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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖. Let C be a
nonempty closed and convex subset of H , and let T : C → C be a nonlinear mapping. In
this paper, we use F(T) to denote the fixed point set of T .
Recall the following definitions.
() The mapping T is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C. (.)

Further, let F be a bifunction from C×C intoR, whereR is the set of real numbers. The
so-called equilibrium problem for F : C ×C →R is to find y ∈ C such that

F(y,u) ≥ , ∀u ∈ C. (.)

The set of solutions of (.) is denoted by EP(F). Given a mapping A : C →H , let F(y,u) =
〈Ay,u – y〉 for all y,u ∈ C. Then z ∈ EP(F) if and only if 〈Az,u – z〉 ≥  for all u ∈ C. Nu-
merous problems in physics, optimization and economics reduce to finding a solution of
(.).
() Themappings {Tn}n∈N are said to be a family of nonexpansive mappings fromH into

itself if

‖Tnx – Tny‖ ≤ ‖x – y‖, ∀x, y ∈H , (.)
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and denoted by F(Tn) = {x ∈ H : Tnx = x} is the fixed point set of Tn. Finding an optimal
point in

⋂
n∈N F(Tn) of the fixed point sets of eachmapping is amatter of interest in various

branches of science.
Recently, many authors considered the iterative methods for finding a common element

of the set of solutions to problem (.) and of the set of fixed points of nonexpansive map-
pings; see, for example, [, ] and the references therein.
Next, let A : C →H be a nonlinear mapping. We recall the following definitions.
() A is said to bemonotone if

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

() A is said to be strongly monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C.

In such a case, A is said to be α-strongly monotone.
() A is said to be inverse-strongly monotone if there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

In such a case, A is said to be α-inverse-strongly monotone.
The classical variational inequality is to find u ∈ C such that

〈Au, v – u〉 ≥ , ∀v ∈ C. (.)

In this paper, we useVI(C,A) to denote the set of solutions to problem (.). One can easily
see that the variational inequality problem is equivalent to a fixed point problem. u ∈ C
is a solution to problem (.) if and only if u is a fixed point of the mapping PC(I – λ)T ,
where λ >  is a constant.
The variational inequality has been widely studied in the literature; see, for example, the

work of Plubtieng and Punpaeng [] and the references therein.
Recently, Ceng et al. [] considered an iterative method for the system of variational

inequalities (.). They got a strongly convergence theorem for problem (.) and a fixed
point problem for a single nonexpansive mapping; see [] for more details.
On the other hand, Moudafi [] introduced the viscosity approximation method for

nonexpansive mappings (see [] for further developments in both Hilbert and Banach
spaces).
Amapping f : C → C is called α-contractive if there exists a constant α ∈ (, ) such that

∥∥f (x) – f (y)
∥∥≤ α‖x – y‖, ∀x, y ∈ C. (.)

Let f be a contraction on C. Starting with an arbitrary initial x ∈ C, define a sequence
{xn} recursively by

xn+ = ( – σn)Txn + σnf (xn), n≥ , (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/153
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where {σn} is a sequence in (, ). It is proved [, ] that under certain appropriate con-
ditions imposed on {σn}, the sequence {xn} generated by (.) strongly converges to the
unique solution q in C of the variational inequality

〈
(I – f )q,p – q

〉≥ , p ∈ C.

Let A be a strongly positive linear bounded operator on a Hilbert space H with a con-
stant γ̄ ; that is, there exists γ̄ >  such that

〈Ax,x〉 ≥ γ̄ ‖x‖, ∀x ∈H . (.)

Recently, Marino and Xu [] introduced the following general iterative method:

xn+ = (I – αnA)Txn + αnγ f (xn), n≥ , (.)

where A is a strongly positive bounded linear operator on H . They proved that if the se-
quence {αn} of parameters satisfies appropriate conditions, then the sequence {xn} gener-
ated by (.) converges strongly to the unique solution of the variational inequality

〈
(A – γ f )x∗,x – x∗〉≥ , x ∈ C, (.)

which is the optimality condition for the minimization problem

min
x∈C



〈Ax,x〉 – h(x),

where h is a potential function for γ f (i.e., h′(x) = γ f (x) for x ∈H).
In , Takahashi and Takahashi [] introduced an iterative scheme by the viscosity

approximation method for finding a common element of the set of solutions (.) and
the set of fixed points of a nonexpansive mapping in Hilbert spaces. Let S : C → H be a
nonexpansive mapping. Starting with arbitrary initial x ∈ H , define sequences {xn} and
{un} recursively by

⎧⎨
⎩F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnγ f (xn) + ( – αn)Sun, ∀n ∈N.
(.)

They proved that under certain appropriate conditions imposed on {αn} and {rn}, the se-
quences {xn} and {un} converge strongly to z ∈ F(S)∩ EP(F), where z = PF(S)∩EP(F)f (z).
Next, Plubtieng and Punpaeng, [] introduced an iterative scheme by the general itera-

tive method for finding a common element of the set of solutions (.) and the set of fixed
points of nonexpansive mappings in Hilbert spaces.
Let S : H → H be a nonexpansive mapping. Starting with an arbitrary x ∈ H , define

sequences {xn} and {un} by
⎧⎨
⎩F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnγ f (xn) + (I – αnA)Sun, ∀n ∈N.
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/153
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They proved that if the sequences {αn} and {rn} of parameters satisfy appropriate condi-
tions, then the sequence {xn} generated by (.) converges strongly to the unique solution
of the variational inequality

〈
(A – γ f )z,x – z

〉≥ , ∀x ∈ F(S)∩ EP(F), (.)

which is the optimality condition for the minimization problem

min
x∈F(S)∩EP(F)



〈Ax,x〉 – h(x),

where h is a potential function for γ f (i.e., h′(x) = γ f (x) for x ∈H).
Let T,T, . . . be an infinite sequence of mappings of C into itself, and let λ,λ, . . . be

real numbers such that  ≤ λi ≤  for every i ∈ N. Then for any n ∈ N, Takahashi [] (see
[]) defined a mappingWn of C into itself as follows:

Un,n+ = I,

Un,n = λnTnUn,n+ + ( – λn)I,

Un,n– = λn–Tn–Un,n + ( – λn–)I,

...

Un,k = λkTkUn,k+ + ( – λk)I, (.)

Un,k– = λk–Tk–Un,k + ( – λk–)I,

...

Un, = λTUn, + ( – λ)I,

Wn =Un, = λTUn, + ( – λ)I.

Such a mapping Wn is called the W -mapping generated by Tn,Tn–, . . . ,T and λn,λn–,
. . . ,λ.
Recently, using process (.), Yao et al. [] proved the following result.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C ×C →R be an equilibrium bifunction satisfying the conditions:
() F is monotone, that is, F(x, y) + F(y,x)≤  for all x, y ∈ C;
() for each x, y, z ∈ C, limt→ F(tz + ( – t)x, y)≤ F(x, y);
() for each x ∈ C, y → F(x, y) is convex and lower semicontinuous.
Let {Ti}∞i= be an infinite family of nonexpansive mappings of C into C such that⋂∞
i= F(Ti) ∩ EP(F) �= ∅. Suppose {αn}, {βn} and {γn} are three sequences in (, ) such that

αn + βn + γn =  and {rn} ⊂ (,∞). Suppose the following conditions are satisfied:
() limn→∞ αn =  and

∑∞
n= αn = ∞;

()  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
() lim infn→∞ rn >  and limn→∞(rn+ – rn) = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/153
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Let f be a contraction of H into itself, and let x ∈ H be given arbitrarily.Then the sequences
{xn} and {yn} generated iteratively by

⎧⎨
⎩F(yn,x) + 

rn 〈x – yn, yn – xn〉 ≥ , ∀x ∈ C,

xn+ = αnf (xn) + βnxn + γnWnyn,

converge strongly to x∗ ∈⋂∞
i= F(Ti)∩EP(F), the unique solution of the minimization prob-

lem

min
x∈⋂∞

i= F(Ti)∩EP(F)


‖x‖ – h(x),

where h is a potential function for f .

Very recently, using process (.), Chen [] proved the following result.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{Tn}∞n= be a sequence of nonexpansive mappings from C to C such that the common fixed
point set � =

⋂∞
n= F(Tn) �= ∅. Let f : C → H be an α-contraction, and let A : H → H be a

self-adjoint, strongly positive bounded linear operator with a coefficient γ̄ > . Let σ be a
constant such that  < γα < γ̄ . For an arbitrary initial point x belonging to C, one defines
a sequence {xn}n≥ iteratively

xn+ = PC
[
αnγ f (xn) + (I – αnA)Wnxn

]
, ∀n≥ , (.)

where {αn} is a real sequence in [, ]. Assume the sequence {αn} satisfies the following con-
ditions:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞.

Then the sequence {xn} generated by (.) converges in norm to the unique solution x∗,
which solves the following variational inequality:

x∗ ∈ � such that
〈
(A – γ f )x∗,x∗ – x̂

〉≥ ,∀x̂ ∈ �. (.)

Motivated by this result, we introduce the following explicit general iterative scheme:

⎧⎪⎪⎨
⎪⎪⎩
x ∈H ,

F(un, y) + 
rn 〈y – un,un – xn〉 ≥ , ∀y ∈H ,

xn+ = PC[αnγ f (xn) + (I – αnA)Wnun], ∀n ∈N,

(.)

where {Tn}n∈N is a family of nonexpansive mappings from H into itself such that⋂
n∈N F(Tn) is nonempty, F : C × C → R is an equilibrium bifunction, A is a strongly

positive operator on H , f is a contraction of H into itself with α ∈ (, ), {αn}, {rn}, {λn}
suitable sequences in R and {Wn} is the sequence of a W -mapping generated by {Tn}n∈N
and {λn}. LetU be defined byUx = limn→∞ Wnx = limn→∞ Un,x for every x ∈ C using pro-
cess (.). We shall prove under mild conditions that {xn} and {un} strongly converge to

http://www.journalofinequalitiesandapplications.com/content/2013/1/153
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a point x∗ ∈⋂∞
i= F(Ti)∩ EP(F), which is the unique solution of the variational inequality

〈
(A – γ f )x∗,x∗ – x̂

〉≥ , ∀x̂ ∈
∞⋂
i=

F(Ti)∩ EP(F), (.)

or, equivalently, the unique solution of the minimization problem

min
x∈⋂∞

i= F(Ti)∩EP(F)


〈Ax̂, x̂〉 – h(x̂),

where h is a potential function for γ f .

2 Preliminaries
Let H be a real Hilbert space with the norm ‖ · ‖ and the inner product 〈·, ·〉, and let C be
a closed convex subset of H . We call f : C → H an α-contraction if there exists a constant
α ∈ [, ) such that

∥∥f (x) – f (y)
∥∥≤ α‖x – y‖, ∀x, y ∈ C.

Let A be a strongly positive linear bounded operator on a Hilbert space H with a con-
stant γ̄ ; that is, there exists γ̄ >  such that

〈Ax,x〉 ≥ γ̄ ‖x‖, ∀x ∈H .

Next, we denote weak convergence and strong convergence by notations ⇀ and →, re-
spectively. A space X is said to satisfy Opial’s condition [] if for each sequence {xn} in X
which converges weakly to a point x ∈ X, we have

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖, ∀y ∈ X, y �= x.

For every point x ∈ H , there exists a unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

PC is called the (nearest point or metric) projection of H onto C. In addition, PCx is char-
acterized by the following properties: PCx ∈ C and

〈x – PCx, y – PCx〉 ≥ , (.)

‖x – y‖ ≥ ‖x – PCx‖ + ‖y – PCx‖, ∀x ∈H , y ∈ C. (.)

Recall that a mapping T :H →H is said to be firmly nonexpansive mapping if

‖Tx – Ty‖ ≤ 〈Tx – Ty,x – y〉, ∀x, y ∈H .

It is well known that PC is a firmly nonexpansive mapping of H onto C and satisfies

‖PCx – PCy‖ ≤ 〈x – y,PCx – PCy〉, ∀x, y ∈H . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/153
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If A is an α-inverse-strongly monotone mapping of C intoH , then it is obvious that A is

α
-Lipschitz continuous. We also have that for all x, y ∈ C and λ > ,

∥∥(I – λA)x – (I – λA)y
∥∥ =

∥∥x – y – λ(Ax –Ay)
∥∥

= ‖x – y‖ – λ〈Ax –Ay,x – y〉 + λ‖Ax –Ay‖

≤ ‖x – y‖ + λ(λ – α)‖Ax –Ay‖. (.)

So, if λ ≤ α, then I – λA is a nonexpansive mapping of C into H .
The following lemmas will be useful for proving the convergence result of this paper.

Lemma . Let H be a real Hilbert space. Then for all x, y ∈H ,
() ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉;
() ‖x + y‖ ≥ ‖x‖ + 〈y,x〉.

Lemma . ([]) Let {xn} and {yn} be bounded sequences in a Banach space X, and let
{βn} be a sequence in [, ]with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ =
( –βn)yn +βnxn for all integers n ≥  and lim supn→∞(‖yn+ – yn‖– ‖xn+ – xn‖) ≤ . Then
limn→∞ ‖yn – xn‖ = .

Lemma . ([]) Assume that F : C ×C →R, let us assume that F satisfies the following
conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C, limt→ F(tz + ( – t)x, y)≤ F(x, y);
(A) for each x ∈ C, y → F(x, y) is convex and lower semicontinuous.

Lemma . ([]) Assume that F : C × C → R satisfies (A)-(A). For r >  and x ∈ H ,
define a mapping Tr :H → C as follows:

Tr(x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all z ∈ H . Then the following hold:
. Tr is single-valued;
. Tr is firmly nonexpansive, i.e., for any x, y ∈ H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

. F(Tr) = EP(F);
. EP(F) is closed and convex.

Lemma. ([]) Let H be aHilbert space,C be a closed convex subset of H , and S : C → C
be a nonexpansive mapping with F(S) �= ∅. If {xn} is a sequence in C weakly converging to
x ∈ C and if {(I – S)xn} converges strongly to y, then (I – S)x = y.

Lemma . ([]) Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, n≥ ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/153
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where {γn} is a sequence in (, ) and {δn} is a sequence in R such that
()

∑∞
n= γn = ∞;

() lim supn→∞
δn
γn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma . ([]) Let H be a Hilbert space, C be a nonempty closed convex subset of H ,
and f :H →H be a contraction with a coefficient  < α < , and let A be a strongly positive
linear bounded operator with a coefficient γ̄ > . Then, for  < γ < γ̄

α
,

〈
x – y, (A – γ f )x – (A – γ f )y

〉≥ (γ̄ – γα)‖x – y‖, x, y ∈H .

That is, A – γ f is strongly monotone with a coefficient γ̄ – γα.

Lemma . ([]) Assume A is a strongly positive linear bounded operator on a Hilbert
space H with a coefficient γ̄ >  and  < ρ ≤ ‖A‖–. Then ‖I – ρA‖ ≤  – ργ̄ .

Lemma . ([] and []) Let C be a nonempty closed convex subset of a Banach space E.
Let {Ti}∞i= be a sequence of nonexpansive mappings of C into itself with

⋂∞
i= F(Ti) �= ∅, and

let {λi}∞i= be a real sequence such that  < λi ≤ b < , ∀i≥ . Then:
() Wn is nonexpansive and F(Wn) =

⋂∞
i= F(Ti) for each n≥ ;

() for each x ∈ C and for each positive integer k, the limn→∞ Un,kx exists;
() the mapping U : C → C defined by

Ux = lim
n→∞Wnx = lim

n→∞Un,x, x ∈ C

is a nonexpansive mapping satisfying F(U) =
⋂∞

n= F(Ti) and it is called the
W -mapping generated by T,T, . . . and λ,λ, . . . ;

() limm,n→∞ supx∈K ‖Wmx –Wnx‖ =  for any bounded subset K of E.

3 Main results
In this section, we introduce our algorithm and prove its strong convergence.

Theorem. Let C be a closed convex subset of a realHilbert spaceH .Let F be a bifunction
from H × H into R satisfying (A)-(A). Let f be a contraction of H into itself with α ∈
(, ), and let Tn be a sequence of nonexpansive mappings of C into itself such that � =⋂∞

n= F(Tn)∩EP(F) �= ∅. Let A :H →H be a strongly positive bounded linear operator with
a coefficient γ̄ >  with  < γ < γ̄

α
. Let λ,λ, . . . be a sequence of real numbers such that

 < λn ≤ b <  for every n = , , . . . . Let Wn be a W-mapping of C into itself generated by
Tn,Tn–, . . . ,T and λn,λn–, . . . ,λ. Let U be defined by Ux = limn→∞ Wnx = limn→∞ Un,x
for every x ∈ C. Let {xn} and {un} be sequences generated by x ∈H and

⎧⎨
⎩F(un, y) + 

rn 〈y – un,un – xn〉 ≥ , ∀y ∈H ,

xn+ = PC[αnγ f (xn) + (I – αnA)Wnun], ∀n ∈N,
(.)

where {αn} is a sequence in (, ) and {rn} is a sequence in [,∞). Suppose that {αn} and
{rn} satisfy the following conditions:

http://www.journalofinequalitiesandapplications.com/content/2013/1/153
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(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞;

(C) limn→∞ rn = r > .
Then both {xn} and {un} converge strongly to x∗ ∈ �, which is the unique solution of the
variational inequality

〈
(A – γ f )x∗,x∗ – x̂

〉≥ , ∀x̂ ∈ �. (.)

Equivalently, one has x∗ = P�(I –A + γ f )(x∗).

Proof We observe that P�(γ f + (I –A)) is a contraction. Indeed, for all x, y ∈H , we have

∥∥P�

(
γ f + (I –A)

)
(x) – P�

(
γ f + (I –A)

)
(y)

∥∥ ≤ ∥∥(γ f + (I –A)
)
(x) –

(
γ f + (I –A)

)
(y)

∥∥
≤ γ

∥∥f (x) – f (y)
∥∥ + ‖I –A‖‖x – y‖

≤ γα‖x – y‖ + ( – γ )‖x – y‖
<
(
 – (γ – γα)

)‖x – y‖.

Banach’s contractionmapping principle guarantees that P�(γ f +(I–A)) has a unique fixed
point, say x∗ ∈H . That is, x∗ = P�(γ f + (I –A))(x∗). Note that by Lemma ., we can write

xn+ = PC
[
αnγ f (xn) + (I – αnA)WnTrnxn

]
,

where

Trn (x) =
{
z ∈H : F(z, y) +


rn

〈y – z, z – x〉 ≥ ,∀y ∈H
}
.

Moreover, since αn →  as n → ∞ by condition (C), we assume that αn ≤ ‖A‖– for all
n ∈N. From Lemma ., we know that if  < ρ < ‖A‖–, then ‖I –ρA‖ ≤  –ργ . We divide
the proof into seven steps as follows.
Step . Show that the sequences {xn} and {un} are bounded.
Let x̂ ∈ �. Then x̂ ∈ EP(F). From Lemma ., we have

‖un – x̂‖ = ‖Trnxn – Trn x̂‖ ≤ ‖xn – x̂‖.

Thus, we have

‖xn+ – x̂‖ =
∥∥PC

[
αnγ f (xn) + (I – αnA)Wnun

]
– x̂

∥∥
≤ ∥∥αnγ f (xn) + (I – αnA)Wnun – x̂

∥∥
≤ αnγ

∥∥f (xn) – f (x̂)
∥∥ + ‖I – αnA‖‖Wnun – x̂‖ + αn

∥∥γ f (x̂) –Ax̂
∥∥

≤ αnγα‖xn – x̂‖ + ( – αnγ̄ )‖un – x̂‖ + αn
∥∥γ f (x̂) –Ax̂

∥∥
=
(
 – αn(γ̄ – γα)

)‖xn – x̂‖ + αn(γ̄ – γα)
‖γ f (x̂) –Ax̂‖
(γ̄ – γα)

.

http://www.journalofinequalitiesandapplications.com/content/2013/1/153
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By induction, we have

‖xn – x̂‖ ≤ max

{
‖x – x̂‖, ‖γ f (x̂) –Ax̂‖

γ̄ – γα

}
, ∀n≥ .

This shows that the sequence {xn} is bounded, so are {un}, {f (xn)} and {Wnun}.
Step . Show that ‖Wn+un –Wnun‖ →  as n→ ∞.
Let x̂ ∈ �. Since Ti and Un,i are nonexpansive and Tix̂ = x̂ = Un,ix̂ for every n ∈ N and

i≤ n + , it follows that

‖Wn+un –Wnun‖ = ‖λTUn+,un – λTUn,un‖
≤ λ‖Un+,un –Un,un‖
= λ‖λTUn+,un – λTUn,un‖
≤ λλ‖Un+,un –Un,un‖
...

≤
( n∏

i=

λi

)
‖Un+,n+un – x̂ + x̂ –Un,n+un‖

≤
( n∏

i=

λi

)(‖Un+,n+un – x̂ + x̂ –Un,n+un‖
)

≤ 

( n∏
i=

λi

)
‖un – x̂‖.

Since {un} is bounded and  < λn ≤ b <  for any n ∈N, the following holds:

lim
n→∞‖Wn+un –Wnun‖ = .

Step . Show that ‖xn+ – xn‖ →  as n → ∞.
Setting S = PC – I , we have S is nonexpansive. Note thatWn = (–λ)I +λTUn,. Then

we can write

xn+ =
I + S


[
αnγ f (xn) + (I – αnA)Wnun

]
=
 – αn


Wnun +

αn


(
γ f (xn) –AWnun +Wnun

)
+


S
[
αnγ f (xn) + (I – αnA)Wnun

]
=
 – αn


[
( – λ)I + λTUn,

]
un +

αn


(
γ f (xn) –AWnun +Wnun

)
+


S
[
αnγ f (xn) + (I – αnA)Wnun

]
=
( – λ)( – αn)


un +

λ( – αn)


TUn,un +
αn


(
γ f (xn) –AWnun +Wnun

)
+


S
[
αnγ f (xn) + (I – αnA)Wnun

]
. (.)
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Note that

 < lim
n→∞

( – λ)( – αn)


=
 – λ


< ,

and

λ( – αn)


+


=
 + λ


–

λ


αn.

From (.), we have

xn+ =
[
 –

(
 + λ


+
 – λ


αn

)]
un +

(
 + λ


+
 – λ


αn

)

×
(

λ( – αn)


TUn,un +
αn


(
γ f (xn) –AWnun +Wnun

)

+


S
[
αnγ f (xn) + (I – αnA)Wnun

])/(
 + λ


+
 – λ


αn

)

=
[
 –

(
 + λ


+
 – λ


αn

)]
un +

(
 + λ


+
 – λ


αn

)
yn, (.)

where

yn =
(

λ( – αn)


TUn,un +
αn


(
γ f (xn) –AWnun +Wnun

)

+


S
[
αnγ f (xn) + (I – αnA)Wnun

])/(
 + λ


+
 – λ


αn

)

=
(
λ( – αn)TUn,un + αn

(
γ f (xn) –AWnun +Wnun

)
+ S

[
αnγ f (xn) + (I – αnA)Wnun

])
/
(
 + λ + ( – λ)αn

)
.

Set en = γ f (xn) –AWnun +Wnun and dn = αnγ f (xn) + (I – αnA)Wnun for all n. Then

yn =
λ( – αn)TUn,un + αnen + Sdn

 + λ + ( – λ)αn
, ∀n≥ .

It follows that

yn+ – yn =
λ( – αn+)TUn+,un+ + αn+en+ + Sdn+

 + λ + ( – λ)αn+

–
λ( – αn)TUn,un + αnen + Sdn

 + λ + ( – λ)αn

=
λ( – αn+)

 + λ + ( – λ)αn+
(TUn+,un+ – TUn,un)

+
(

λ( – αn+)
 + λ + ( – λ)αn+

–
λ( – αn)

 + λ + ( – λ)αn

)
TUn,un

+
αn+en+

 + λ + ( – λ)αn+
–

αnen
 + λ + ( – λ)αn

+
Sdn+ – Sdn

 + λ + ( – λ)αn+
+
(


 + λ + ( – λ)αn+

–


 + λ + ( – λ)αn

)
Sdn.
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Thus,

‖yn+ – yn‖ ≤ λ( – αn+)
 + λ + ( – λ)αn+

‖TUn+,un+ – TUn,un‖

+
∣∣∣∣ λ( – αn+)
 + λ + ( – λ)αn+

–
λ( – αn)

 + λ + ( – λ)αn

∣∣∣∣‖TUn,un‖

+
αn+

 + λ + ( – λ)αn+
‖en+‖ + αn

 + λ + ( – λ)αn
‖en‖

+


 + λ + ( – λ)αn+
‖Sdn+ – Sdn‖

+
∣∣∣∣ 
 + λ + ( – λ)αn+

–


 + λ + ( – λ)αn

∣∣∣∣‖Sdn‖.
Since S is nonexpansive, we obtain that

‖Sdn+ – Sdn‖ ≤ ‖dn+ – dn‖
=
∥∥αn+γ f (xn+) + (I – αn+A)Wn+un+ –

(
αnγ f (xn) + (I – αnA)Wnun

)∥∥
≤ αn+

∥∥γ f (xn+) –AWn+un+
∥∥ + αn

∥∥γ f (xn) –AWnun)
∥∥

+ ‖Wn+un+ –Wnun‖
≤ αn+

∥∥γ f (xn+) –AWn+un+
∥∥ + αn

∥∥γ f (xn) –AWnun)
∥∥

+ ‖Wn+un+ –Wn+un‖ + ‖Wn+un –Wnun‖
≤ αn+

∥∥γ f (xn+) –AWn+un+
∥∥ + αn

∥∥γ f (xn) –AWnun)
∥∥ + ‖un+ – un‖.

+ ‖Wn+un –Wnun‖.

Since Ti and Un,i are nonexpansive, we have

‖TUn+,un – TUn,un‖ ≤ ‖Un+,un –Un,un‖
= ‖λTUn+,un – λTUn,un‖
≤ λ‖Un+,un –Un,un‖
≤ · · ·
≤ λ · · ·λn‖Un+,n+un –Un,n+un‖

≤ M
n∏
i=

λi,

whereM >  is a constant such that ‖Un+,n+un –Un,n+un‖ ≤ M for all n≥ . So,

‖TUn+,un+ – TUn,un‖ ≤ ‖TUn+,un+ – TUn+,un‖ + ‖TUn+,un – TUn,un‖

≤ ‖un+ – un‖ +M
n∏
i=

λi.
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Hence,

‖yn+ – yn‖ ≤ λ( – αn+)
 + λ + ( – λ)αn+

‖un+ – un‖ +M
n∏
i=

λi

+
∣∣∣∣ λ( – αn+)
 + λ + ( – λ)αn+

–
λ( – αn)

 + λ + ( – λ)αn

∣∣∣∣‖TUn,un‖

+
αn+

 + λ + ( – λ)αn+
‖en+‖ + αn

 + λ + ( – λ)αn
‖en‖

+


 + λ + ( – λ)αn+

(
αn+

∥∥γ f (xn+) –AWn+un+
∥∥

+ αn
∥∥γ f (xn) –AWnun

∥∥ + ‖un+ – un‖
)
+ ‖Wn+un –Wnun‖

+
∣∣∣∣ 
 + λ + ( – λ)αn+

–


 + λ + ( – λ)αn

∣∣∣∣‖Sdn‖
=

λ( – αn+)
 + λ + ( – λ)αn+

‖un+ – un‖

+
∣∣∣∣ λ( – αn+)
 + λ + ( – λ)αn+

–
λ( – αn)

 + λ + ( – λ)αn

∣∣∣∣‖TUn,un‖

+
αn+

 + λ + ( – λ)αn+
‖en+‖ + αn

 + λ + ( – λ)αn
‖en‖

+


 + λ + ( – λ)αn+

(
αn+

∥∥γ f (xn+) –AWn+un+
∥∥

+ αn
∥∥γ f (xn) –AWnun

∥∥ + ‖un+ – un‖
)
+ ‖Wn+un –Wnun‖

+
∣∣∣∣ 
 + λ + ( – λ)αn+

–


 + λ + ( – λ)αn

∣∣∣∣‖Sdn‖.
Note that:
() By condition (C), we have

λ( – αn+)
 + λ + ( – λ)αn+

–
λ( – αn)

 + λ + ( – λ)αn
→ 

and


 + λ + ( – λ)αn+

–


 + λ + ( – λ)αn
→ .

() ‖Wn+un –Wnun‖ →  as n→ ∞ because of Step .
Therefore,

lim sup
n→∞

(‖yn+ – yn‖ – ‖un+ – un‖
)≤ .

By Lemma ., we get

lim
n→∞‖yn – un‖ = .
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Hence, from (.), we deduce

lim
n→∞‖xn+ – xn‖ = lim

n→∞

(
 + λ


+
 – λ


αn

)
‖yn – un‖ = . (.)

Step . Show that ‖xn –Wnun‖ →  as n→ ∞. Indeed, we have

‖xn –Wnun‖ ≤ ‖xn – xn+‖ + ‖xn+ –Wnun‖
= ‖xn – xn+‖ +

∥∥PC
[
αnγ f (xn) + (I – αnA)Wnun

]
–Wnun

∥∥
≤ ‖xn – xn+‖ +

∥∥αnγ f (xn) + (I – αnA)Wnun –Wnun
∥∥

= ‖xn – xn+‖ +
∥∥–αnAWnun + αnγ f (xn)

∥∥
≤ ‖xn – xn+‖ + αn

(‖A‖‖Wnun‖ + γ
∥∥f (xn)∥∥).

Then

lim
n→∞‖xn –Wnun‖ ≤ lim

n→∞‖xn – xn+‖ + αn
(‖A‖‖Wnun‖ + γ

∥∥f (xn)∥∥) = . (.)

Thus, from (.), we obtain

lim
n→∞‖xn –Wnun‖ = .

Step . Show that ‖xn – un‖ →  as n→ ∞.
Let x̂ ∈ �. Since Trn is firmly nonexpansive, it follows

‖x̂ – un‖ = ‖Trn x̂ – Trnxn‖

≤ 〈Trnxn – Trn x̂,xn – x̂〉
≤ 〈Trnxn – x̂,xn – x̂〉
= 〈un – x̂,xn – x̂〉
=



(‖un – x̂‖ + ‖xn – x̂‖ – ‖xn – un‖

)
.

Then

‖un – x̂‖ ≤ ‖xn – x̂‖ – ‖xn – un‖.

Since we have

‖xn+ – x̂‖ =
∥∥PC

[
αnγ f (xn) + (I – αnA)Wnun

]
– PCx̂

∥∥
=
∥∥αnγ f (xn) + (I – αnA)Wnun – x̂

∥∥
=
∥∥(I – αnA)(Wnun – x̂) + αn

(
γ f (xn) –Ax̂

)∥∥
≤ ( – αnγ̄ )‖Wnun – x̂‖ + αn

〈
γ f (xn) –Ax̂,xn+ – x̂

〉
≤ ( – αnγ̄ )‖un – x̂‖ + αnγ

〈
f (xn) – f (x̂),xn+ – x̂

〉
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+ αn
〈
γ f (x̂) –Ax̂,xn+ – x̂

〉
≤ ( – αnγ̄ )

(‖xn – x̂‖ – ‖xn – un‖
)
+ αnγα‖xn – x̂‖‖xn+ – x̂‖

+ αn
∥∥γ f (x̂) –Ax̂

∥∥‖xn+ – x̂‖
=
(
 – αnγ̄ + (αnγ̄ )

)‖xn – x̂‖ – ( – αnγ̄ )‖xn – un‖

+ αnγα‖xn – x̂‖‖xn+ – x̂‖ + αn
∥∥γ f (x̂) –Ax̂

∥∥‖xn+ – x̂‖
≤ ‖xn – x̂‖ + αnγ̄

‖xn – x̂‖ – ( – αnγ̄ )‖xn – un‖

+ αnγα‖xn – x̂‖‖xn+ – x̂‖ + αn
∥∥γ f (x̂) –Ax̂

∥∥‖xn+ – x̂‖,

and hence

( – αnγ̄ )‖xn – un‖ ≤ ‖xn – x̂‖ – ‖xn+ – x̂‖ + αnγ̄
‖xn – x̂‖

+ αnγα‖xn – x̂‖‖xn+ – x̂‖ + αn
∥∥γ f (x̂) –Ax̂

∥∥‖xn+ – x̂‖
≤ ‖xn – xn+‖

(‖xn – x̂‖‖xn+ – x̂‖) + αnγ̄
‖xn – x̂‖

+ αnγα‖xn – x̂‖‖xn+ – x̂‖ + αn
∥∥γ f (x̂) –Ax̂

∥∥‖xn+ – x̂‖.

Therefore, we have ‖xn – un‖ →  as n→ ∞.
Step . Show that lim supn→∞〈γ f (x∗) –Ax∗,xn – x∗〉 ≤ .
We can choose a subsequence {xni} of {xn} such that

lim
i→∞

〈
γ f

(
x∗) –Ax∗,xni – x∗〉 = lim sup

n→∞
〈
γ f

(
x∗) –Ax∗,xn – x∗〉.

Let

A(xni ) =
{
x ∈H : lim sup

i→∞
‖xni – x‖ = inf

y∈H lim sup
i→∞

‖xni – y‖
}

be the asymptotic center of {xni}. Since {xni} is bounded and H is a Hilbert space, it is well
known that A(xni ) is a singleton; say A(xni ) = {x̃}. Set

L = sup
i∈N

∥∥γ f (xni ) –AWniuni
∥∥

and for every x ∈H define

Wx = lim
i→∞Wnix (.)

and

Tr(x) =
{
z ∈H : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈H

}
.

Note that

‖xni –Wx̃‖ ≤ ‖xni+ – xni‖ + ‖xni+ –Wx̃‖
= ‖xni+ – xni‖ +

∥∥PC
[
αniγ f (xni ) + (I – αniA)Wniuni

]
–Wx̃

∥∥
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≤ ‖xni+ – xni‖ +
∥∥αniγ f (xni ) + (I – αniA)Wniuni –Wx̃

∥∥
= ‖xni+ – xni‖ +

∥∥Wniuni –Wx̃ + αni
(
γ f (xni ) –AWniuni

)∥∥
≤ ‖xni+ – xni‖ +

∥∥Wniuni –Wnixni
∥∥ + ‖Wnixni –Wni x̃‖

+ ‖Wni x̃ –Wx̃‖ + αniL

≤ ‖xni+ – xni‖ + ‖uni – xni‖ + ‖xni – x̃‖ + ‖Wni x̃ –Wx̃‖ + αniL.

By Steps -, condition (C) and (.), we derive

lim sup
i→∞

‖xni –Wx̃‖ ≤ lim sup
i→∞

‖uni – xni‖ + ‖xni – x̃‖ + ‖Wni x̃ –Wx̃‖

≤ lim sup
i→∞

‖xni – x̃‖.

That is,Wx̃ ∈ A(xni ). ThereforeWx̃ = x̃. Next, we show that x̃ = Trx̃.
Note that for any x ∈H and a,b > , we have

F(Tax, y) +

a
〈y – Tax,Tax – x〉 ≥ , ∀y ∈H

and

F(Tbx, y) +

b
〈y – Tbx,Tbx – x〉 ≥ , ∀y ∈H ,

then

F(Tax,Tbx) +

a
〈Tbx – Tax,Tax – x〉 ≥ 

and

F(Tbx,Tax) +

b
〈Tax – Tbx,Tax – x〉 ≥ .

Summing up the last inequalities and using (A), we obtain

〈
Tax – Tbx,

Tbx – x
b

–
Tax – x

a

〉
≥ .

Hence we have

 ≤
〈
Tax – Tbx,Tbx – x –

b
a
(Tax – x)

〉

=
〈
Tax – Tbx,Tbx – Tax + Tax – x –

b
a
(Tax – x)

〉

=
〈
Tax – Tbx, (Tbx – Tax) +

(
 –

b
a

)
(Tax – x)

〉

≤ –‖Tax – Tbx‖ +
∣∣∣∣ – b

a

∣∣∣∣‖Tax – Tbx‖
(‖Tax‖ + ‖x‖).
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We derive then

‖Tax – Tbx‖ ≤ |b – a|
a

(‖Tax‖ + ‖x‖).
It follows that

‖xni – Trx̃‖ ≤ ‖xni+ – xni‖ + ‖xni+ – Trx̃‖
= ‖xni+ – xni‖ +

∥∥PC
[
αniγ f (xni ) + (I – αniA)Wniuni

]
– Trx̃

∥∥
≤ ‖xni+ – xni‖ +

∥∥αniγ f (xni ) + (I – αniA)Wniuni – Trx̃
∥∥

= ‖xni+ – xni‖ +
∥∥Wniuni – Trx̃ + αni

(
γ f (xni ) –AWniuni

)∥∥
≤ ‖xni+ – xni‖ + ‖Wniuni – xni‖ + ‖Trni xni – Trni x̃‖ + ‖xni – Trni xni‖

+ ‖Trni x̃ – Trx̃‖ + αniL

≤ ‖xni+ – xni‖ + ‖uni – xni‖ + ‖xni – x̃‖ + ‖xni – uni‖
+ ‖Trni x̃ – Trx̃‖ + αniL

≤ ‖xni+ – xni‖ + ‖uni – xni‖ + ‖xni – x̃‖ + ‖xni – uni‖

+
|rni – r|

r
(‖Trx̃‖ + ‖x̃‖) + αniL.

By Steps -, conditions (C) and (C), we obtain

lim sup
i→∞

‖xni – Trx̃‖ ≤ lim sup
i→∞

‖xni – x̃‖

and x̃ = Trx̃. Thus x̃ ∈ F(W ) ∩ F(Tr) = � by Lemma . and .. Fix t ∈ (, ), x ∈ H and
set y = x̃ + tx. Then

‖xni – x̃ – tx‖ ≤ ‖xni – x̃‖ + t〈x, x̃ + tx – xni〉.

By the minimizing property of x̃ and since ‖ · ‖ is continuous and increasing in [,∞), we
have

lim sup
i→∞

‖xni – x̃‖ ≤ lim sup
i→∞

‖xni – x̃ – tx‖

≤ lim sup
i→∞

‖xni – x̃‖ + t lim sup
i→∞

〈x, x̃ + tx – xni〉.

Thus,

lim sup
i→∞

〈x, x̃ + tx – xni〉 ≥ .

On the other hand,

〈x, x̃ – xni〉 = 〈x, x̃ + tx – xni〉 – t‖x‖.
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Hence we obtain

lim sup
i→∞

〈x, x̃ – xni〉 = lim
t→

(
lim sup
i→∞

〈x, x̃ + tx – xni〉 – t‖x‖
)

≥ .

Set x = γ f (x∗) –Ax∗. Since x̃ ∈ �, we obtain

 ≤ lim sup
i→∞

〈
γ f

(
x∗) –Ax∗, x̃ – xni

〉
≤ 〈

γ f
(
x∗) –Ax∗, x̃ – x∗〉 + lim

i→∞
〈
γ f

(
x∗) –Ax∗,x∗ – xni

〉
≤ lim

i→∞
〈
γ f

(
x∗) –Ax∗,x∗ – xni

〉
.

So that

lim sup
n→∞

〈
γ f

(
x∗) –Ax∗,xn – x∗〉 = – lim

i→∞
〈
γ f

(
x∗) –Ax∗,xni – x∗〉≤ .

Step . Show that both {xn} and {un} strongly converge to x∗ ∈ �, which is the unique
solution of the variational inequality (.). Indeed, we note that

∥∥xn+ – x∗∥∥ = 〈xn+ – dn,xn+ – x∗〉 + 〈dn – x∗,xn+ – x∗〉.
Since 〈xn+ – dn,xn+ – x∗〉 ≤ , we get

∥∥xn+ – x∗∥∥ ≤ 〈
dn – x∗,xn+ – x∗〉

=
〈
αnγ f (xn) + (I – αnA)Wnun – x∗,xn+ – x∗〉

=
〈
αnγ f (xn) – αnγ f

(
x∗) +Wnun – αnAWnun – x∗

+ αnAx∗ + αnγ f
(
x∗) – αnAx∗,xn+ – x∗〉

=
〈
αnγ

(
f (xn) – f

(
x∗)) + (I – αnA)

(
Wnun – x∗),xn+ – x∗〉

+ αn
〈
γ f

(
x∗) –Ax∗,xn+ – x∗〉

≤ (
αnγ

∥∥f (xn) – f
(
x∗)∥∥ + ‖I – αnA‖∥∥Wnun – x∗∥∥)∥∥xn+ – x∗∥∥

+ αn
〈
γ f

(
x∗) –Ax∗,xn+ – x∗〉

≤ (
 – αn(γ̄ – γα)

)∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + αn
〈
γ f

(
x∗) –Ax∗,xn+ – x∗〉

≤
(
[ – αn(γ̄ – γα)]



)∥∥xn – x∗∥∥ + 

∥∥xn+ – x∗∥∥

+ αn
〈
γ f

(
x∗) –Ax∗,xn+ – x∗〉.

It then follows that

∥∥xn+ – x∗∥∥ ≤ [
 – αn(γ̄ – γα)

]∥∥xn – x∗∥∥ + αn
〈
γ f

(
x∗) –Ax∗,xn+ – x∗〉. (.)

Let an = ‖xn – x∗‖, γn = αn(γ̄ – γα) and δn = αn〈γ f (x∗) –Ax∗,xn+ – x∗〉.
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Then, we can write the last inequality as

an+ ≤ ( – γn)an + δn.

Note that in virtue of condition (C),
∑∞

n= γn = ∞. Moreover,

lim sup
n→∞

δn

γn
=


γ̄ – γα

lim sup
n→∞


〈
γ f

(
x∗) –Ax∗,xn+ – x∗〉.

By Step , we obtain

lim sup
n→∞

δn

γn
≤ . (.)

Now, applying Lemma . to (.), we conclude that xn → x∗ as n → ∞. Furthermore,
since ‖un – x∗‖ = ‖Trnxn – Trnx∗‖ ≤ ‖xn – x∗‖, we then have that un → x∗ as n → ∞. The
proof is now complete. �

Setting A ≡ I and γ =  in Theorem ., we have the following result.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
F : C ×C →R be an equilibrium bifunction satisfying the conditions:
() F is monotone, that is, F(x, y) + F(y,x)≤  for all x, y ∈ C;
() for each x, y, z ∈ C, limt→ F(tz + ( – t)x, y)≤ F(x, y);
() for each x ∈ C, y → F(x, y) is convex and lower semicontinuous.
Let {Ti}∞i= be an infinite family of nonexpansive mappings of C into C such that⋂∞
i= F(Ti)∩ EP(F) �= ∅. Suppose {αn} ⊂ (, ) and {rn} ⊂ (,∞) satisfy the following condi-

tions:
() limn→∞ αn =  and

∑∞
n= αn = ∞;

() lim infn→∞ rn >  and limn→∞(rn+ – rn) = .
Let f be a contraction of C into itself, and let x ∈ H be given arbitrarily. Then the sequences
{xn} and {yn} generated iteratively by

⎧⎨
⎩F(yn,x) + 

rn 〈x – yn, yn – xn〉 ≥ , ∀x ∈ C,

xn+ = αnf (xn) + ( – αn)Wnyn,

converge strongly to x∗ ∈⋂∞
i= F(Ti)∩EP(F), the unique solution of the minimization prob-

lem

min
x∈⋂∞

i= F(Ti)∩EP(F)


‖x‖ – h(x),

where h is a potential function for f .

Setting F =  in Theorem ., we have the following result.

Corollary . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let {Tn}∞n= be a sequence of nonexpansive mappings from C to C such that the common
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fixed point set � =
⋂∞

n= F(Tn) �= ∅. Let f : C →H be an α-contraction and A :H →H be a
strongly positive bounded linear operator with a coefficient γ̄ > . Let γ be a constant such
that  < γα < γ̄ . For an arbitrary initial point x belonging to C, one defines a sequence
{xn}n≥ iteratively

xn+ = PC
[
αnγ f (xn) + (I – αnA)Wnxn

]
, ∀n≥ , (.)

where {αn} is a real sequence in [, ]. Assume that the sequence {αn} satisfies the following
conditions:
(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞.

Then the sequence {xn} generated by (.) converges in norm to the unique solution x∗,
which solves the following variational inequality:

x∗ ∈ � such that
〈
(A – γ f )x∗,x∗ – x̂

〉≤ ,∀x̂ ∈ �. (.)
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