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1 Introduction
Throughout this paper, we denote by N and R the sets of positive integers and real num-
bers, respectively. Let E be a real reflexive Banach space, and let C be a nonempty, closed
and convex subset of E. Let T : C → C be a nonlinear mapping. The fixed point set of T is
denoted by F(T), that is, F(T) = {x ∈ C : x = Tx}. Amapping T is said to be nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C.
Many problems in nonlinear analysis can be reformulated as a problem of finding a fixed

point of a nonexpansive mapping. In , Mann [] introduced the following iterative
sequence {xn} which is defined by

xn+ = αnxn + ( – αn)Txn,

where the initial guess x ∈ C is arbitrary and {αn} is a real sequence in [, ]. It is known
that under appropriate settings, the sequence {xn} converges weakly to a fixed point of T .
However, even in a Hilbert space, Mann’s iteration may fail to converge strongly; for ex-
ample, see [].
Some attempts to construct an iteration method guaranteeing the strong convergence

have been made. For example, Halpern [] proposed the following so-called Halpern iter-
ation:

xn+ = αnu + ( – αn)Txn,

where u,x ∈ C are arbitrary and {αn} is a real sequence in [, ].
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Because of a simple construction, Halpern’s iteration is widely used to approximate a so-
lution of fixed points for nonexpansive mappings and other classes of nonlinear mappings
by mathematicians in different styles [–].
The purpose of this work is to consider strong convergence results for Bregman strongly

nonexpansivemappings in reflexive Banach spaces bymodifyingHalpern andMann’s iter-
ations. We note that there are many examples which are Bregman strongly nonexpansive
such as the Bregman projection, the resolvents of maximal monotone operators, the re-
solvents of equilibrium problems, the resolvents of variational inequality problems and
others (see, for example, [–]). Finally, we give some applications concerning the prob-
lems of finding zeros of maximal monotone operators and equilibrium problems.

2 Preliminaries and lemmas
In the sequel, we begin by recalling some preliminaries and lemmas which will be used in
the proof.
Let E be a real reflexive Banach space with the norm ‖ · ‖, and let E* be the dual space

of E. Throughout this paper, f : E → (–∞, +∞] is a proper, lower semi-continuous and
convex function. We denote by dom f the domain of f , that is, the set {x ∈ E : f (x) < +∞}.
Let x ∈ int dom f . The subdifferential of f at x is the convex set defined by

∂f (x) =
{
x* ∈ E* : f (x) +

〈
x*, y – x

〉 ≤ f (y),∀y ∈ E
}
,

where the Fenchel conjugate of f is the function f * : E* → (–∞, +∞] defined by

f *
(
x*

)
= sup

{〈
x*,x

〉
– f (x) : x ∈ E

}
.

We know that the following Young-Fenchel inequality holds:

〈
x*,x

〉 ≤ f (x) + f *
(
x*

)
, ∀x ∈ E,x* ∈ E*.

Furthermore, the equality holds if x* ∈ ∂f (x) (see also [, Theorem .]).
The set levf≤(r) = {x ∈ E : f (x)≤ r} for some r ∈R is called a sublevel of f .
A function f on E is coercive [] if the sublevel set of f is bounded; equivalently,

lim‖x‖→+∞ f (x) = +∞.

A function f on E is said to be strongly coercive [] if

lim‖x‖→+∞
f (x)
‖x‖ = +∞.

For any x ∈ int dom f and y ∈ E, the right-hand derivative of f at x in the direction y is
defined by

f ◦(x, y) := lim
t→+

f (x + ty) – f (x)
t

.

The function f is said to be Gâteaux differentiable at x if limt→+
f (x+ty)–f (x)

t exists for
any y. In this case, f ◦(x, y) coincides with ∇f (x), the value of the gradient ∇f of f at x.
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The function f is said to be Gâteaux differentiable if it is Gâteaux differentiable for any
x ∈ int dom f . The function f is said to be Fréchet differentiable at x if this limit is attained
uniformly in ‖y‖ = . Finally, f is said to be uniformly Fréchet differentiable on a subset
C of E if the limit is attained uniformly for x ∈ C and ‖y‖ = . It is known that if f is
Gâteaux differentiable (resp. Fréchet differentiable) on int dom f , then f is continuous and
its Gâteaux derivative ∇f is norm-to-weak* continuous (resp. continuous) on int dom f
(see also [, ]). We will need the following result.

Lemma . [] If f : E →R is uniformly Fréchet differentiable and bounded on bounded
subsets of E, then∇f is uniformly continuous on bounded subsets of E from the strong topol-
ogy of E to the strong topology of E*.

Definition . [] The function f is said to be:
(i) Essentially smooth if ∂f is both locally bounded and single-valued on its domain.
(ii) Essentially strictly convex if (∂f )– is locally bounded on its domain and f is strictly

convex on every convex subset of dom ∂f .
(iii) Legendre if it is both essentially smooth and essentially strictly convex.

Remark . Let E be a reflexive Banach space. Then we have
(i) f is essentially smooth if and only if f * is essentially strictly convex (see

[, Theorem .]).
(ii) (∂f )– = ∂f * (see []).
(iii) f is Legendre if and only if f * is Legendre (see [, Corollary .]).
(iv) If f is Legendre, then ∇f is a bijection satisfying ∇f = (∇f *)–,

ran∇f = dom∇f * = int dom f * and ran∇f * = dom∇f = int dom f (see
[, Theorem .]).

Examples of Legendre functions were given in [, ]. One important and interesting
Legendre function is 

p‖ · ‖p ( < p < ∞) when E is a smooth and strictly convex Banach
space. In this case the gradient ∇f of f is coincident with the generalized duality mapping
of E, i.e., ∇f = Jp ( < p < ∞). In particular, ∇f = I the identity mapping in Hilbert spaces.
In the rest of this paper, we always assume that f : E → (–∞, +∞] is Legendre.
Let f : E → (–∞, +∞] be a convex and Gâteaux differentiable function. The function

Df : dom f × int dom f → [, +∞) defined as follows:

Df (y,x) := f (y) – f (x) –
〈∇f (x), y – x

〉
is called the Bregman distance with respect to f [].
Recall that the Bregman projection [] of x ∈ int dom f onto the nonempty closed and

convex set C ⊂ dom f is the necessarily unique vector Pf
C(x) ∈ C satisfying

Df
(
Pf
C(x),x

)
= inf

{
Df (y,x) : y ∈ C

}
.

Concerning the Bregman projection, the following are well known.

Lemma . [] Let C be a nonempty, closed and convex subset of a reflexive Banach
space E. Let f : E → R be a Gâteaux differentiable and totally convex function, and let
x ∈ E. Then

http://www.journalofinequalitiesandapplications.com/content/2013/1/146
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(a) z = Pf
C(x) if and only if 〈∇f (x) –∇f (z), y – z〉 ≤ , ∀y ∈ C.

(b)

Df
(
y,Pf

C(x)
)
+Df

(
Pf
C(x),x

) ≤ Df (y,x), ∀x ∈ E, y ∈ C. (.)

Let f : E → (–∞, +∞] be a convex and Gâteaux differentiable function. The modulus of
total convexity of f at x ∈ int dom f is the function νf (x, ·) : [, +∞)→ [, +∞] defined by

νf (x, t) := inf
{
Df (y,x) : y ∈ dom f ,‖y – x‖ = t

}
.

The function f is called totally convex at x if νf (x, t) >  whenever t > . The function
f is called totally convex if it is totally convex at any point x ∈ int dom f and is said to be
totally convex on bounded sets if νf (B, t) >  for any nonempty bounded subset B of E and
t > , where the modulus of total convexity of the function f on the set B is the function
νf : int dom f × [, +∞) → [, +∞] defined by

νf (B, t) := inf
{
νf (x, t) : x ∈ B∩ dom f

}
.

We know that f is totally convex on bounded sets if and only if f is uniformly convex on
bounded sets (see [, Theorem .]).
The next lemma turns out to be very useful in the proof of our main results.

Proposition . [] If x ∈ int dom f , then the following statements are equivalent.
(i) The function f is totally convex at x.
(ii) For any sequence {yn} ⊂ dom f ,

lim
n→+∞Df (yn,x) =  ⇒ lim

n→+∞‖yn – x‖ = .

Recall that the function f is called sequentially consistent [] if for any two sequences
{xn} and {yn} in E such that the first one is bounded,

lim
n→+∞Df (yn,xn) =  ⇒ lim

n→+∞‖yn – xn‖ = .

Lemma . [] The function f is totally convex on bounded sets if and only if the function
f is sequentially consistent.

Let C be a convex subset of int dom f , and let T be a self-mapping of C. A point p ∈ C
is called an asymptotic fixed point of T (see [, ]) if C contains a sequence {xn} which
converges weakly to p such that limn→∞ ‖xn – Txn‖ = . We denote by F̂(T) the set of
asymptotic fixed points of T .

Definition . A mapping T with a nonempty asymptotic fixed point set is said to be:
(i) Bregman strongly nonexpansive (see [, ]) with respect to a nonempty F̂(T) if

Df (p,Tx) ≤ Df (p,x), ∀x ∈ C,p ∈ F̂(T), (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/146
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and if whenever {xn} ⊂ C is bounded, p ∈ F̂(T) and

lim
n→∞

(
Df (p,xn) –Df (p,Txn)

)
= ,

it follows that

lim
n→∞Df (xn,Txn) = .

(ii) Bregman firmly nonexpansive [, , ] if, for all x, y ∈ C,

〈∇f (Tx) –∇f (Ty),Tx – Ty
〉 ≤ 〈∇f (x) –∇f (y),Tx – Ty

〉
or, equivalently,

Df (Tx,Ty) +Df (Ty,Tx) +Df (Tx,x) +Df (Ty, y) ≤ Df (Tx, y) +Df (Ty,x).

The existence and approximation of Bregman firmly nonexpansive mappings was
studied in []. It is also known that if T is Bregman firmly nonexpansive and f is a
Legendre function which is bounded, uniformly Fréchet differentiable and totally con-
vex on bounded subsets of E, then F(T) = F̂(T) and F(T) is closed and convex (see []). It
also follows that every Bregman firmly nonexpansive mapping is Bregman strongly non-
expansive with respect to F(T) = F̂(T).
Let f : E →R be a convex, Legendre andGâteaux differentiable function. Following []

and [], we make use of the function Vf : E × E* → [, +∞) associated with f , which is
defined by

Vf
(
x,x*

)
= f (x) –

〈
x*,x

〉
+ f *

(
x*

)
(.)

for all x ∈ E, x* ∈ E*. Then Vf is nonnegative and Vf (x,x*) =Df (x,∇f *(x*)) for all x ∈ E and
x* ∈ E*. We know the following lemma (see []).

Lemma . Let E be a reflexive Banach space, let f : E → R be a convex, Legendre and
Gâteaux differentiable function, and let Vf be as in (.). Then

Vf
(
x,x*

)
+

〈
y*,∇f *

(
x*

)
– x

〉 ≤ Vf
(
x,x* + y*

)
(.)

for all x ∈ E and x*, y* ∈ E*.

Let E be a real reflexive Banach space, let f : E → (–∞, +∞] be a proper lower semi-
continuous function, then f * : E* → (–∞, +∞] is a proper weak* lower semi-continuous
and convex function (see []). Hence Vf is convex in the second variable. Thus, for all
z ∈ E, we have

Df

(
z,∇f *

( N∑
i=

ti∇f (xi)

))
≤

N∑
i=

tiDf (z,xi), (.)

where {xi}Ni= ⊂ E and {ti}Ni= ⊂ (, ) with
∑N

i= ti = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/146
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The following results are of fundamental importance for the techniques of analysis used
in this paper.

Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + γnδn, ∀n ∈N ,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
(a) limn→∞ γn = ,

∑∞
n= γn = ∞;

(b) lim supn→∞ δn ≤ .
Then limn→∞ αn = .

Lemma . [] Let {αn} be a sequence of real numbers such that there exists a sub-
sequence {ni} of {n} such that αni < αni+ for all i ∈ N. Then there exists a nondecreasing
sequence {mk} ⊂ N such that mk → ∞, and the following properties are satisfied for all
(sufficiently large) numbers k ∈ N:

αmk ≤ αmk+ and αk ≤ αmk+.

In fact,mk =max{j ≤ k : αj < αj+}.

3 Main results
In this section, we modify Halpern and Mann’s iterations for finding a fixed point of a
Bregman strongly nonexpansive mapping in a real reflexive Banach space.

Lemma . [] Let C be a nonempty, closed and convex subset of a real reflexive Banach
space E. Let f : E → R be a Gâteaux differentiable and totally convex function, and let
T : C → C be a mapping such that F̂(T) = F(T) is nonempty, closed and convex. Suppose
that u ∈ C and {xn} is a bounded sequence in C such that limn→∞ ‖xn – Txn‖ = . Then

lim sup
n→∞

〈∇f (u) –∇f (p),xn – p
〉 ≤ ,

where p = Pf
F(T)(u) and Pf

F(T) is the Bregman projection of C onto F(T).

Theorem . Let E be a real reflexive Banach space E, and let f : E → R be a strongly
coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally
convex on bounded subsets of E. Let T be a Bregman strongly nonexpansive mapping on
E such that F(T) = F̂(T) �= ∅. Suppose that u ∈ E and define the sequence {xn} as follows:
x ∈ E and

xn+ = ∇f *
(
αn∇f (u) + ( – αn)

(
βn∇f (xn) + ( – βn)∇f (Txn)

))
, ∀n≥ , (.)

where {αn} and {βn} are sequences in (, ) satisfying
(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞;

(C)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

http://www.journalofinequalitiesandapplications.com/content/2013/1/146
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Then {xn} converges strongly to Pf
F(T)(u), where P

f
F(T) is the Bregman projection of E onto

F(T).

Proof Wenote, by Reich and Sabach [], that F(T) is closed and convex. Let p = Pf
F(T)(u) ∈

F(T) = F̂(T) and yn = ∇f *(βn∇f (xn) + ( – βn)∇f (Txn)) for all n ∈ N. Then

xn+ = ∇f *
(
αn∇f (u) + ( – αn)∇f (yn)

)
(.)

for all n ∈N. By using (.) and (.), we have

Df (p, yn) = Df
(
p,∇f *

(
βn∇f (xn) + ( – βn)∇f (Txn)

))
≤ βnDf (p,xn) + ( – βn)Df (p,Txn)

≤ βnDf (p,xn) + ( – βn)Df (p,xn)

= Df (p,xn) (.)

and

Df (p,xn+) = Df
(
p,∇f *

(
αn∇f (u) + ( – αn)∇f (yn)

))
≤ αnDf (p,u) + ( – αn)Df (p, yn)

≤ αnDf (p,u) + ( – αn)Df (p,xn)

≤ max
{
Df (p,u),Df (p,xn)

}
.

By induction, we have

Df (p,xn+) ≤ max
{
Df (p,u),Df (p,x)

}
for all n ∈N. This implies that {Df (p,xn)} is bounded, and hence {Df (p, yn)} is bounded.
We next show that the sequence {xn} is also bounded.We follow the proof line as in [].

Since {Df (p,xn)} is bounded, there existsM >  such that

f (p) –
〈∇f (xn),p

〉
+ f *

(∇f (xn)
)
= Vf

(
p,∇f (xn)

)
=Df (p,xn) ≤ M.

Hence {∇f (xn)} is contained in the sublevel set levψ
≤(M – f (p)), where ψ = f * – 〈·,p〉.

Since f is lower semicontinuous, f * is weak* lower semicontinuous. Hence the function
ψ is coercive by Moreau-Rockafellar theorem (see [, Theorem A]). This shows that
{∇f (xn)} is bounded. Since f is strongly coercive, f * is bounded on bounded sets (see [,
Theorem .]). Hence ∇f * is also bounded on bounded subsets of E* (see [, Proposi-
tion ..]). Since f is a Legendre function, it follows that xn = ∇f *(∇f (xn)) is bounded for
all n ∈ N. Therefore {xn} is bounded. So are {yn}, {Txn}, {∇f (yn)} and {∇f (Txn)}. Indeed,
since f is a bounded function defined on bounded subsets of E, ∇f is also bounded on
bounded subsets of E (see [, Proposition ..]). Therefore {∇f (Txn)} is bounded.
We next show that if there exists a subsequence {xnk } of {xn} such that

lim
k→∞

(
Df (p,xnk+) –Df (p,xnk )

)
= ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/146
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then

lim
k→∞

(
Df (p,Txnk ) –Df (p,xnk )

)
= .

In fact, since {∇f (ynk )} is bounded and αnk → , from (.) we have

lim
k→∞

∥∥∇f (xnk+) –∇f (ynk )
∥∥ = lim

k→∞
αnk

∥∥∇f (u) –∇f (ynk )
∥∥ = . (.)

Since f is strongly coercive and uniformly convex on bounded subsets of E, f * is uniformly
Fréchet differentiable on bounded subsets of E* (see [, Proposition ..]). Since f is
Legendre, by Lemma ., we have

lim
k→∞

‖xnk+ – ynk‖ = lim
k→∞

∥∥∇f *
(∇f (xnk+)

)
–∇f *

(∇f (ynk )
)∥∥ = . (.)

On the other hand, since f is uniformly Fréchet differentiable on bounded subsets of E, f
is uniformly continuous on bounded subsets of E (see [, Theorem .]). It follows that

lim
k→∞

∣∣f (xnk+) – f (ynk )
∣∣ = . (.)

We now consider the following equality.

Df (p, ynk ) –Df (p,xnk )

= f (p) – f (ynk ) –
〈∇f (ynk ),p – ynk

〉
–Df (p,xnk )

= f (p) – f (xnk+) + f (xnk+) – f (ynk ) –
〈∇f (xnk+),p – xnk+

〉
+

〈∇f (xnk+),p – xnk+
〉
–

〈∇f (ynk ),p – ynk
〉
–Df (p,xnk )

=Df (p,xnk+) +
(
f (xnk+) – f (ynk )

)
+

〈∇f (xnk+),p – xnk+
〉

–
〈∇f (ynk ),p – ynk

〉
–Df (p,xnk )

=
(
Df (p,xnk+) –Df (p,xnk )

)
+

(
f (xnk+) – f (ynk )

)
+

〈∇f (xnk+) –∇f (ynk ),p – xnk+
〉
–

〈∇f (ynk ),xnk+ – ynk
〉
. (.)

It follows from (.)-(.) that

lim
k→∞

(
Df (p, ynk ) –Df (p,xnk )

)
=  (.)

and

Df (p, ynk ) –Df (p,xnk ) ≤ βnkDf (p,xnk ) + ( – βnk )Df (p,Txnk ) –Df (p,xnk )

= ( – βnk )
(
Df (p,Txnk ) –Df (p,xnk )

)
.

By virtue of condition (C), (.) and (.), we have

lim
k→∞

(
Df (p,Txnk ) –Df (p,xnk )

)
= . (.)
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We next consider the following two cases.
Case . Df (p,xn+) ≤ Df (p,xn) for all sufficiently large n. Hence the sequence {Df (p,xn)}

is bounded and nonincreasing. So, the limit limn→∞ Df (p,xn) exists. This shows that
limn→∞(Df (p,xn+) –Df (p,xn)) = , and hence

lim
n→∞

(
Df (p,Txn) –Df (p,xn)

)
= .

Since T is Bregman strongly nonexpansive, we have

lim
n→∞Df (xn,Txn) = .

Since f is totally convex on bounded subsets of E, by Lemma ., we have

lim
n→∞‖xn – Txn‖ = . (.)

From (.) we have

Df (Txn, yn) = Df
(
Txn,∇f *

(
βn∇f (xn) + ( – βn)∇f (Txn)

))
≤ βnDf (Txn,xn) + ( – βn)Df (Txn,Txn)

= βnDf (Txn,xn)→  (.)

and

Df (yn,xn+) ≤ αnDf (yn,u) + ( – αn)Df (yn, yn) = αnDf (yn,u) → . (.)

From (.), (.) and Lemma ., we get

lim
n→∞‖Txn – yn‖ =  and lim

n→∞‖yn – xn+‖ = . (.)

From (.), (.) and invoking Lemma ., we have

lim
n→∞ sup

〈∇f (u) –∇f (p),xn+ – p
〉
= lim

n→∞ sup
〈∇f (u) –∇f (p),xn – p

〉 ≤ . (.)

Finally, we show that xn → p. In fact, by using (.), we obtain that

Df (p,xn+) = Df
(
p,∇f *

(
αn∇f (u) + ( – αn)∇f (yn)

))
= Vf

(
p,αn∇f (u) + ( – αn)∇f (yn)

)
≤ Vf

(
p,αn∇f (u) + ( – αn)∇f (yn) – αn

(∇f (u) –∇f (p)
))

+
〈
αn

(∇f (u) –∇f (p)
)
,∇f *

(
αn∇f (u) + ( – αn)∇f (yn)

)
– p

〉
= Vf

(
p,αn∇f (p) + ( – αn)∇f (yn)

)
+ αn

〈∇f (u) –∇f (p),xn+ – p
〉

= Df
(
p,∇f *

(
αn∇f (p) + ( – αn)∇f (yn)

))
+ αn

〈∇f (u) –∇f (p),xn+ – p
〉

≤ αnDf (p,p) + ( – αn)Df (p, yn) + αn
〈∇f (u) –∇f (p),xn+ – p

〉
≤ ( – αn)Df (p,xn) + αn

〈∇f (u) –∇f (p),xn+ – p
〉
. (.)
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By Lemma ., we can conclude that limn→∞ Df (p,xn) = . Therefore, by Lemma., xn →
p since f is totally convex on bounded subsets of E.
Case . Suppose that there exists a subsequence {Df (p,ni)} of {Df (p,xn)} such that

Df (p,xni ) <Df (p,xni+)

for all i ∈ N. Then, by Lemma ., there exists a nondecreasing sequence {mk} ⊂ N such
thatmk → ∞

Df (p,xmk ) ≤ Df (p,xmk+) and Df (p,xk) ≤ Df (p,xmk+)

for all k ∈N. So, we have

 ≤ lim
k→∞

(
Df (p,xmk+) –Df (p,xmk )

)
≤ lim sup

n→∞
(
Df (p,xn+) –Df (p,xn)

)
≤ lim sup

n→∞
(
αnDf (p,u) + ( – αn)Df (p, yn) –Df (p,xn)

)
≤ lim sup

n→∞

(
αnDf (p,u) + ( – αn)

(
βnDf (p,xn) + ( – βn)Df (p,Txn)

)
–Df (p,xn)

)
= lim sup

n→∞

(
αnDf (p,u) + ( – αn)( – βn)

(
Df (p,Txn)

)
–Df (p,xn)

)
– αn

(
Df (p,xn)

)
≤ lim sup

n→∞
αn

(
Df (p,u) –Df (p,xn)

)
= . (.)

This implies

lim
k→∞

(
Df (p,xmk+) –Df (p,xmk )

)
= . (.)

Following the proof line in Case , we can verify

lim
k→∞

〈∇f (u) –∇f (p),xmk+ – p
〉 ≤  (.)

and

Df (p,xmk+) ≤ ( – αmk )Df (p,xmk ) + αmk

〈∇f (u) – f (p),xmk+ – p
〉
.

Since Df (p,xmk )≤ Df (p,xmk+), we have

αmkDf (p,xmk ) ≤ Df (p,xmk ) –Df (p,xmk+) + αmk

〈∇f (u) –∇f (p),xmk+ – p
〉

≤ αmk

〈∇f (u) –∇f (p),xmk+ – p
〉
.

In particular, since αmk > , we get

Df (p,xmk ) ≤
〈∇f (u) –∇f (p),xmk+ – p

〉
.
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Hence it follows from (.) that limk→∞ Df (p,xmk ) = . Using this and (.) together, we
conclude that

lim
k→∞

supDf (p,xk) ≤ lim
k→∞

Df (p,xmk+) = .

This completes the proof. �

Letting βn ≡ β gives the following result.

Corollary . Let E be a real reflexive Banach space E, and let f : E → R be a strongly
coercive Legendre function which is bounded, uniformly Fréchet differentiable and totally
convex on bounded subsets of E. Let T be a Bregman strongly nonexpansive mapping on
E such that F(T) = F̂(T) �= ∅. Suppose that u ∈ E and define the sequence {xn} as follows:
x ∈ E and

xn+ = ∇f *
(
αn∇f (u) + ( – αn)

(
β∇f (xn) + ( – β)∇f (Txn)

))
(.)

for all n ∈ N, where {αn} is a sequence in (, ) satisfying conditions (C) and (C), and
β ∈ (, ). Then {xn} converges strongly to Pf

F(T)(u).

4 Application to a zero point problem ofmaximal monotonemappings and
equilibrium problems

Let E be a real reflexive Banach space. Let A : E → E* be a set-valued mapping. The do-
main of A is denoted by domA = {x ∈ E : Ax �= ∅}, and also the graph of A is denoted by
G(A) = {(x,x*) ∈ E × E* : x* ∈ Ax}. A is said to be monotone if 〈x – y,x* – y*〉 ≥  for each
(x,x*), (y, y*) ∈G(A). It is said to be maximal monotone if its graph is not contained in the
graph of any other monotone operator on E. It is known that if A is maximal monotone,
then the set A–(*) = {z ∈ E : * ∈ Az} is closed and convex. Now, we apply Theorem .
to the problem of finding x ∈ E such that * ∈ Ax, which strongly relates to the convex
minimization problems in optimization, economics and applied sciences.
The resolvent of A, denoted by ResfA : E → E , is defined as follows []:

ResfA(x) = (∇f +A)– ◦ �f (x).

It is known that F(ResfA) = A–(*), and ResfA is single-valued and Bregman firmly nonex-
pansive (see []). If f is a Legendre function which is bounded, uniformly Fréchet differ-
entiable on bounded subsets of E, then F̂(ResfA) = F(ResfA) (see []). The Yosida approxi-
mation Aλ : E → E, λ > , is also defined by

Aλ(x) =

λ

(∇f (x) –∇f
(
ResfλA(x)

))

for all x ∈ E. From Proposition . in [], we know that (ResfλA(x),Aλ(x)) ∈G(A) and * ∈
Ax if and only if * ∈ Aλx for all x ∈ E and λ > . Using these facts, we obtain the following
result by replacing T = ResfλA, λ >  in Theorem ..

http://www.journalofinequalitiesandapplications.com/content/2013/1/146


Zhu and Chang Journal of Inequalities and Applications 2013, 2013:146 Page 12 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/146

Theorem . Let C be a nonempty, closed and convex subset of a real reflexive Banach
space E, and let f : E → R be a strongly coercive Legendre function which is bounded, uni-
formly Fréchet differentiable and totally convex on bounded subsets of E. Let A : E → E*

be a maximal monotone operator such that A–(*) �= ∅. Suppose that u ∈ E and define the
sequence {xn} as follows: x ∈ E and

xn+ = ∇f *
(
αn∇f (u) + ( – αn)

(
βn∇f (xn) + ( – βn)∇f

(
ResfλAxn

)))
, ∀n≥ ,

where λ >  and {αn} and {βn} are sequences in (, ) satisfying
(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞;

(C)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} converges strongly to Pf

A–(*)(u), where P
f
A–(*) is the Bregman projection of E

onto A–(*).

Let C be a nonempty, closed and convex subset of E, and let 
 : C×C →R be a bifunc-
tion. Now, we apply Theorem . to the problem of finding x ∈ C such that 
(x, y) ≥  for
all y ∈ C. Such a problem is called an equilibrium problem and the solutions set is denoted
by EP(
). Numerous problems in economics, physics and applied sciences can be reduced
to finding solutions of equilibrium problems.
In order to solve the equilibriumproblem, let us assume that a bifunction
 : C×C →R

satisfies the following conditions []:

(A) 
(x,x) = , ∀x ∈ C.
(A) 
 is monotone, i.e., 
(x, y) +
(y,x)≤ , ∀x, y ∈ C.
(A) lim supt↓ 
(x + t(z – x), y) ≤ 
(x, y), ∀x, z, y ∈ C.
(A) The function y �→ 
(x, y) is convex and lower semi-continuous.

The resolvent of a bifunction 
 [] is the operator Resf
 : E → C defined by

Resf
(x) =
{
z ∈ C :
(z, y) +

〈∇f (z) –∇f (x), y – z
〉 ≥ ,∀y ∈ C

}
.

From Lemma  in [], if f : E → (–∞, +∞] is a strongly coercive and Gâteaux differen-
tiable function, and 
 satisfies conditions (A)-(A), then dom(Resf
) = E.
The following lemma gives us some characterizations of the resolvent Resf
.

Lemma . [] Let E be a real reflexive Banach space, and let C be a nonempty closed
convex subset of E. Let f : E → (–∞, +∞] be a Legendre function. If the bifunction 
 :
C ×C →R satisfies the conditions (A)-(A). Then the following hold:

(i) Resf
 is single-valued;
(ii) Resf
 is a Bregman firmly nonexpansive operator;
(iii) F(Resf
) = EP(
);
(iv) EP(
) is a closed and convex subset of C;
(v) for all x ∈ E and for all p ∈ F(Resf
), we have

Df
(
p,Resf
(x)

)
+Df

(
Resf
(x),x

) ≤ Df (p,x).
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In addition, by Reich and Sabach [], if f is uniformly Fréchet differentiable and
bounded on bounded subsets of E, thenwe have fromLemma. that F(Resf
) = F̂(Resf
) =
EP(
) is closed and convex. Also, by replacing T = Resf
 in Theorem ., we obtain the
following result.

Theorem . Let C be a nonempty, closed and convex subset of a real reflexive Banach
space E, and let f : E → R be a strongly coercive Legendre function which is bounded, uni-
formly Fréchet differentiable and totally convex on bounded subsets of E. Let
 : C×C →R

be a bifunction which satisfies the conditions (A)-(A) such that EP(
) �= ∅. Suppose that
u ∈ E and define the sequence {xn} as follows: x ∈ E and

xn+ = ∇f *
(
αn∇f (u) + ( – αn)

(
βn∇f (xn) + ( – βn)∇f

(
Resf
xn

)))
, ∀n≥ ,

where {αn} and {βn} are sequences in (, ) satisfying
(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞;

(C)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Then {xn} converges strongly to Pf

EP(
)(u),where P
f
EP(
) is the Bregman projection of E onto

EP(
).
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