RESEARCH

Journal of Inequalities and Applications a SpringerOpen Journal

Open Access

The general iterative methods for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings in Hilbert spaces

Kiattisak Rattanaseeha*

*Correspondence: kiattisakrat@live.com Division of Mathematics, Department of Science, Faculty of Science and Technology, Loei Rajabhat University, Loei, 42000, Thailand

Abstract

In this paper, the researcher introduces the general iterative scheme for finding a common element of the set of equilibrium problems and fixed point problems of a countable family of nonexpansive mappings in Hilbert spaces. The results presented in this paper improve and extend the corresponding results announced by many others.

MSC: 47H10; 47H09

Keywords: equilibrium problem; fixed point; nonexpansive mapping; variational inequality; strongly positive operator; Hilbert spaces

1 Introduction

Let *H* be a real Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and the norm $\|\cdot\|$. Let *C* be a nonempty closed and convex subset of *H*, and let $T : C \to C$ be a nonlinear mapping. In this paper, we use F(T) to denote the fixed point set of *T*.

Recall the following definitions.

(1) The mapping T is said to be nonexpansive if

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in C.$$
 (1.1)

Further, let *F* be a bifunction from $C \times C$ into \mathbb{R} , where \mathbb{R} is the set of real numbers. The so-called equilibrium problem for $F : C \times C \to \mathbb{R}$ is to find $y \in C$ such that

$$F(y,u) \ge 0, \quad \forall u \in C. \tag{1.2}$$

The set of solutions of (1.2) is denoted by EP(F). Given a mapping $A : C \to H$, let $F(y, u) = \langle Ay, u - y \rangle$ for all $y, u \in C$. Then $z \in EP(F)$ if and only if $\langle Az, u - z \rangle \ge 0$ for all $u \in C$. Numerous problems in physics, optimization and economics reduce to finding a solution of (1.2).

(2) The mappings $\{T_n\}_{n\in\mathbb{N}}$ are said to be a family of nonexpansive mappings from *H* into itself if

$$||T_n x - T_n y|| \le ||x - y||, \quad \forall x, y \in H,$$
 (1.3)

© 2013 Rattanaseeha; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

and denoted by $F(T_n) = \{x \in H : T_n x = x\}$ is the fixed point set of T_n . Finding an optimal point in $\bigcap_{n \in \mathbb{N}} F(T_n)$ of the fixed point sets of each mapping is a matter of interest in various branches of science.

Recently, many authors considered the iterative methods for finding a common element of the set of solutions to problem (1.2) and of the set of fixed points of nonexpansive mappings; see, for example, [1, 2] and the references therein.

Next, let $A : C \to H$ be a nonlinear mapping. We recall the following definitions.

(3) *A* is said to be *monotone* if

$$\langle Ax - Ay, x - y \rangle \ge 0, \quad \forall x, y \in C.$$

(4) *A* is said to be *strongly monotone* if there exists a constant $\alpha > 0$ such that

$$\langle Ax - Ay, x - y \rangle \ge \alpha ||x - y||^2, \quad \forall x, y \in C.$$

In such a case, *A* is said to be α -strongly monotone.

(5) *A* is said to be inverse-strongly monotone if there exists a constant $\alpha > 0$ such that

$$\langle Ax - Ay, x - y \rangle \ge \alpha ||Ax - Ay||^2, \quad \forall x, y \in C.$$

In such a case, *A* is said to be α -inverse-strongly monotone.

The classical variational inequality is to find $u \in C$ such that

$$\langle Au, v - u \rangle \ge 0, \quad \forall v \in C. \tag{1.4}$$

In this paper, we use VI(C, A) to denote the set of solutions to problem (1.4). One can easily see that the variational inequality problem is equivalent to a fixed point problem. $u \in C$ is a solution to problem (1.4) if and only if u is a fixed point of the mapping $P_C(I - \lambda)T$, where $\lambda > 0$ is a constant.

The variational inequality has been widely studied in the literature; see, for example, the work of Plubtieng and Punpaeng [3] and the references therein.

Recently, Ceng *et al.* [4] considered an iterative method for the system of variational inequalities (1.4). They got a strongly convergence theorem for problem (1.4) and a fixed point problem for a single nonexpansive mapping; see [4] for more details.

On the other hand, Moudafi [5] introduced the viscosity approximation method for nonexpansive mappings (see [6] for further developments in both Hilbert and Banach spaces).

A mapping $f: C \to C$ is called α -contractive if there exists a constant $\alpha \in (0, 1)$ such that

$$||f(x) - f(y)|| \le \alpha ||x - y||, \quad \forall x, y \in C.$$
 (1.5)

Let *f* be a contraction on *C*. Starting with an arbitrary initial $x_1 \in C$, define a sequence $\{x_n\}$ recursively by

$$x_{n+1} = (1 - \sigma_n) T x_n + \sigma_n f(x_n), \quad n \ge 0,$$
(1.6)

where $\{\sigma_n\}$ is a sequence in (0,1). It is proved [5, 6] that under certain appropriate conditions imposed on $\{\sigma_n\}$, the sequence $\{x_n\}$ generated by (1.6) strongly converges to the unique solution q in C of the variational inequality

$$\langle (I-f)q, p-q \rangle \geq 0, \quad p \in C.$$

Let *A* be a strongly positive linear bounded operator on a Hilbert space *H* with a constant $\bar{\gamma}$; that is, there exists $\bar{\gamma} > 0$ such that

$$\langle Ax, x \rangle \ge \bar{\gamma} \|x\|^2, \quad \forall x \in H.$$
 (1.7)

Recently, Marino and Xu [7] introduced the following general iterative method:

$$x_{n+1} = (I - \alpha_n A)Tx_n + \alpha_n \gamma f(x_n), \quad n \ge 0,$$
(1.8)

where *A* is a strongly positive bounded linear operator on *H*. They proved that if the sequence $\{\alpha_n\}$ of parameters satisfies appropriate conditions, then the sequence $\{x_n\}$ generated by (1.8) converges strongly to the unique solution of the variational inequality

$$\left\langle (A - \gamma f) x^*, x - x^* \right\rangle \ge 0, \quad x \in C, \tag{1.9}$$

which is the optimality condition for the minimization problem

$$\min_{x\in C}\frac{1}{2}\langle Ax,x\rangle-h(x),$$

where *h* is a potential function for γf (*i.e.*, $h'(x) = \gamma f(x)$ for $x \in H$).

In 2007, Takahashi and Takahashi [2] introduced an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions (1.2) and the set of fixed points of a nonexpansive mapping in Hilbert spaces. Let $S : C \rightarrow H$ be a nonexpansive mapping. Starting with arbitrary initial $x_1 \in H$, define sequences $\{x_n\}$ and $\{u_n\}$ recursively by

$$\begin{cases} F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \quad \forall y \in C, \\ x_{n+1} = \alpha_n \gamma f(x_n) + (1 - \alpha_n) S u_n, \quad \forall n \in \mathbb{N}. \end{cases}$$
(1.10)

They proved that under certain appropriate conditions imposed on $\{\alpha_n\}$ and $\{r_n\}$, the sequences $\{x_n\}$ and $\{u_n\}$ converge strongly to $z \in F(S) \cap EP(F)$, where $z = P_{F(S) \cap EP(F)}f(z)$.

Next, Plubtieng and Punpaeng, [3] introduced an iterative scheme by the general iterative method for finding a common element of the set of solutions (1.2) and the set of fixed points of nonexpansive mappings in Hilbert spaces.

Let $S : H \to H$ be a nonexpansive mapping. Starting with an arbitrary $x_1 \in H$, define sequences $\{x_n\}$ and $\{u_n\}$ by

$$\begin{cases} F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, & \forall y \in C, \\ x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n A) S u_n, & \forall n \in \mathbb{N}. \end{cases}$$
(1.11)

They proved that if the sequences $\{\alpha_n\}$ and $\{r_n\}$ of parameters satisfy appropriate conditions, then the sequence $\{x_n\}$ generated by (1.11) converges strongly to the unique solution of the variational inequality

$$\langle (A - \gamma f)z, x - z \rangle \ge 0, \quad \forall x \in F(S) \cap EP(F),$$
(1.12)

which is the optimality condition for the minimization problem

$$\min_{x\in F(S)\cap EP(F)}\frac{1}{2}\langle Ax,x\rangle-h(x),$$

where *h* is a potential function for γf (*i.e.*, $h'(x) = \gamma f(x)$ for $x \in H$).

Let $T_1, T_2,...$ be an infinite sequence of mappings of *C* into itself, and let $\lambda_1, \lambda_2,...$ be real numbers such that $0 \le \lambda_i \le 1$ for every $i \in \mathbb{N}$. Then for any $n \in \mathbb{N}$, Takahashi [8] (see [9]) defined a mapping W_n of *C* into itself as follows:

$$\begin{aligned} & \mathcal{U}_{n,n+1} = I, \\ & \mathcal{U}_{n,n} = \lambda_n T_n \mathcal{U}_{n,n+1} + (1 - \lambda_n) I, \\ & \mathcal{U}_{n,n-1} = \lambda_{n-1} T_{n-1} \mathcal{U}_{n,n} + (1 - \lambda_{n-1}) I, \\ & \vdots \\ & \mathcal{U}_{n,k} = \lambda_k T_k \mathcal{U}_{n,k+1} + (1 - \lambda_k) I, \\ & \mathcal{U}_{n,k-1} = \lambda_{k-1} T_{k-1} \mathcal{U}_{n,k} + (1 - \lambda_{k-1}) I, \\ & \vdots \\ & \mathcal{U}_{n,2} = \lambda_2 T_2 \mathcal{U}_{n,3} + (1 - \lambda_2) I, \\ & \mathcal{W}_n = \mathcal{U}_{n,1} = \lambda_1 T_1 \mathcal{U}_{n,2} + (1 - \lambda_1) I. \end{aligned}$$
(1.13)

Such a mapping W_n is called the *W*-mapping generated by $T_n, T_{n-1}, \ldots, T_1$ and $\lambda_n, \lambda_{n-1}, \ldots, \lambda_1$.

Recently, using process (1.13), Yao et al. [10] proved the following result.

Theorem 1.1 Let *C* be a nonempty closed convex subset of a real Hilbert space *H*. Let $F: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction satisfying the conditions:

- (1) *F* is monotone, that is, $F(x, y) + F(y, x) \le 0$ for all $x, y \in C$;
- (2) for each $x, y, z \in C$, $\lim_{t\to 0} F(tz + (1 t)x, y) \le F(x, y)$;

(3) for each $x \in C$, $y \mapsto F(x, y)$ is convex and lower semicontinuous.

Let $\{T_i\}_{i=1}^{\infty}$ be an infinite family of nonexpansive mappings of C into C such that $\bigcap_{i=1}^{\infty} F(T_i) \cap EP(F) \neq \emptyset$. Suppose $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ are three sequences in (0,1) such that $\alpha_n + \beta_n + \gamma_n = 1$ and $\{r_n\} \subset (0,\infty)$. Suppose the following conditions are satisfied:

- (1) $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$;
- (2) $0 < \liminf_{n \to \infty} \beta_n \leq \limsup_{n \to \infty} \beta_n < 1;$
- (3) $\liminf_{n\to\infty} r_n > 0$ and $\lim_{n\to\infty} (r_{n+1} r_n) = 0$.

Let f be a contraction of H into itself, and let $x_0 \in H$ be given arbitrarily. Then the sequences $\{x_n\}$ and $\{y_n\}$ generated iteratively by

$$\begin{cases} F(y_n, x) + \frac{1}{r_n} \langle x - y_n, y_n - x_n \rangle \ge 0, \quad \forall x \in C, \\ x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n W_n y_n, \end{cases}$$

converge strongly to $x^* \in \bigcap_{i=1}^{\infty} F(T_i) \cap EP(F)$, the unique solution of the minimization problem

$$\min_{\in \bigcap_{i=1}^{\infty} F(T_i) \cap EP(F)} \frac{1}{2} \|x\|^2 - h(x),$$

where h is a potential function for f.

x

Very recently, using process (1.13), Chen [11] proved the following result.

Theorem 1.2 Let *C* be a nonempty closed convex subset of a real Hilbert space *H*. Let $\{T_n\}_{n=1}^{\infty}$ be a sequence of nonexpansive mappings from *C* to *C* such that the common fixed point set $\Omega = \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$. Let $f : C \to H$ be an α -contraction, and let $A : H \to H$ be a self-adjoint, strongly positive bounded linear operator with a coefficient $\overline{\gamma} > 0$. Let σ be a constant such that $0 < \gamma \alpha < \overline{\gamma}$. For an arbitrary initial point x_0 belonging to *C*, one defines a sequence $\{x_n\}_{n\geq 0}$ iteratively

$$x_{n+1} = P_C \left[\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n x_n \right], \quad \forall n \ge 0,$$
(1.14)

where $\{\alpha_n\}$ is a real sequence in [0,1]. Assume the sequence $\{\alpha_n\}$ satisfies the following conditions:

(C1) $\lim_{n\to\infty} \alpha_n = 0;$

(C2) $\sum_{n=1}^{\infty} \alpha_n = \infty$.

Then the sequence $\{x_n\}$ generated by (1.14) converges in norm to the unique solution x^* , which solves the following variational inequality:

$$x^* \in \Omega$$
 such that $\langle (A - \gamma f) x^*, x^* - \hat{x} \rangle \ge 0, \forall \hat{x} \in \Omega.$ (1.15)

Motivated by this result, we introduce the following explicit general iterative scheme:

$$\begin{cases} x_1 \in H, \\ F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \quad \forall y \in H, \\ x_{n+1} = P_C[\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n], \quad \forall n \in \mathbb{N}, \end{cases}$$
(1.16)

where $\{T_n\}_{n\in\mathbb{N}}$ is a family of nonexpansive mappings from H into itself such that $\bigcap_{n\in\mathbb{N}} F(T_n)$ is nonempty, $F: C \times C \to \mathbb{R}$ is an equilibrium bifunction, A is a strongly positive operator on H, f is a contraction of H into itself with $\alpha \in (0, 1)$, $\{\alpha_n\}$, $\{r_n\}$, $\{\lambda_n\}$ suitable sequences in \mathbb{R} and $\{W_n\}$ is the sequence of a W-mapping generated by $\{T_n\}_{n\in\mathbb{N}}$ and $\{\lambda_n\}$. Let U be defined by $Ux = \lim_{n\to\infty} W_n x = \lim_{n\to\infty} U_{n,1} x$ for every $x \in C$ using process (1.13). We shall prove under mild conditions that $\{x_n\}$ and $\{u_n\}$ strongly converge to

a point $x^* \in \bigcap_{i=1}^{\infty} F(T_i) \cap EP(F)$, which is the unique solution of the variational inequality

$$\langle (A - \gamma f) x^*, x^* - \hat{x} \rangle \ge 0, \quad \forall \hat{x} \in \bigcap_{i=1}^{\infty} F(T_i) \cap EP(F),$$

$$(1.17)$$

or, equivalently, the unique solution of the minimization problem

$$\min_{x\in\bigcap_{i=1}^{\infty}F(T_i)\cap EP(F)}\frac{1}{2}\langle A\hat{x},\hat{x}\rangle-h(\hat{x}),$$

where *h* is a potential function for γf .

2 Preliminaries

Let *H* be a real Hilbert space with the norm $\|\cdot\|$ and the inner product $\langle\cdot,\cdot\rangle$, and let *C* be a closed convex subset of *H*. We call $f : C \to H$ an α -contraction if there exists a constant $\alpha \in [0,1)$ such that

$$\left\|f(x)-f(y)\right\| \leq \alpha \|x-y\|, \quad \forall x, y \in C.$$

Let *A* be a strongly positive linear bounded operator on a Hilbert space *H* with a constant $\bar{\gamma}$; that is, there exists $\bar{\gamma} > 0$ such that

$$\langle Ax, x \rangle \ge \overline{\gamma} \|x\|^2, \quad \forall x \in H.$$

Next, we denote weak convergence and strong convergence by notations \rightarrow and \rightarrow , respectively. A space *X* is said to satisfy Opial's condition [12] if for each sequence $\{x_n\}$ in *X* which converges weakly to a point $x \in X$, we have

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|, \quad \forall y \in X, y \neq x.$$

For every point $x \in H$, there exists a unique nearest point in *C*, denoted by $P_C x$, such that

$$\|x - P_C x\| \le \|x - y\|, \quad \forall y \in C.$$

 P_C is called the (nearest point or metric) projection of H onto C. In addition, $P_C x$ is characterized by the following properties: $P_C x \in C$ and

$$\langle x - P_C x, y - P_C x \rangle \ge 0, \tag{2.1}$$

$$||x - y||^{2} \ge ||x - P_{C}x||^{2} + ||y - P_{C}x||^{2}, \quad \forall x \in H, y \in C.$$
(2.2)

Recall that a mapping $T: H \rightarrow H$ is said to be firmly nonexpansive mapping if

$$||Tx - Ty||^2 \le \langle Tx - Ty, x - y \rangle, \quad \forall x, y \in H.$$

It is well known that P_C is a firmly nonexpansive mapping of H onto C and satisfies

$$\|P_C x - P_C y\|^2 \le \langle x - y, P_C x - P_C y \rangle, \quad \forall x, y \in H.$$

$$(2.3)$$

If *A* is an α -inverse-strongly monotone mapping of *C* into *H*, then it is obvious that *A* is $\frac{1}{\alpha}$ -*Lipschitz* continuous. We also have that for all $x, y \in C$ and $\lambda > 0$,

$$\| (I - \lambda A)x - (I - \lambda A)y \|^{2} = \| x - y - \lambda (Ax - Ay) \|^{2}$$

= $\| x - y \|^{2} - 2\lambda \langle Ax - Ay, x - y \rangle + \lambda^{2} \| Ax - Ay \|^{2}$
$$\leq \| x - y \|^{2} + \lambda (\lambda - 2\alpha) \| Ax - Ay \|^{2}.$$
 (2.4)

So, if $\lambda \leq 2\alpha$, then $I - \lambda A$ is a nonexpansive mapping of *C* into *H*.

The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1 Let *H* be a real Hilbert space. Then for all $x, y \in H$,

- (1) $||x + y||^2 \le ||x||^2 + 2\langle y, x + y \rangle;$
- (2) $||x + y||^2 \ge ||x||^2 + 2\langle y, x \rangle.$

Lemma 2.2 ([13]) Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences in a Banach space X, and let $\{\beta_n\}$ be a sequence in [0,1] with $0 < \liminf_{n\to\infty} \beta_n \le \limsup_{n\to\infty} \beta_n < 1$. Suppose that $x_{n+1} = (1-\beta_n)y_n + \beta_n x_n$ for all integers $n \ge 0$ and $\limsup_{n\to\infty} (\|y_{n+1} - y_n\| - \|x_{n+1} - x_n\|) \le 0$. Then $\lim_{n\to\infty} \|y_n - x_n\| = 0$.

Lemma 2.3 ([14]) Assume that $F : C \times C \rightarrow \mathbb{R}$, let us assume that F satisfies the following conditions:

- (A1) F(x, x) = 0 for all $x \in C$;
- (A2) *F* is monotone, i.e., $F(x, y) + F(y, x) \le 0$ for all $x, y \in C$;
- (A3) for each $x, y, z \in C$, $\lim_{t\to 0} F(tz + (1 t)x, y) \le F(x, y)$;
- (A4) for each $x \in C$, $y \mapsto F(x, y)$ is convex and lower semicontinuous.

Lemma 2.4 ([14]) Assume that $F : C \times C \to \mathbb{R}$ satisfies (A1)-(A4). For r > 0 and $x \in H$, define a mapping $T_r : H \to C$ as follows:

$$T_r(x) = \left\{ z \in C : F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \forall y \in C \right\}$$

for all $z \in H$. Then the following hold:

- 1. T_r is single-valued;
- 2. *T_r* is firmly nonexpansive, i.e., for any $x, y \in H$,

$$||T_r x - T_r y||^2 \le \langle T_r x - T_r y, x - y \rangle;$$

- 3. $F(T_r) = EP(F);$
- 4. EP(F) is closed and convex.

Lemma 2.5 ([12]) Let H be a Hilbert space, C be a closed convex subset of H, and $S : C \to C$ be a nonexpansive mapping with $F(S) \neq \emptyset$. If $\{x_n\}$ is a sequence in C weakly converging to $x \in C$ and if $\{(I - S)x_n\}$ converges strongly to y, then (I - S)x = y.

Lemma 2.6 ([6]) Assume that $\{a_n\}$ is a sequence of nonnegative real numbers such that

 $a_{n+1} \leq (1-\gamma_n)a_n + \delta_n, \quad n \geq 0,$

where $\{\gamma_n\}$ is a sequence in (0,1) and $\{\delta_n\}$ is a sequence in \mathbb{R} such that (1) $\sum_{n=1}^{\infty} \gamma_n = \infty;$ (2) $\limsup_{n \to \infty} \frac{\delta_n}{\gamma_n} \le 0$ or $\sum_{n=1}^{\infty} |\delta_n| < \infty.$ Then $\lim_{n \to \infty} \alpha_n = 0.$

Lemma 2.7 ([7]) Let H be a Hilbert space, C be a nonempty closed convex subset of H, and $f: H \to H$ be a contraction with a coefficient $0 < \alpha < 1$, and let A be a strongly positive linear bounded operator with a coefficient $\bar{\gamma} > 0$. Then, for $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$,

 $\langle x-y, (A-\gamma f)x-(A-\gamma f)y\rangle \geq (\bar{\gamma}-\gamma \alpha)||x-y||^2, \quad x,y \in H.$

That is, $A - \gamma f$ is strongly monotone with a coefficient $\overline{\gamma} - \gamma \alpha$.

Lemma 2.8 ([7]) Assume A is a strongly positive linear bounded operator on a Hilbert space H with a coefficient $\bar{\gamma} > 0$ and $0 < \rho \leq ||A||^{-1}$. Then $||I - \rho A|| \leq 1 - \rho \bar{\gamma}$.

Lemma 2.9 ([9] and [15]) Let C be a nonempty closed convex subset of a Banach space E. Let $\{T_i\}_{i=1}^{\infty}$ be a sequence of nonexpansive mappings of C into itself with $\bigcap_{i=1}^{\infty} F(T_i) \neq \emptyset$, and let $\{\lambda_i\}_{i=1}^{\infty}$ be a real sequence such that $0 < \lambda_i \le b < 1$, $\forall i \ge 1$. Then:

- (1) W_n is nonexpansive and $F(W_n) = \bigcap_{i=1}^{\infty} F(T_i)$ for each $n \ge 1$;
- (2) for each $x \in C$ and for each positive integer k, the $\lim_{n\to\infty} U_{n,k}x$ exists;
- (3) the mapping $U: C \to C$ defined by

 $Ux = \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n,1} x, \quad x \in C$

is a nonexpansive mapping satisfying $F(U) = \bigcap_{n=1}^{\infty} F(T_i)$ and it is called the *W*-mapping generated by T_1, T_2, \ldots and $\lambda_1, \lambda_2, \ldots$;

(4) $\lim_{m,n\to\infty} \sup_{x\in K} ||W_m x - W_n x|| = 0$ for any bounded subset K of E.

3 Main results

In this section, we introduce our algorithm and prove its strong convergence.

Theorem 3.1 Let *C* be a closed convex subset of a real Hilbert space *H*. Let *F* be a bifunction from $H \times H$ into \mathbb{R} satisfying (A1)-(A4). Let *f* be a contraction of *H* into itself with $\alpha \in$ (0,1), and let T_n be a sequence of nonexpansive mappings of *C* into itself such that $\Omega =$ $\bigcap_{n=1}^{\infty} F(T_n) \cap EP(F) \neq \emptyset$. Let $A : H \to H$ be a strongly positive bounded linear operator with a coefficient $\overline{\gamma} > 0$ with $0 < \gamma < \frac{\overline{\gamma}}{\alpha}$. Let $\lambda_1, \lambda_2, \ldots$ be a sequence of real numbers such that $0 < \lambda_n \leq b < 1$ for every $n = 1, 2, \ldots$. Let W_n be a *W*-mapping of *C* into itself generated by $T_n, T_{n-1}, \ldots, T_1$ and $\lambda_n, \lambda_{n-1}, \ldots, \lambda_1$. Let *U* be defined by $Ux = \lim_{n \to \infty} W_n x = \lim_{n \to \infty} U_{n,1} x$ for every $x \in C$. Let $\{x_n\}$ and $\{u_n\}$ be sequences generated by $x_1 \in H$ and

$$F(u_n, y) + \frac{1}{r_n} \langle y - u_n, u_n - x_n \rangle \ge 0, \quad \forall y \in H,$$

$$x_{n+1} = P_C[\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n], \quad \forall n \in \mathbb{N},$$
(3.1)

where $\{\alpha_n\}$ is a sequence in (0,1) and $\{r_n\}$ is a sequence in $[0,\infty)$. Suppose that $\{\alpha_n\}$ and $\{r_n\}$ satisfy the following conditions:

(C1)
$$\lim_{n\to\infty} \alpha_n = 0;$$

(C2) $\sum_{n=1}^{\infty} \alpha_n = \infty;$

$$(C3) \lim_{n\to\infty} r_n = r > 0.$$

Then both $\{x_n\}$ and $\{u_n\}$ converge strongly to $x^* \in \Omega$, which is the unique solution of the variational inequality

$$\langle (A - \gamma f) x^*, x^* - \hat{x} \rangle \ge 0, \quad \forall \hat{x} \in \Omega.$$
 (3.2)

Equivalently, one has $x^* = P_{\Omega}(I - A + \gamma f)(x^*)$.

Proof We observe that $P_{\Omega}(\gamma f + (I - A))$ is a contraction. Indeed, for all $x, y \in H$, we have

$$\begin{split} \left\| P_{\Omega} \big(\gamma f + (I-A) \big)(x) - P_{\Omega} \big(\gamma f + (I-A) \big)(y) \right\| &\leq \left\| \big(\gamma f + (I-A) \big)(x) - \big(\gamma f + (I-A) \big)(y) \right\| \\ &\leq \gamma \left\| f(x) - f(y) \right\| + \|I - A\| \|x - y\| \\ &\leq \gamma \alpha \|x - y\| + (1 - \overline{\gamma}) \|x - y\| \\ &\leq (1 - (\overline{\gamma} - \gamma \alpha)) \|x - y\|. \end{split}$$

Banach's contraction mapping principle guarantees that $P_{\Omega}(\gamma f + (I - A))$ has a unique fixed point, say $x^* \in H$. That is, $x^* = P_{\Omega}(\gamma f + (I - A))(x^*)$. Note that by Lemma 2.4, we can write

$$x_{n+1} = P_C [\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n T_{r_n} x_n],$$

where

$$T_{r_n}(x) = \left\{ z \in H : F(z, y) + \frac{1}{r_n} \langle y - z, z - x \rangle \ge 0, \forall y \in H \right\}.$$

Moreover, since $\alpha_n \to 0$ as $n \to \infty$ by condition (C1), we assume that $\alpha_n \le ||A||^{-1}$ for all $n \in \mathbb{N}$. From Lemma 2.8, we know that if $0 < \rho < ||A||^{-1}$, then $||I - \rho A|| \le 1 - \rho \overline{\gamma}$. We divide the proof into seven steps as follows.

Step 1. Show that the sequences $\{x_n\}$ and $\{u_n\}$ are bounded. Let $\hat{x} \in \Omega$. Then $\hat{x} \in EP(F)$. From Lemma 2.4, we have

$$||u_n - \hat{x}|| = ||T_{r_n}x_n - T_{r_n}\hat{x}|| \le ||x_n - \hat{x}||.$$

Thus, we have

$$\begin{aligned} \|x_{n+1} - \hat{x}\| &= \left\| P_C \left[\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n \right] - \hat{x} \right\| \\ &\leq \left\| \alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n - \hat{x} \right\| \\ &\leq \alpha_n \gamma \left\| f(x_n) - f(\hat{x}) \right\| + \|I - \alpha_n A\| \| W_n u_n - \hat{x}\| + \alpha_n \left\| \gamma f(\hat{x}) - A \hat{x} \right\| \\ &\leq \alpha_n \gamma \alpha \|x_n - \hat{x}\| + (1 - \alpha_n \bar{\gamma}) \|u_n - \hat{x}\| + \alpha_n \left\| \gamma f(\hat{x}) - A \hat{x} \right\| \\ &= \left(1 - \alpha_n (\bar{\gamma} - \gamma \alpha) \right) \|x_n - \hat{x}\| + \alpha_n (\bar{\gamma} - \gamma \alpha) \frac{\|\gamma f(\hat{x}) - A \hat{x}\|}{(\bar{\gamma} - \gamma \alpha)}. \end{aligned}$$

By induction, we have

$$\|x_n-\hat{x}\| \leq \max\left\{\|x_1-\hat{x}\|, \frac{\|\gamma f(\hat{x})-A\hat{x}\|}{ar{\gamma}-\gammalpha}
ight\}, \quad \forall n\geq 0.$$

This shows that the sequence $\{x_n\}$ is bounded, so are $\{u_n\}$, $\{f(x_n)\}$ and $\{W_nu_n\}$.

Step 2. Show that $||W_{n+1}u_n - W_nu_n|| \to 0$ as $n \to \infty$.

Let $\hat{x} \in \Omega$. Since T_i and $U_{n,i}$ are nonexpansive and $T_i \hat{x} = \hat{x} = U_{n,i} \hat{x}$ for every $n \in \mathbb{N}$ and $i \leq n + 1$, it follows that

$$\begin{split} \|W_{n+1}u_n - W_n u_n\| &= \|\lambda_1 T_1 U_{n+1,2} u_n - \lambda_1 T_1 U_{n,2} u_n\| \\ &\leq \lambda_1 \|U_{n+1,2} u_n - U_{n,2} u_n\| \\ &= \lambda_1 \|\lambda_2 T_2 U_{n+1,3} u_n - \lambda_2 T_2 U_{n,3} u_n\| \\ &\leq \lambda_1 \lambda_2 \|U_{n+1,3} u_n - U_{n,3} u_n\| \\ &\vdots \\ &\leq \left(\prod_{i=1}^n \lambda_i\right) \|U_{n+1,n+1} u_n - \hat{x} + \hat{x} - U_{n,n+1} u_n\| \\ &\leq \left(\prod_{i=1}^n \lambda_i\right) (\|U_{n+1,n+1} u_n - \hat{x} + \hat{x} - U_{n,n+1} u_n\|) \\ &\leq 2 \left(\prod_{i=1}^n \lambda_i\right) \|u_n - \hat{x}\|. \end{split}$$

Since $\{u_n\}$ is bounded and $0 < \lambda_n \le b < 1$ for any $n \in \mathbb{N}$, the following holds:

$$\lim_{n\to\infty}\|W_{n+1}u_n-W_nu_n\|=0.$$

Step 3. Show that $||x_{n+1} - x_n|| \to 0$ as $n \to \infty$.

Setting $S = 2P_C - I$, we have *S* is nonexpansive. Note that $W_n = (1 - \lambda_1)I + \lambda_1 T_1 U_{n,2}$. Then we can write

$$\begin{aligned} x_{n+1} &= \frac{I+S}{2} \Big[\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n \Big] \\ &= \frac{1 - \alpha_n}{2} W_n u_n + \frac{\alpha_n}{2} \big(\gamma f(x_n) - A W_n u_n + W_n u_n \big) \\ &+ \frac{1}{2} S \Big[\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n \Big] \\ &= \frac{1 - \alpha_n}{2} \Big[(1 - \lambda_1) I + \lambda_1 T_1 U_{n,2} \Big] u_n + \frac{\alpha_n}{2} \big(\gamma f(x_n) - A W_n u_n + W_n u_n \big) \\ &+ \frac{1}{2} S \Big[\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n \Big] \\ &= \frac{(1 - \lambda_1)(1 - \alpha_n)}{2} u_n + \frac{\lambda_1 (1 - \alpha_n)}{2} T_1 U_{n,2} u_n + \frac{\alpha_n}{2} \big(\gamma f(x_n) - A W_n u_n + W_n u_n \big) \\ &+ \frac{1}{2} S \Big[\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n \Big]. \end{aligned}$$
(3.3)

Note that

$$0<\lim_{n\to\infty}\frac{(1-\lambda_1)(1-\alpha_n)}{2}=\frac{1-\lambda_1}{2}<1,$$

and

$$\frac{\lambda_1(1-\alpha_n)}{2}+\frac{1}{2}=\frac{1+\lambda_1}{2}-\frac{\lambda_1}{2}\alpha_n.$$

From (3.3), we have

$$\begin{aligned} x_{n+1} &= \left[1 - \left(\frac{1+\lambda_1}{2} + \frac{1-\lambda_1}{2} \alpha_n \right) \right] u_n + \left(\frac{1+\lambda_1}{2} + \frac{1-\lambda_1}{2} \alpha_n \right) \\ &\times \left(\frac{\lambda_1 (1-\alpha_n)}{2} T_1 \mathcal{U}_{n,2} u_n + \frac{\alpha_n}{2} \left(\gamma f(x_n) - A W_n u_n + W_n u_n \right) \right. \\ &+ \frac{1}{2} S \left[\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n \right] \right) \Big/ \left(\frac{1+\lambda_1}{2} + \frac{1-\lambda_1}{2} \alpha_n \right) \\ &= \left[1 - \left(\frac{1+\lambda_1}{2} + \frac{1-\lambda_1}{2} \alpha_n \right) \right] u_n + \left(\frac{1+\lambda_1}{2} + \frac{1-\lambda_1}{2} \alpha_n \right) y_n, \end{aligned}$$
(3.4)

where

$$y_n = \left(\frac{\lambda_1(1-\alpha_n)}{2}T_1U_{n,2}u_n + \frac{\alpha_n}{2}(\gamma f(x_n) - AW_nu_n + W_nu_n)\right)$$
$$+ \frac{1}{2}S[\alpha_n\gamma f(x_n) + (I-\alpha_nA)W_nu_n] \right) / \left(\frac{1+\lambda_1}{2} + \frac{1-\lambda_1}{2}\alpha_n\right)$$
$$= \left(\lambda_1(1-\alpha_n)T_1U_{n,2}u_n + \alpha_n(\gamma f(x_n) - AW_nu_n + W_nu_n)\right)$$
$$+ S[\alpha_n\gamma f(x_n) + (I-\alpha_nA)W_nu_n]) / (1+\lambda_1 + (1-\lambda_1)\alpha_n).$$

Set $e_n = \gamma f(x_n) - AW_n u_n + W_n u_n$ and $d_n = \alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n$ for all *n*. Then

$$y_n = \frac{\lambda_1(1-\alpha_n)T_1U_{n,2}u_n + \alpha_n e_n + Sd_n}{1+\lambda_1 + (1-\lambda_1)\alpha_n}, \quad \forall n \ge 0.$$

It follows that

$$\begin{split} y_{n+1} - y_n &= \frac{\lambda_1 (1 - \alpha_{n+1}) T_1 U_{n+1,2} u_{n+1} + \alpha_{n+1} e_{n+1} + S d_{n+1}}{1 + \lambda_1 + (1 - \lambda_1) \alpha_{n+1}} \\ &- \frac{\lambda_1 (1 - \alpha_n) T_1 U_{n,2} u_n + \alpha_n e_n + S d_n}{1 + \lambda_1 + (1 - \lambda_1) \alpha_n} \\ &= \frac{\lambda_1 (1 - \alpha_{n+1})}{1 + \lambda_1 + (1 - \lambda_1) \alpha_{n+1}} (T_1 U_{n+1,2} u_{n+1} - T_1 U_{n,2} u_n) \\ &+ \left(\frac{\lambda_1 (1 - \alpha_{n+1})}{1 + \lambda_1 + (1 - \lambda_1) \alpha_{n+1}} - \frac{\lambda_1 (1 - \alpha_n)}{1 + \lambda_1 + (1 - \lambda_1) \alpha_n} \right) T_1 U_{n,2} u_n \\ &+ \frac{\alpha_{n+1} e_{n+1}}{1 + \lambda_1 + (1 - \lambda_1) \alpha_{n+1}} - \frac{\alpha_n e_n}{1 + \lambda_1 + (1 - \lambda_1) \alpha_n} \\ &+ \frac{S d_{n+1} - S d_n}{1 + \lambda_1 + (1 - \lambda_1) \alpha_{n+1}} + \left(\frac{1}{1 + \lambda_1 + (1 - \lambda_1) \alpha_{n+1}} - \frac{1}{1 + \lambda_1 + (1 - \lambda_1) \alpha_n} \right) S d_n. \end{split}$$

Thus,

$$\begin{split} \|y_{n+1} - y_n\| &\leq \frac{\lambda_1(1 - \alpha_{n+1})}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} \|T_1 U_{n+1,2} u_{n+1} - T_1 U_{n,2} u_n\| \\ &+ \left| \frac{\lambda_1(1 - \alpha_{n+1})}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} - \frac{\lambda_1(1 - \alpha_n)}{1 + \lambda_1 + (1 - \lambda_1)\alpha_n} \right| \|T_1 U_{n,2} u_n\| \\ &+ \frac{\alpha_{n+1}}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} \|e_{n+1}\| + \frac{\alpha_n}{1 + \lambda_1 + (1 - \lambda_1)\alpha_n} \|e_n\| \\ &+ \frac{1}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} \|Sd_{n+1} - Sd_n\| \\ &+ \left| \frac{1}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} - \frac{1}{1 + \lambda_1 + (1 - \lambda_1)\alpha_n} \right| \|Sd_n\|. \end{split}$$

Since S is nonexpansive, we obtain that

$$\begin{split} \|Sd_{n+1} - Sd_n\| &\leq \|d_{n+1} - d_n\| \\ &= \|\alpha_{n+1}\gamma f(x_{n+1}) + (I - \alpha_{n+1}A)W_{n+1}u_{n+1} - (\alpha_n\gamma f(x_n) + (I - \alpha_nA)W_nu_n)\| \\ &\leq \alpha_{n+1} \|\gamma f(x_{n+1}) - AW_{n+1}u_{n+1}\| + \alpha_n \|\gamma f(x_n) - AW_nu_n)\| \\ &+ \|W_{n+1}u_{n+1} - W_nu_n\| \\ &\leq \alpha_{n+1} \|\gamma f(x_{n+1}) - AW_{n+1}u_{n+1}\| + \alpha_n \|\gamma f(x_n) - AW_nu_n)\| \\ &+ \|W_{n+1}u_{n+1} - W_{n+1}u_n\| + \|W_{n+1}u_n - W_nu_n\| \\ &\leq \alpha_{n+1} \|\gamma f(x_{n+1}) - AW_{n+1}u_{n+1}\| + \alpha_n \|\gamma f(x_n) - AW_nu_n)\| \\ &+ \|W_{n+1}u_{n+1} - W_nu_n\| + \|W_{n+1}u_n - W_nu_n\| \\ &\leq \alpha_{n+1} \|\gamma f(x_{n+1}) - AW_{n+1}u_{n+1}\| + \alpha_n \|\gamma f(x_n) - AW_nu_n)\| + \|u_{n+1} - u_n\|. \end{split}$$

Since T_i and $U_{n,i}$ are nonexpansive, we have

$$\|T_{1}U_{n+1,2}u_{n} - T_{1}U_{n,2}u_{n}\| \leq \|U_{n+1,2}u_{n} - U_{n,2}u_{n}\|$$

$$= \|\lambda_{2}T_{2}U_{n+1,3}u_{n} - \lambda_{2}T_{2}U_{n,3}u_{n}\|$$

$$\leq \lambda_{2}\|U_{n+1,3}u_{n} - U_{n,3}u_{n}\|$$

$$\leq \cdots$$

$$\leq \lambda_{2}\cdots\lambda_{n}\|U_{n+1,n+1}u_{n} - U_{n,n+1}u_{n}\|$$

$$\leq M\prod_{i=2}^{n}\lambda_{i},$$

where M > 0 is a constant such that $||U_{n+1,n+1}u_n - U_{n,n+1}u_n|| \le M$ for all $n \ge 0$. So,

$$\|T_{1}U_{n+1,2}u_{n+1} - T_{1}U_{n,2}u_{n}\| \leq \|T_{1}U_{n+1,2}u_{n+1} - T_{1}U_{n+1,2}u_{n}\| + \|T_{1}U_{n+1,2}u_{n} - T_{1}U_{n,2}u_{n}\|$$
$$\leq \|u_{n+1} - u_{n}\| + M\prod_{i=2}^{n}\lambda_{i}.$$

Hence,

$$\begin{split} \|y_{n+1} - y_n\| &\leq \frac{\lambda_1(1 - \alpha_{n+1})}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} \|u_{n+1} - u_n\| + M \prod_{i=2}^n \lambda_i \\ &+ \left| \frac{\lambda_1(1 - \alpha_{n+1})}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} - \frac{\lambda_1(1 - \alpha_n)}{1 + \lambda_1 + (1 - \lambda_1)\alpha_n} \right| \|T_1 U_{n,2} u_n\| \\ &+ \frac{\alpha_{n+1}}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} \|e_{n+1}\| + \frac{\alpha_n}{1 + \lambda_1 + (1 - \lambda_1)\alpha_n} \|e_n\| \\ &+ \frac{1}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} (\alpha_{n+1} \|\gamma f(x_{n+1}) - AW_{n+1} u_{n+1}\| \\ &+ \alpha_n \|\gamma f(x_n) - AW_n u_n\| + \|u_{n+1} - u_n\|) + \|W_{n+1} u_n - W_n u_n\| \\ &+ \left| \frac{1}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} - \frac{1}{1 + \lambda_1 + (1 - \lambda_1)\alpha_n} \right| \|Sd_n\| \\ &= \frac{\lambda_1(1 - \alpha_{n+1})}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} \|u_{n+1} - u_n\| \\ &+ \left| \frac{\lambda_1(1 - \alpha_{n+1})}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} - \frac{\lambda_1(1 - \alpha_n)}{1 + \lambda_1 + (1 - \lambda_1)\alpha_n} \right| \|T_1 U_{n,2} u_n\| \\ &+ \frac{\alpha_{n+1}}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} \|e_{n+1}\| + \frac{\alpha_n}{1 + \lambda_1 + (1 - \lambda_1)\alpha_n} \|e_n\| \\ &+ \frac{1}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} (\alpha_{n+1} \|\gamma f(x_{n+1}) - AW_{n+1} u_{n+1}\| \\ &+ \alpha_n \|\gamma f(x_n) - AW_n u_n\| + \|u_{n+1} - u_n\|) + \|W_{n+1} u_n - W_n u_n\| \\ &+ \left| \frac{1}{1 + \lambda_1 + (1 - \lambda_1)\alpha_{n+1}} - \frac{1}{1 + \lambda_1 + (1 - \lambda_1)\alpha_n} \right| \|Sd_n\|. \end{split}$$

Note that:

(1) By condition (C1), we have

$$\frac{\lambda_1(1-\alpha_{n+1})}{1+\lambda_1+(1-\lambda_1)\alpha_{n+1}}-\frac{\lambda_1(1-\alpha_n)}{1+\lambda_1+(1-\lambda_1)\alpha_n}\to 0$$

and

$$\frac{1}{1+\lambda_1+(1-\lambda_1)\alpha_{n+1}}-\frac{1}{1+\lambda_1+(1-\lambda_1)\alpha_n}\to 0.$$

(2) $||W_{n+1}u_n - W_nu_n|| \to 0$ as $n \to \infty$ because of Step 2. Therefore,

$$\limsup_{n\to\infty} (\|y_{n+1} - y_n\| - \|u_{n+1} - u_n\|) \le 0.$$

By Lemma 2.2, we get

$$\lim_{n\to\infty}\|y_n-u_n\|=0.$$

Hence, from (3.4), we deduce

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = \lim_{n \to \infty} \left(\frac{1 + \lambda_1}{2} + \frac{1 - \lambda_1}{2} \alpha_n \right) \|y_n - u_n\| = 0.$$
(3.5)

Step 4. Show that $||x_n - W_n u_n|| \to 0$ as $n \to \infty$. Indeed, we have

$$\begin{aligned} \|x_n - W_n u_n\| &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - W_n u_n\| \\ &= \|x_n - x_{n+1}\| + \|P_C[\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n] - W_n u_n\| \\ &\leq \|x_n - x_{n+1}\| + \|\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n - W_n u_n\| \\ &= \|x_n - x_{n+1}\| + \|-\alpha_n A W_n u_n + \alpha_n \gamma f(x_n)\| \\ &\leq \|x_n - x_{n+1}\| + \alpha_n (\|A\|\| W_n u_n\| + \gamma \|f(x_n)\|). \end{aligned}$$

Then

$$\lim_{n \to \infty} \|x_n - W_n u_n\| \le \lim_{n \to \infty} \|x_n - x_{n+1}\| + \alpha_n \big(\|A\| \|W_n u_n\| + \gamma \|f(x_n)\| \big) = 0.$$
(3.6)

Thus, from (3.6), we obtain

$$\lim_{n\to\infty}\|x_n-W_nu_n\|=0.$$

Step 5. Show that $||x_n - u_n|| \to 0$ as $n \to \infty$. Let $\hat{x} \in \Omega$. Since T_{r_n} is firmly nonexpansive, it follows

$$\begin{aligned} \|\hat{x} - u_n\|^2 &= \|T_{r_n}\hat{x} - T_{r_n}x_n\|^2 \\ &\leq \langle T_{r_n}x_n - T_{r_n}\hat{x}, x_n - \hat{x} \rangle \\ &\leq \langle T_{r_n}x_n - \hat{x}, x_n - \hat{x} \rangle \\ &= \langle u_n - \hat{x}, x_n - \hat{x} \rangle \\ &= \frac{1}{2} (\|u_n - \hat{x}\|^2 + \|x_n - \hat{x}\|^2 - \|x_n - u_n\|^2). \end{aligned}$$

Then

$$||u_n - \hat{x}||^2 \le ||x_n - \hat{x}||^2 - ||x_n - u_n||^2.$$

Since we have

$$\begin{aligned} \|x_{n+1} - \hat{x}\|^2 &= \|P_C [\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n] - P_C \hat{x}\|^2 \\ &= \|\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n - \hat{x}\|^2 \\ &= \|(I - \alpha_n A) (W_n u_n - \hat{x}) + \alpha_n (\gamma f(x_n) - A \hat{x})\|^2 \\ &\leq (1 - \alpha_n \bar{\gamma})^2 \|W_n u_n - \hat{x}\|^2 + 2\alpha_n (\gamma f(x_n) - A \hat{x}, x_{n+1} - \hat{x}) \\ &\leq (1 - \alpha_n \bar{\gamma})^2 \|u_n - \hat{x}\|^2 + 2\alpha_n \gamma \langle f(x_n) - f(\hat{x}), x_{n+1} - \hat{x} \rangle \end{aligned}$$

$$+ 2\alpha_{n} \langle \gamma f(\hat{x}) - A\hat{x}, x_{n+1} - \hat{x} \rangle$$

$$\leq (1 - \alpha_{n} \bar{\gamma})^{2} (\|x_{n} - \hat{x}\|^{2} - \|x_{n} - u_{n}\|^{2}) + 2\alpha_{n} \gamma \alpha \|x_{n} - \hat{x}\| \|x_{n+1} - \hat{x}\|$$

$$+ 2\alpha_{n} \|\gamma f(\hat{x}) - A\hat{x}\| \|x_{n+1} - \hat{x}\|$$

$$= (1 - 2\alpha_{n} \bar{\gamma} + (\alpha_{n} \bar{\gamma})^{2}) \|x_{n} - \hat{x}\|^{2} - (1 - \alpha_{n} \bar{\gamma})^{2} \|x_{n} - u_{n}\|^{2}$$

$$+ 2\alpha_{n} \gamma \alpha \|x_{n} - \hat{x}\| \|x_{n+1} - \hat{x}\| + 2\alpha_{n} \|\gamma f(\hat{x}) - A\hat{x}\| \|x_{n+1} - \hat{x}\|$$

$$\leq \|x_{n} - \hat{x}\|^{2} + \alpha_{n} \bar{\gamma}^{2} \|x_{n} - \hat{x}\|^{2} - (1 - \alpha_{n} \bar{\gamma})^{2} \|x_{n} - u_{n}\|^{2}$$

$$+ 2\alpha_{n} \gamma \alpha \|x_{n} - \hat{x}\| \|x_{n+1} - \hat{x}\| + 2\alpha_{n} \|\gamma f(\hat{x}) - A\hat{x}\| \|x_{n+1} - \hat{x}\|,$$

and hence

$$\begin{aligned} (1 - \alpha_n \bar{\gamma})^2 \|x_n - u_n\|^2 &\leq \|x_n - \hat{x}\|^2 - \|x_{n+1} - \hat{x}\|^2 + \alpha_n \bar{\gamma}^2 \|x_n - \hat{x}\|^2 \\ &+ 2\alpha_n \gamma \alpha \|x_n - \hat{x}\| \|x_{n+1} - \hat{x}\| + 2\alpha_n \|\gamma f(\hat{x}) - A\hat{x}\| \|x_{n+1} - \hat{x}\| \\ &\leq \|x_n - x_{n+1}\| \left(\|x_n - \hat{x}\| \|x_{n+1} - \hat{x}\| \right) + \alpha_n \bar{\gamma}^2 \|x_n - \hat{x}\|^2 \\ &+ 2\alpha_n \gamma \alpha \|x_n - \hat{x}\| \|x_{n+1} - \hat{x}\| + 2\alpha_n \|\gamma f(\hat{x}) - A\hat{x}\| \|x_{n+1} - \hat{x}\|.\end{aligned}$$

Therefore, we have $||x_n - u_n|| \to 0$ as $n \to \infty$.

Step 6. Show that $\limsup_{n\to\infty} \langle \gamma f(x^*) - Ax^*, x_n - x^* \rangle \le 0$. We can choose a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that

$$\lim_{i\to\infty} \langle \gamma f(x^*) - Ax^*, x_{n_i} - x^* \rangle = \limsup_{n\to\infty} \langle \gamma f(x^*) - Ax^*, x_n - x^* \rangle.$$

Let

$$A(x_{n_i}) = \left\{ x \in H : \limsup_{i \to \infty} \|x_{n_i} - x\| = \inf_{y \in H} \limsup_{i \to \infty} \|x_{n_i} - y\| \right\}$$

be the asymptotic center of $\{x_{n_i}\}$. Since $\{x_{n_i}\}$ is bounded and H is a Hilbert space, it is well known that $A(x_{n_i})$ is a singleton; say $A(x_{n_i}) = \{\tilde{x}\}$. Set

$$L = \sup_{i \in \mathbb{N}} \left\| \gamma f(x_{n_i}) - A W_{n_i} u_{n_i} \right\|$$

and for every $x \in H$ define

$$Wx = \lim_{i \to \infty} W_{n_i} x \tag{3.7}$$

and

$$T_r(x) = \left\{ z \in H : F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \ge 0, \forall y \in H \right\}.$$

Note that

$$\begin{aligned} \|x_{n_i} - W\tilde{x}\| &\leq \|x_{n_i+1} - x_{n_i}\| + \|x_{n_i+1} - W\tilde{x}\| \\ &= \|x_{n_i+1} - x_{n_i}\| + \|P_C[\alpha_{n_i}\gamma f(x_{n_i}) + (I - \alpha_{n_i}A)W_{n_i}u_{n_i}] - W\tilde{x}\| \end{aligned}$$

$$\leq \|x_{n_{i}+1} - x_{n_{i}}\| + \|\alpha_{n_{i}}\gamma f(x_{n_{i}}) + (I - \alpha_{n_{i}}A)W_{n_{i}}u_{n_{i}} - W\tilde{x}\|$$

$$= \|x_{n_{i}+1} - x_{n_{i}}\| + \|W_{n_{i}}u_{n_{i}} - W\tilde{x} + \alpha_{n_{i}}(\gamma f(x_{n_{i}}) - AW_{n_{i}}u_{n_{i}})\|$$

$$\leq \|x_{n_{i}+1} - x_{n_{i}}\| + \|W_{n_{i}}u_{n_{i}} - W_{n_{i}}x_{n_{i}}\| + \|W_{n_{i}}x_{n_{i}} - W_{n_{i}}\tilde{x}\|$$

$$+ \|W_{n_{i}}\tilde{x} - W\tilde{x}\| + \alpha_{n_{i}}L$$

$$\leq \|x_{n_{i}+1} - x_{n_{i}}\| + \|u_{n_{i}} - x_{n_{i}}\| + \|x_{n_{i}} - \tilde{x}\| + \|W_{n_{i}}\tilde{x} - W\tilde{x}\| + \alpha_{n_{i}}L.$$

By Steps 1-5, condition (C1) and (3.7), we derive

$$\begin{split} \limsup_{i \to \infty} \|x_{n_i} - W\tilde{x}\| &\leq \limsup_{i \to \infty} \|u_{n_i} - x_{n_i}\| + \|x_{n_i} - \tilde{x}\| + \|W_{n_i}\tilde{x} - W\tilde{x}\| \\ &\leq \limsup_{i \to \infty} \|x_{n_i} - \tilde{x}\|. \end{split}$$

That is, $W\tilde{x} \in A(x_{n_i})$. Therefore $W\tilde{x} = \tilde{x}$. Next, we show that $\tilde{x} = T_r \tilde{x}$. Note that for any $x \in H$ and a, b > 0, we have

$$F(T_a x, y) + \frac{1}{a} \langle y - T_a x, T_a x - x \rangle \ge 0, \quad \forall y \in H$$

and

$$F(T_bx,y) + rac{1}{b}\langle y - T_bx, T_bx - x \rangle \ge 0, \quad \forall y \in H,$$

then

$$F(T_a x, T_b x) + \frac{1}{a} \langle T_b x - T_a x, T_a x - x \rangle \ge 0$$

and

$$F(T_bx,T_ax)+\frac{1}{b}\langle T_ax-T_bx,T_ax-x\rangle\geq 0.$$

Summing up the last inequalities and using (A2), we obtain

$$\left(T_a x - T_b x, \frac{T_b x - x}{b} - \frac{T_a x - x}{a}\right) \ge 0.$$

Hence we have

$$0 \leq \left\langle T_{a}x - T_{b}x, T_{b}x - x - \frac{b}{a}(T_{a}x - x) \right\rangle$$

= $\left\langle T_{a}x - T_{b}x, T_{b}x - T_{a}x + T_{a}x - x - \frac{b}{a}(T_{a}x - x) \right\rangle$
= $\left\langle T_{a}x - T_{b}x, (T_{b}x - T_{a}x) + \left(1 - \frac{b}{a}\right)(T_{a}x - x) \right\rangle$
 $\leq -\|T_{a}x - T_{b}x\|^{2} + \left|1 - \frac{b}{a}\right| \|T_{a}x - T_{b}x\| (\|T_{a}x\| + \|x\|).$

We derive then

$$||T_a x - T_b x|| \le \frac{|b-a|}{a} (||T_a x|| + ||x||).$$

It follows that

$$\begin{split} \|x_{n_{i}} - T_{r}\tilde{x}\| &\leq \|x_{n_{i}+1} - x_{n_{i}}\| + \|x_{n_{i}+1} - T_{r}\tilde{x}\| \\ &= \|x_{n_{i}+1} - x_{n_{i}}\| + \|P_{C}[\alpha_{n_{i}}\gamma f(x_{n_{i}}) + (I - \alpha_{n_{i}}A)W_{n_{i}}u_{n_{i}}] - T_{r}\tilde{x}\| \\ &\leq \|x_{n_{i}+1} - x_{n_{i}}\| + \|\alpha_{n_{i}}\gamma f(x_{n_{i}}) + (I - \alpha_{n_{i}}A)W_{n_{i}}u_{n_{i}} - T_{r}\tilde{x}\| \\ &= \|x_{n_{i}+1} - x_{n_{i}}\| + \|W_{n_{i}}u_{n_{i}} - T_{r}\tilde{x} + \alpha_{n_{i}}(\gamma f(x_{n_{i}}) - AW_{n_{i}}u_{n_{i}})\| \\ &\leq \|x_{n_{i}+1} - x_{n_{i}}\| + \|W_{n_{i}}u_{n_{i}} - x_{n_{i}}\| + \|T_{r_{n_{i}}}x_{n_{i}} - T_{r_{n_{i}}}\tilde{x}\| + \|x_{n_{i}} - T_{r_{n_{i}}}x_{n_{i}}\| \\ &+ \|T_{r_{n_{i}}}\tilde{x} - T_{r}\tilde{x}\| + \alpha_{n_{i}}L \\ &\leq \|x_{n_{i}+1} - x_{n_{i}}\| + \|u_{n_{i}} - x_{n_{i}}\| + \|x_{n_{i}} - \tilde{x}\| + \|x_{n_{i}} - u_{n_{i}}\| \\ &+ \|T_{r_{n_{i}}}\tilde{x} - T_{r}\tilde{x}\| + \alpha_{n_{i}}L \\ &\leq \|x_{n_{i}+1} - x_{n_{i}}\| + \|u_{n_{i}} - x_{n_{i}}\| + \|x_{n_{i}} - \tilde{x}\| + \|x_{n_{i}} - u_{n_{i}}\| \\ &+ \frac{|r_{n_{i}} - r|}{r}(\|T_{r}\tilde{x}\| + \|\tilde{x}\|) + \alpha_{n_{i}}L. \end{split}$$

By Steps 2-5, conditions (C1) and (C3), we obtain

$$\limsup_{i\to\infty} \|x_{n_i} - T_r \tilde{x}\| \le \limsup_{i\to\infty} \|x_{n_i} - \tilde{x}\|$$

and $\tilde{x} = T_r \tilde{x}$. Thus $\tilde{x} \in F(W) \cap F(T_r) = \Omega$ by Lemma 2.3 and 2.9. Fix $t \in (0,1)$, $x \in H$ and set $y = \tilde{x} + tx$. Then

$$\|x_{n_i}-\tilde{x}-tx\|^2 \leq \|x_{n_i}-\tilde{x}\|^2 + 2t\langle x,\tilde{x}+tx-x_{n_i}\rangle.$$

By the minimizing property of \tilde{x} and since $\|\cdot\|^2$ is continuous and increasing in $[0,\infty),$ we have

$$\begin{split} \limsup_{i \to \infty} \|x_{n_i} - \tilde{x}\|^2 &\leq \limsup_{i \to \infty} \|x_{n_i} - \tilde{x} - tx\|^2 \\ &\leq \limsup_{i \to \infty} \|x_{n_i} - \tilde{x}\|^2 + 2t \limsup_{i \to \infty} \langle x, \tilde{x} + tx - x_{n_i} \rangle. \end{split}$$

Thus,

$$\limsup_{i\to\infty}\langle x,\tilde{x}+tx-x_{n_i}\rangle\geq 0.$$

On the other hand,

$$\langle x, \tilde{x} - x_{n_i} \rangle = \langle x, \tilde{x} + tx - x_{n_i} \rangle - t ||x||^2.$$

Hence we obtain

$$\limsup_{i\to\infty} \langle x, \tilde{x} - x_{n_i} \rangle = \lim_{t\to0} \left(\limsup_{i\to\infty} \langle x, \tilde{x} + tx - x_{n_i} \rangle - t ||x||^2 \right) \ge 0.$$

Set $x = \gamma f(x^*) - Ax^*$. Since $\tilde{x} \in \Omega$, we obtain

$$\begin{split} 0 &\leq \limsup_{i \to \infty} \langle \gamma f(x^*) - Ax^*, \tilde{x} - x_{n_i} \rangle \\ &\leq \langle \gamma f(x^*) - Ax^*, \tilde{x} - x^* \rangle + \lim_{i \to \infty} \langle \gamma f(x^*) - Ax^*, x^* - x_{n_i} \rangle \\ &\leq \lim_{i \to \infty} \langle \gamma f(x^*) - Ax^*, x^* - x_{n_i} \rangle. \end{split}$$

So that

$$\limsup_{n\to\infty} \langle \gamma f(x^*) - Ax^*, x_n - x^* \rangle = -\lim_{i\to\infty} \langle \gamma f(x^*) - Ax^*, x_{n_i} - x^* \rangle \leq 0.$$

Step 7. Show that both $\{x_n\}$ and $\{u_n\}$ strongly converge to $x^* \in \Omega$, which is the unique solution of the variational inequality (3.2). Indeed, we note that

$$||x_{n+1}-x^*||^2 = \langle x_{n+1}-d_n, x_{n+1}-x^* \rangle + \langle d_n-x^*, x_{n+1}-x^* \rangle.$$

Since $(x_{n+1} - d_n, x_{n+1} - x^*) \le 0$, we get

$$\begin{split} \left\| x_{n+1} - x^* \right\|^2 &\leq \langle d_n - x^*, x_{n+1} - x^* \rangle \\ &= \langle \alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n u_n - x^*, x_{n+1} - x^* \rangle \\ &= \langle \alpha_n \gamma f(x_n) - \alpha_n \gamma f(x^*) + W_n u_n - \alpha_n A W_n u_n - x^* \\ &+ \alpha_n A x^* + \alpha_n \gamma f(x^*) - \alpha_n A x^*, x_{n+1} - x^* \rangle \\ &= \langle \alpha_n \gamma (f(x_n) - f(x^*)) + (I - \alpha_n A) (W_n u_n - x^*), x_{n+1} - x^* \rangle \\ &+ \alpha_n \langle \gamma f(x^*) - A x^*, x_{n+1} - x^* \rangle \\ &\leq (\alpha_n \gamma \| f(x_n) - f(x^*) \| + \| I - \alpha_n A \| \| W_n u_n - x^* \|) \| x_{n+1} - x^* \| \\ &+ \alpha_n \langle \gamma f(x^*) - A x^*, x_{n+1} - x^* \rangle \\ &\leq (1 - \alpha_n (\bar{\gamma} - \gamma \alpha)) \| x_n - x^* \| \| x_{n+1} - x^* \| + \alpha_n \langle \gamma f(x^*) - A x^*, x_{n+1} - x^* \rangle \\ &\leq \left(\frac{[1 - \alpha_n (\bar{\gamma} - \gamma \alpha)]^2}{2} \right) \| x_n - x^* \|^2 + \frac{1}{2} \| x_{n+1} - x^* \|^2 \\ &+ \alpha_n \langle \gamma f(x^*) - A x^*, x_{n+1} - x^* \rangle. \end{split}$$

It then follows that

$$\|x_{n+1} - x^*\|^2 \le \left[1 - \alpha_n(\bar{\gamma} - \gamma\alpha)\right] \|x_n - x^*\|^2 + 2\alpha_n(\gamma f(x^*) - Ax^*, x_{n+1} - x^*).$$
(3.8)

Let
$$a_n = ||x_n - x^*||^2$$
, $\gamma_n = \alpha_n(\bar{\gamma} - \gamma\alpha)$ and $\delta_n = 2\alpha_n(\gamma f(x^*) - Ax^*, x_{n+1} - x^*)$.

Then, we can write the last inequality as

$$a_{n+1} \leq (1 - \gamma_n)a_n + \delta_n.$$

Note that in virtue of condition (C2), $\sum_{n=1}^{\infty} \gamma_n = \infty$. Moreover,

$$\limsup_{n\to\infty}\frac{\delta_n}{\gamma_n}=\frac{1}{\bar{\gamma}-\gamma\alpha}\limsup_{n\to\infty}2\langle\gamma f(x^*)-Ax^*,x_{n+1}-x^*\rangle.$$

By Step 5, we obtain

$$\limsup_{n \to \infty} \frac{\delta_n}{\gamma_n} \le 0. \tag{3.9}$$

Now, applying Lemma 2.6 to (3.8), we conclude that $x_n \to x^*$ as $n \to \infty$. Furthermore, since $||u_n - x^*|| = ||T_{r_n}x_n - T_{r_n}x^*|| \le ||x_n - x^*||$, we then have that $u_n \to x^*$ as $n \to \infty$. The proof is now complete.

Setting $A \equiv I$ and $\gamma = 1$ in Theorem 3.1, we have the following result.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let $F: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction satisfying the conditions:

- (1) *F* is monotone, that is, $F(x, y) + F(y, x) \le 0$ for all $x, y \in C$;
- (2) for each $x, y, z \in C$, $\lim_{t\to 0} F(tz + (1 t)x, y) \le F(x, y)$;
- (3) for each $x \in C$, $y \mapsto F(x, y)$ is convex and lower semicontinuous.

Let $\{T_i\}_{i=1}^{\infty}$ be an infinite family of nonexpansive mappings of C into C such that $\bigcap_{i=1}^{\infty} F(T_i) \cap EP(F) \neq \emptyset$. Suppose $\{\alpha_n\} \subset (0,1)$ and $\{r_n\} \subset (0,\infty)$ satisfy the following conditions:

- (1) $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$;
- (2) $\liminf_{n\to\infty} r_n > 0$ and $\lim_{n\to\infty} (r_{n+1} r_n) = 0$.

Let f be a contraction of C into itself, and let $x_0 \in H$ be given arbitrarily. Then the sequences $\{x_n\}$ and $\{y_n\}$ generated iteratively by

$$\begin{cases} F(y_n, x) + \frac{1}{r_n} \langle x - y_n, y_n - x_n \rangle \ge 0, \quad \forall x \in C, \\ x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) W_n y_n, \end{cases}$$

converge strongly to $x^* \in \bigcap_{i=1}^{\infty} F(T_i) \cap EP(F)$, the unique solution of the minimization problem

$$\min_{x \in \bigcap_{i=1}^{\infty} F(T_i) \cap EP(F)} \frac{1}{2} ||x||^2 - h(x),$$

where h is a potential function for f.

Setting F = 0 in Theorem 3.1, we have the following result.

Corollary 3.3 ([11]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\{T_n\}_{n=1}^{\infty}$ be a sequence of nonexpansive mappings from C to C such that the common fixed point set $\Omega = \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$. Let $f : C \to H$ be an α -contraction and $A : H \to H$ be a strongly positive bounded linear operator with a coefficient $\overline{\gamma} > 0$. Let γ be a constant such that $0 < \gamma \alpha < \overline{\gamma}$. For an arbitrary initial point x_0 belonging to C, one defines a sequence $\{x_n\}_{n>0}$ iteratively

$$x_{n+1} = P_C \left[\alpha_n \gamma f(x_n) + (I - \alpha_n A) W_n x_n \right], \quad \forall n \ge 0,$$
(3.10)

where $\{\alpha_n\}$ is a real sequence in [0,1]. Assume that the sequence $\{\alpha_n\}$ satisfies the following conditions:

- (C1) $\lim_{n\to\infty} \alpha_n = 0$;
- (C2) $\sum_{n=1}^{\infty} \alpha_n = \infty.$

Then the sequence $\{x_n\}$ generated by (3.10) converges in norm to the unique solution x^* , which solves the following variational inequality:

$$x^* \in \Omega$$
 such that $\langle (A - \gamma f) x^*, x^* - \hat{x} \rangle \leq 0, \forall \hat{x} \in \Omega.$ (3.11)

Competing interests

The author declares that they have no competing interests.

Acknowledgements

The author would like to thank Asst. Prof. Dr. Rabian Wangkeeree for his useful suggestions and the referees for their valuable comments and suggestions.

Received: 2 October 2012 Accepted: 7 March 2013 Published: 3 April 2013

References

- 1. Qin, X, Shang, M, Su, Y: Strong convergence of a general iterative algorithm for equilibrium problems and variational inequalities problems. Math. Comput. Model. 48, 1033-1046 (2008)
- 2. Takahashi, S, Takahashi, W: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506-515 (2007)
- 3. Plubtieng, S, Punpaeng, R: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. **336**, 455-469 (2007)
- Ceng, LC, Yao, JC: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 67, 375-390 (2008)
- 5. Moudafi, A: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46-55 (2000)
- 6. Xu, HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)
- 7. Marino, G, Xu, HK: A general iterative method for nonexpansive mapping in Hilbert spaces. J. Math. Anal. Appl. 318, 43-52 (2006)
- 8. Takahashi, W: Weak and strong convergence theorems for families of nonexpansive mappings and their applications. Ann. Univ. Mariae Curie-Skłodowska, Sect. A **51**, 277-292 (1997)
- 9. Shimoji, K, Takahashi, W: Strong convergence to common fixed points of infinite nonexpansive mapping and applications. Taiwan. J. Math. 5, 387-404 (2001)
- 10. Yao, Y, Liou, YC, Yao, JC: Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings. Fixed Point Theory Appl. **2007**, Article ID 064363 (2007). doi:10.1155/2007/64363
- 11. Chen, R: Iterative schemes for fixed point computation of nonexpansive mappings. Abstr. Appl. Anal. 2012, Article ID 469270 (2012). doi:10.1155/2012/469270
- 12. Opial, Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. **73**, 595-597 (1967)
- 13. Suzuki, T: Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. **305**, 227-239 (2005)
- 14. Combettes, PL, Hirstoaga, SA: Equilibrium programming in Hilbert space. J. Nonlinear Convex Anal. 6, 117-136 (2005)
- 15. Chang, SS, Joseph Lee, HW, Chan, CK: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. **70**, 3307-3319 (2009)

doi:10.1186/1029-242X-2013-153

Cite this article as: Rattanaseeha: The general iterative methods for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings in Hilbert spaces. *Journal of Inequalities and Applications* 2013 2013:153.