’s lemma that

n

%; (ﬂﬁ) EF(N(0,1))

as n — 00. To prove (2.3), we only need to show that

. 1 « Y ) ( Y ):| -
lim — d ) -_Efl —— )| = 2.5
P D, kZI: g [f (ﬂ,/Zkl(nk) s B/ 2kl(nk) i @9
Let
1 . Y ) ( Y, ))
= — d | -Ef| ————— f >1L
=D, 2 ( (ﬁ\/zkzmk) Novaaam)) ™"

By (2.2), we have

Vi = 3 Var(kz (;3 TN, )) < (InDy)™

Note that for « = 0, we get dj = e/k, D, ~ elnn. For o > 0, we get
Inn
D, ~ / exp(t*) dt
0

N/()lnn(exp(t“)+ 1;01 o (t“)) dt

= é(ln n)t exp(ln“ n), (2.6)

and using Karamata’s theorem (see Seneta [16]),

exp(In® x) = exp (/ a(lnu)*Yu du), a<l, (2.7)
1

is a slowly varying function at co. Hence D,,,; ~ D,. Let y be such that 0 < y <€/(1 + €),
and ny = inf{n : D, > exp(k'~7)}, then

Dy, > exp(k'™) > Dy, 1,

and thus

an ~ an—l
T exp(kl7v)  exp(klv)
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which means that D, ~ exp(k!=7). Since (1 - ¥)(1 + €) > 1, we have

oo o0 1

2
D Evn =CY rima <o
k=1 k=1

which implies v,, — 0 a.s. For any given #, there exists k such that n; < n < ng,1. It is easy
to see that by the boundedness of f,

Myl
|Vn|S|Vn,(|+ Zd,_lvwk|+C< T )—)0 a.s.,

nk i=ng
which yields (2.5). Hence (2.3) holds true. O

Lemma 2.3 Assumef is a nonnegative, bounded Lipschitz function such that f (x) < C and
fx) —f()| < Clx —y| for every x,y € R. If there exists a positive constant € such that

2
Var(Z kf(ﬂm)) K Dj(InD,)™ (2.8)

n i}z
Var dkf< K )) <« D*(InD,)™", (2.9)
(; ki(ni)
n k
Var( dil { U=l > mi} }) < D;(InD,) ™. (2.10)
k=1 i=1

Then, under the assumptions of Theorem 1.1, we have

Yi
li .
ninoloD Z kf(ﬁﬂkl(nk ) (/3\/2](1(7”( ) 21
%
)E&D Z & (kl ) Jim Ef (kl(nk)) @5 @12)
1 n k k
Jim — del{U{m - ul> nk}} = lim P(U{m - ul> nk}) as. (2.13)
" k=1 *©

i=1 i=1

Proof The relations (2.11)-(2.13) follow by the same method as in the proof of Lemma 2.2,
and the details are omitted here. O

To prove that under the hypotheses of Theorem 1.1, the relations (2.2) and (2.8)-(2.10)
hold true, we show them by using the following four lemmas.

Lemma 2.4 Assume that f is a nonnegative, bounded Lipschitz function such that f (x) < C
and |f (x) — f(y)| < Clx - y| for every x,y € R. Then, under the assumptions of Theorem 1.1,
there exists a positive constant € such that

\Y D?(InD,) €. .
ar(z kf(ﬂm)) <« Dy(InD,) (2.14)
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Proof Write

Var<2d‘f<ﬂ\/m>)
52( 2t >didj

1<i<j<@2)An  122i<j<n

~

Cov<f<ﬂ\/§le)’f<ﬁ\/2?Tnj)))’

=111 +12. (215)

From (2.6), we get

D,

InD, ~ In* n, exp(ln"‘ n) ~ (nD,)aa"
n M —a)/a

(2.16)

Since f is a nonnegative, bounded Lipschitz function, it follows from (2.16) that for any
O<e<(1-2a)/awith0<a<1/2,

D2 = 1 2 1- €
11 < C Z dd CW Z <<D (lnD ) (217)

1<i<j<(2i)An

Consider I, now. Let ?21‘,; = ZJ,;ZM bk,j)~(,f}. = ],'<=2i+1 ek }X* for1 <2i<j=3,4,...,then

s )

Y, Yai)
oy )
°V<f<ﬁ 2il(m)>f</3\/2iTn/)

i) ) ()

Y: Y,::
M) i
/ (/3 2il(m)> ((ﬁ i) "\ e

The well-known property of a ¢-mixing sequence (see [17, Lemma 1.2.9]) and the bound-
edness of f imply |I1| < Co(i). Since ), _, ¢"/*(2") < oo implies ¢ (1) < (Inn)7!, it follows
that for any 0 < € < (1 - 2a)/a with 0 <@ <1/2,

n

D? 1
ddly <C——1 N —_ « D?>(InD,)"*. 2.18
2 didiln = Clun S 2 iy < Dn D) (2.18)

1<2i<j<n

Estimate I5. Since {X},},>1 is stationary and ZZZI @2(2") < 00, it follows from the relation
(2.2) in Li and Wang [6] that

2i 2i-1 2i
(S0) - e 23 3 ninsis
k=1 k=1 I=k+1

Zbk] (Xx) +2i:i:b2EX*Xkl 226 Z b EXSX;,

k=2 I=1 k=2 1=2i-k+2
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2i 2i+l-k

-2 Z Z Dbk EXT X
k=2 -1

2i

= Zblzgj( Xk; +6Z|E Xl/ )
k=1
2i 0

< Zb/%,,f (1(’7;) + Cl(n)) Z¢1/2(1))

k=1 =1

2i
<Cln) Y b3,

k=1

by using Lemma 1.2.8 in Lin and Lu [17]. Note that for n > &, Zle log?(n/i) < Ck(1 +
log?(n/k)). Using the fact that {X,,},- is stationary and that f is bounded and Lipschitzian,
we get

EI Y3 biiXy

Iy < Ci
B/ 2jl(n;)
Zblek/

k=1

2\ 1/2
\/ 211(77} ( )
1(77/) 2i (; 1>2>1/2
C —

(- (0))

IA

<
Vi

< CJ—;(I +log? (/( 21)))1/2
< CL\;(I + 10g(//(21 ))

< CQilj)’,

where § € (0,1/2). It follows that

N ) )

2i 2i

Y didip< ) didj<_,) +Cc > didj<—,>

1<2i<j<n 1<2i<j<n J 1<2i<j<n J
J/(20)=(In D)2/ JI(20)<(In D)2/

n [2i(InD;)?'%)

<(InD,)” ZdZd+CZd Y 4
i=1 j=1

j=2i

n [2i(InD,,)%/3)

< CDfl(lnD,,)_2 + Cexp(ln“ n) Zd,» Z -
i=1 j=2i

InlnD,
< CDZ(lnD ) 2+CD5$

< CD(InD,)™ (2.19)

Page 8 of 15
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for any 0 < € < (1 — 2o)/a with 0 < & < 1/2. From (2.18) and (2.19), we get
Jo < CD*(InD,,)™"¢. (2.20)
Hence, combining (2.15) with (2.17) and (2.20) yields (2.14). O

Lemma 2.5 Under the hypotheses of Lemma 2.4, there exists a positive constant € such
that

2 1 —l—e' .
Var(z kf(ﬁ\/W)) &« DX(InD,) (2.21)

Proof By the same method as in the proof of Lemma 2.4, we show (2.21). We have

Var(Z f(ng))
52( 2 2 >didj

1<i<j<(2)An  1=22i<j<n

C°V<f<N§Tm)’ (ﬁ%))’ fir

In the same manner as in (2.17), we can see that /; < CDf,(lnD,,)’l’e. Consider /5 now. Let
Yaij = Y tcnint DXy = Ykenin 2otk 1 X5 for 1 <2i<j=3,4,..., then

‘C°V<f<NZlTw>’f<ﬁ\/§Tm>>'

<

"COV(f(ﬂJz?iile)f(ﬁf%))'

I G (i) )

Y, Yoi;
51 E U ()~ (Gt )| =+
/ (,3 2il(m)> ((ﬂ i)\ sy AT

Asin (2.18), we can see that Zl§2i<1'§n did;Jn < D3(InD,)™'~¢. Estimate /5,. By Lemma 2.1
and njz ~ jl(n;), there exists jo, such that E|X; — u|I{|X; — u| > n;} < I(n;)/n; for every j > jo.
Using the fact that {X,},>1 is stationary and that f is bounded and Lipschitzian, we get

E|Z bk/
]225 < Z k,j
IB\/ 211(771 vV 211(77/
E|X. I{|X L&
< i > ) (ZZ 2b>
v 2jln;) kel Ik
C  lny)

—2= (2i + 2ilog(j/(2i)))

V2jlny)

<
<2i>
<C|—+
]

Page 9 of 15
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for large enough i with 2i < j, where § € (0,1), since for any y > 0, logn < n" for large n.
Similarly, we get by (2.19)

Z didiJ»; < D2(InD,,) ™

1<2i<j<n
which means J, < CD?(InD,)"¢, and hence (2.21) is proved. O

Lemma 2.6 Under the hypotheses of Lemma 2.4, there exists a positive constant € such
that

72

- Vk 2 —1-€
Var(; d;J(kl(nk)>) &« DX(InD,)™".

Proof This follows by the same method as the proof of Lemma 2.4, and the details are
omitted. O

Lemma 2.7 Under the hypotheses of Theorem 2.4, there exists a positive constant € such
that

Var(z d,»]{ UJ{1Xe =l > i} D &« D2(InD,)*. (2.22)

i=1 k=1

Proof We have divided the proof into three parts:

Var(édJ{g{le—ka}})
<Zd2Var< {H Xk — el = m }) <1<l<,§z> N 1(;:(”)

x Cov(]{LiJ{le i > e } iL]J IXk—MI>’7k}D

k=1 k=1

:ILl +L2 +L3. (223)

It is clear from (2.7) and (2.17) that

n B
2In”
L<Y % <C, Ly« DXInD,) . (2.24)
i=1

Consider Ls now. It is clear that I(E U F) — I(F) < I(E) for any sets E and F, then we note
thatfor1<2i<j<n,

Cov([{Q{le— |>m] {gjl {1Xe - 1t |>'7;}})‘

< &w(l{kQ{le— |2 i) }I{ |Xk_mzm}})‘
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+ EI:O{IXk—ulzm }( :g | Xk = | = m } I{ko {IXk—MIZ’?f}D

k=1 =2i+1

—EI{O{IXk—MZ’?i}}

k=1

e e
COV<I{Q {1 X = pl = i} }1{ L]J {1 Xee = el =y} })‘

k=2i+1
2i
EI!U{m—m > n,»}”.
k=1

From the property of a ¢-mixing sequence and ¢ (i) < (logi)~!, we have

<

+2C

i j
Cov<1[U{|Xk—u| Zm}],l{ U {1Xc-nl = n;}]) < Co(),
k=1 k=2i+1
and hence
D? "1
didi¢(i) < C—- L —— —_—
Z 19 = Chp e 2o fng
1<2i<j<n i=1
D?1nl
n DA« DX(nD,) (2.25)

(ln Dn)(l—oz)/oz

for any 0 < € < (1 — 2a)/«. By the stationarity of {X,},>1 and Lemma 2.2(b), we get
S PUXk = il > n,} = nP{|Xy = 1] = 1.} = o(1), which yields EI{ ;" {1Xx — | > nj}} <
i’zl P{| Xy — | = n;} = 2iP{|X; — u| < n;} K 2i/j, and hence, in the same way as in (2.19),

2
> didyy  P{|Xi - pul = ;) < CDX(InD,) . (2.26)

1<2i<j<n k=1

From (2.25) and (2.26), it follows that
Ly < D*(InD,)™¢. (2.27)

Therefore, combining (2.23) with (2.24) and (2.27), we obtain (2.22), which is our claim.
d

3 Proof of Theorem 1.1
Let C; = S;/(in). To prove Theorem 1.1, it suffices to show that

n

1
nILToHZ [ ZlogC <x ®(x) a.s.
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for any x € R. For any given 0 < € < 1, it is clear that

i ZlogC <x}
Vi i=1

Smax{ { pY K, log G

B/ 2(1 + €)kl(ni)

o O DL R N VS
{ﬁ\/Tklnk +I{VZ < (1 - e)ki(ni)} +I{ZL=J1{|XZ > e

< } +I{VZ > (L+e)ki(ni)},

and

{ﬂx/—Vk leogC <x}

. {{ Yk logC
> min
B2 - ilne)

MZzllogC }_ ~5 }_ k B
I{ﬂ\/m HVi > L+ e)kl(ne) ) I[H{Uﬁ 1l > e} ¢

Hence it suffices to show

} {72 < (- kim0,

R K Zl 1 log C } ]
/; { 5 ok - ®(WV1Ee -x) as., (3.1)
n k
%del{u 1X; — 1] > me }—> 0 as., (3.2)
" k=1 i=1
— de > A +e)kln)} — 0 as, (3.3)
Z }
Dy k=1
— a’kl V2 <I-e)kine)f— 0 as. (3.4)
Z
Dy, k=1

Let 0 < § <1/2 and f be a real function such that for any given x € R,
Hy<~lte-x-8} <fi(0)=f0) <H{V1xe x+35}.

We first prove that (3.1) holds under condition (2.2). Note that E|X|? <oco forall1<p <2
since X belongs to the domain of attraction of the normal law. For our purpose, we fix
4/3 < p < 2. By the Marcinkiewicz-Zygmund strong law of a large number for ¢-mixing
sequences (see [17, Remark 8.2.1], [18]), for i large enough, we have

IC;—1| <" -1 as.

It is easy to see that log(1 + x) —x = O(x?) as x — 0. Thus

K k
D logCi- ) (Ci-1)| <Y (C-1)> <77 as.
i1 i :
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Hence for almost every event w and any 0 < §; < 1/4, there exists ko = ko(w, 81, %) such that
for k > ko,

k k
*(Ci-1 " log C;
,{Md—lie.x_&}sl{mf @e.x}

Bv2kl(nk) B/ 2kl(nk)
k
§I{M <JTfe -x+81}. (3.5)
B/ 2kl(nx)
We note that

So, for any 0 < §; < 1/4, we have

Yk (G- } { Vi }
[{————— <1+e€- ) — <41+e- 01 +9
{ PN e R e PNGr7 o

+I{|?7k|>62} (3.6)
B/2KI(mk)
and
Y (Ci-1) } { Y }
—_— +e-x-6 [{—————<+J1+te€e-x-6-6
]{ PN R R NG = o e
Vil
i — 554 3.7
I{ﬂ\/zkl(nk)> 2} 37

Let A = 8,8+/2 with 0 < 8, < 1/4. By using the fact that {X;};>; is stationary and
Lemma 2.1(c), we have

PlIYil = a/ki(n)) < P ib- X5 | = /Kl <M
kl = Nk)§ = . Lk [ M| = Nk = }\\//Tnk)

o 2KEIX = plI{1 X — pl = me}

< =o(1), (3.8)
Ay ki)
and by (2.3) in Lemma 2.2, we get
L Xn:dkl{iyk <x}—><b(«/1:|:e x+t8 +8) as (3.9)
J— = M 1 2 . .
Dn i3 B/ 2kl (ny)

for any x € R. Hence, combining (3.5)-(3.9) yields (3.1) by the arbitrariness of §;, ;. For
(3.2), it is clear from (2.13) in Lemma 2.3 that (3.2) holds true since P(Ule{lXi -l =
ni}) < kP{|X1 — | > ni} = o(1). Consider (3.3). By (2.12) in Lemma 2.3, it suffices to show
that

P{V2> (1 +ekm)} — 0 ask— oo,
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We note that {)?12,( - E)?ﬁ}j-‘d is a ¢-mixing sequence with the same mixing coefficient ¢ (k).
Using again Lemma 2.3 in Shao [19] and Lemma 1(d), we obtain

k 2
. ~ ~ _ ~ ~ 2 . ~
e E| Y (Xi —EX}) ) < Ckng* max E(X3, - EX})” < Chip*EXYy = o(1).

1<j<k
j=1 3=

Hence, by Chebyshev’s inequality and again recalling n7 ~ k(1;), we have
k 2

= Ce B QX - EXR) | =o()
j=1

E|V2-EVP?

)
P{|VE -EVE| > ekl(ny)} < e2(kl(ni))?

and EV2 = 35 1(;) ~ ki(ny), which implies that

P{VZ> (1 +)kne)} < p{ V2_EV2> %kl(nk)} = o(1),
and hence (3.3) holds true. Similarly,

PV < (1 - e)ki(n)} = o(1),

which implies that (3.4). The proof is completed.
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