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Abstract
In this paper, a semi-Markovian random walk with a discrete interference of chance
(X(t)) is considered. In this study, it is assumed that the sequence of random variables
{ζn}, n = 1, 2, . . . , which describes the discrete interference of chance, forms an
ergodic Markov chain with the Weibull stationary distribution. Under this assumption,
the ergodic theorem for the process X(t) is discussed. Then the weak convergence
theorem is proved for the ergodic distribution of the process X(t) and the limit form of
the ergodic distribution is derived.
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1 Introduction
Many interesting problems of stochastic finance, mathematical biology, reliability, queu-
ing, stochastic inventory and mathematical insurance can be expressed by means of ran-
dom walk processes. Some important studies on this topic exist in literature (see, for ex-
ample, Aliyev et al. [–]; Alsmeyer []; Borovkov []; Khaniyev et al. [, ]; Lotov [];
Rogozin []; Skorohod and Slobodenyuk []; Spitzer [] etc.).
Note that in the studies of Khaniyev et al. [] andAliyev et al. [, ], the random variables

ζn, n = , , , . . . , which describe the discrete interference of chance, have exponential,
gamma and triangular distribution, respectively, and stationary moments of the ergodic
distribution of a semi-Markovian randomwalk process have been investigated. Moreover,
Aliyev et al. [] and Khaniyev and Atalay [] investigated a weak convergence theorem
for the ergodic distribution of the renewal-reward process when the random variables
ζn, n = , , , . . . , have gamma and triangular distribution, respectively. In this study, un-
like Aliyev et al. [–] and Khaniyev et al. [, ], we assume that the random variables
ζn, n = , , , . . . , which describe the discrete interference of chance, are independent and
identically distributed random variables with theWeibull distribution, and the weak con-
vergence theorem is proved for the ergodic distribution of a semi-Markovian randomwalk
process, and the limit distribution is derived for the ergodic distribution of the considered
process.
This process might be useful in the following situation.
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The model
Consider a stochastic model, which can be used in the field of insurance. This model can
be described as follows.
Suppose that the amount of initial capital of an insurance company is equal to z ∈ (,∞).

Assume that the premiums and claims arrive at the insurance company randomly at the
times Tn =

∑n
i= ξi, n≥ , here ξi, i≥ , are the random time intervals between two succes-

sive claims and premiums. Level of total capital of the company fluctuates in accordance
with {–ηn}, n ≥ . The random variable ηn expresses difference of claims and premiums,
which can take both positive and negative values. The amount of the total capital of the in-
surance company continues its variation until a random time τ which is the time at which
the capital level first falls below zero. When the above conditions take place, the amount
of the company’s capital increases immediately to the level ζ, which is a random variable
having a certain distribution in the interval (,∞). Thus, the first period is completed.
Then the insurance company keeps working in a way similar to the previous period with
a new initial capital ζ and so on.
Denote the stochastic process expressed this model mathematically by X(t). Thus, the

amount of capital of the insurance company at each time t is represented by the process
X(t). The process X(t) is known to be as a semi-Markovian random walk process with a
discrete interference of chance.
We now proceed to a mathematical construction of the process X(t).

2 Mathematical construction of the process X(t)
Let (ξn,ηn, ζn), n ≥  be a sequence of independent and identically distributed vector of
random variables, defined on any probability space (�,�,P), such that ξn takes only posi-
tive values, ηn takes positive and negative values as well as positive ones, ζn has theWeibull
distribution with parameters (α,λ), α > , λ > . Suppose that ξ, η, ζ are mutually inde-
pendent random variables and the distribution functions of them are known, i.e.,

	(t) = P{ξ ≤ t}, t ≥ ; F(x) = P{η ≤ x}, x ∈ (–∞,∞);

π (z) ≡ P{ζ ≤ z} =  – exp
(
–(λz)α

)
, z ≥ ,α > ,λ > .

Define the renewal sequence {Tn} and the random walk {Sn} as follows:

Tn =
n∑
i=

ξi, Sn =
n∑
i=

ηi, T = S = , n = , , . . . ,

and define a sequence of integer-valued random variables {Nn} as follows:

N = , N ≡N(z) = inf{n≥  : z – Sn < }, z ≥ ;

Nn+ = inf
{
k ≥  : ζn – (SN+N+···+Nn+k – SN+N+···+Nn ) < 

}
, n = , , . . .

and inf{∅} = +∞ is stipulated.
Let τ = , τ ≡ τ (z) = TN(z) =

∑N(z)
i= ξi, z ≥ ; τn = TN+···+Nn , n ≥ , and define ν(t) as

ν(t) =max{n≥  : Tn ≤ t}.
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Figure 1 Trajectory of the process X(t).

We can now construct the desired stochastic process X(t) as follows:

X(t) = ζn –

(
ν(t)∑

i=N+N+···+Nn+

ηi

)
= ζn – (Sν(t) – SN+N+···+Nn )

if τn ≤ t < τn+, n = , , , . . . ; ζ ≡ z ∈ (,∞).
Note that the process X(t) describes the amount of the total capital of an insurance

company at any time t ≥ .
Figure  gives a trajectory of the process X(t).
Themain purpose of this study is to prove theweak convergence theorem for the ergodic

distribution of the process X(t), as λ → . For this aim, we first discuss the ergodicity of
the process X(t).

3 The ergodicity of the process X(t)
State the following proposition on the ergodicity of the process X(t).

Proposition . (Ergodic theorem []) Let the initial sequences of the random variables
{ξn}, {ηn} and {ζn}, n≥ , satisfy the following supplementary conditions:

() Eξ < ∞; () Eη > ; () E
(
η

)
< ∞;

() η is non-arithmetic random variable.

Then the process X(t) is ergodic, and for any bounded measurable function f (x); (f :
[,∞)→ R), the following relation holds with probability one:

lim
t→∞


t

∫ t


f
(
X(u)

)
du =


E(N(ζ ))

∫ ∞


f (x)dx

(
E
(
A(x, ζ )

))
. ()
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Here, ζ is a random variable with a distribution function π (z) and

E
(
N(ζ )

)
=

∫ ∞


E
(
N(z)

)
dπ (z); E

(
A(x, ζ )

)
=

∫ ∞


A(x, z)dπ (z);

A(x, z) =
∞∑
n=

an(x, z); an(x, z) = P{z – Si > , i = ,n; z – Sn ≤ x},x > ; z > .

Proof The process X(t) belongs to a wide class of processes which is called ‘The class
of semi-Markov processes with a discrete interference of chance’ in literature. General
ergodic theoremof type ‘Smith’s key renewal theorem’ exists in literature for this class (see,
Gihman and Skorohod [], p.). It is not difficult to show that the assumptions of the
general ergodic theorem are satisfied under the conditions of Proposition .. Therefore,
the ergodicity of the process X(t) is derived by using this general ergodic theorem. �

Corollary . The ergodic distribution function (QX(x)) of the process X(t) can be written
as follows:

QX(x)≡ lim
t→∞P

{
X(t)≤ x

}
=
E(A(x, ζ ))
E(N(ζ ))

, x > . ()

Proof Substituting the indicator function instead of the f (x) in Eq. (), we can obtain
Eq. (). �

Nowwe define the characteristic function of the ergodic distribution of the process X(t)
as follows: ϕX(u) ≡ limt→∞ E{exp(iuX(t))}, u ∈ R.

Corollary . The characteristic function (ϕX(u)) of the ergodic distribution of the process
X(t) can be represented as follows:

ϕX(u) ≡ lim
t→∞E

(
exp

(
iuX(t)

))
=


E(N(ζ ))

∫ ∞


eiux dxE

(
A(x, ζ )

)
, u ∈ R. ()

Using the basic identity for the random walks (see, Feller [], p.), from Eq. () we
obtain the following lemma.

Lemma . Let the conditions of Proposition . be satisfied. Then, for each u ∈ R/{}, the
characteristic function ϕX(u) of the ergodic distribution of the process X(t) can be expressed
by means of the characteristics of the pair (N(z),SN(z)) and the random variable η as fol-
lows:

ϕX(u) =
αλα

EN(ζ )

∫ ∞


zα–e–(λz)

α
eiuz

ϕSN(z) (–u) – 
ϕη(–u) – 

dz, ()

where EN(ζ ) ≡ αλα
∫ ∞
 zα–e–(λz)αEN(z)dz; ϕSN(z) (–u) = E exp(–iuSN(z)); ϕη(–u) = E×

exp(–iuη).

4 Weak convergence theorem for the ergodic distribution of the process X(t)
In this section, we use the ladder variables of the random walk Sn =

∑n
i= ηi, n ≥ , with

the initial state S = . Let ν+
 =min{n≥  : Sn > }, χ+

 = Sν+
=

∑ν+
i= ηi.
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Note that the random variables ν+
 and χ+

 are called the first ascending ladder epoch and
ladder height of the random walk {Sn}, n ≥ , respectively (see, Feller [], p.). Define
{χ+

n }, n≥ , as the sequence of independent randomvariables having the samedistribution
with χ+

 . Denote byH(x) a renewal process generated by the sequence of random variables
{χ+

n }, n≥ , i.e.,

H(x) =min

{
n≥  :

n∑
i=

χ+
i > x

}
, x ≥ .

For shortness, put E(H(x))≡U+(x). It is known that

U+(x) =  +
∞∑
n=

F*n
+ (x), x ≥ ,

where F*n
+ (x) is n-fold convolution of the distribution function F+(x)≡ P{χ+

 ≤ x}.
Our aim is to prove the weak convergence theorem for the ergodic distribution as

E(ζ ) → ∞. For the Weibull distribution, it is known that E(ζ ) = �(+(/α))
λ

. In this study, α
will be fixed. Therefore while E(ζ )→ ∞, the parameter λ should converge to zero. Hence,
we need to give the following lemma first.

Lemma . Let g(x) (g : R+ → R) be a measurable and bounded function, and let
limx→∞ g(x) = . Then, for each α > , the following asymptotic relationship holds:

lim
λ→

∫ ∞


e–tg

(
t/α

λ

)
dt = .

Proof Under the conditions of Lemma ., for any ε > , there exists m(ε) >  such that
for any x ≥ m(ε), the inequality |g(x)| < ε holds. Choose b > , such that

∫ b
 e–t dt < ε. The

function g(x) is bounded. Therefore, for any λ < b/α
m(ε) , we have

∣∣∣∣
∫ ∞


e–tg

(
t/α

λ

)
dt

∣∣∣∣ ≤
∫ b


e–t

∣∣∣∣g
(
t/α

λ

)∣∣∣∣dt +
∫ ∞

b
e–t

∣∣∣∣g
(
t/α

λ

)∣∣∣∣dt
≤ M

∫ b


e–t dt + ε

∫ ∞

b
e–t dt ≤ εM + ε

∫ ∞


e–t dt = ε(M + ),

whereM =maxx≥ |g(x)|.
Since M is finite and ε >  is an arbitrary positive number, the proof of Lemma . is

completed. �

We can give the following lemma, which has a similar proof to that of Lemma ..

Lemma . Let g(x) be defined as in Lemma . and the function Rn(x) be defined as
Rn(x) ≡ xng(x), n = –, , , , . . . . Then, for each α > , the following asymptotic relation-
ship is true, as λ → :

∫ ∞


e–tRn

(
t/α

λ

)
dt = o

(

λn

)
.
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For the investigation of the asymptotic behavior of the ergodic distribution of the pro-
cess X(t) as λ → , we define the auxiliary processWλ(t) asWλ(t) ≡ λX(t) and investigate
the asymptotic behavior of its ergodic distribution function. It is easily seen that the pro-
cessWλ(t) is a linear transform of X(t). Therefore, from Proposition ., it is immediately
follows that the processWλ(t) is also ergodic under the conditions of Proposition .. Let
us denote the characteristic function of the ergodic distribution of Wλ(t) by ϕwλ

(u) and
formulate the following statement.

Theorem . Let the conditions of Proposition . be satisfied. Then, for each x >  and
for all α > , the family of ergodic distribution functions QWλ

(x) ≡ limt→∞ P{Wλ(t) ≤ x} of
the process Wλ(t) weakly converges to a limit distribution function G(x) as follows, when
λ → :

QWλ
(x)→ G(x)≡ 

�( + /α)

∫ x


exp

(
–uα

)
du,

where �(α) =
∫ ∞
 tα–e–t dt is Euler’s gamma function.

Note thatG(x) is the limit distribution of a ‘residual waiting time’ (see, Feller [], p.).

Proof From Eq. () it is easily seen that the characteristic function of the process Wλ(t)
can be written as follows:

ϕWλ
(u) =


I(α,λ)

[
I(α,λ) – I(α,λ)

]
, ()

where I(α,λ) = EN(ζ )[ – ϕη(–λu)], I(α,λ) = αλα
∫ ∞
 xα–e–(λx)α [eiλux – ]dx,

I(α,λ) = αλα

∫ ∞


xα–e–(λx)

α
E
[
exp(–iuλSN(x)) – 

]
dx, S̄N(x) ≡ SN(x) – x,x > .

From the sharper form of the renewal theorem (see, Feller [], p.) we get, when
λ → :

EN(ζ ) =

m

�( + (/α))
λ

+
m

m

+ J(α,λ), ()

where J(α,λ) = αλα
∫ ∞
 xα–e–(λx)αg(x)dx.

From Lemma ., as λ → , for all α > , we have

J(α,λ) = o().

Substituting J(α,λ) in Eq. (), we get, as λ → :

EN(ζ ) =

m

�( + (/α))
λ

+
m

m

+ o(). ()

On the other hand, as λ → ,

 – ϕη(–λu) = iλum
[
 + o()

]
.
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Thus,

I(α,λ) = iu�( + /α)
[
 + o()

]
. ()

It can be seen that

I(α,λ) = ϕα,(u) – , ()

where ϕα,(u) is the characteristic function of the Weibull distribution with parameter
(α, ).
Now we can investigate the asymptotic behavior of I(α,λ) as λ → .
The conditions Eη >  and Eη

 < ∞ ensure that μ ≡ E(χ+
 ) is finite.

By a sharper form of the renewal theorem (see, Feller [], p.), as x → ∞,

E(S̄N(x)) =
μ

μ

+ o(), ()

where S̄N(x) ≡ SN(x) – x, μk = E(χ+
 )k , k = , .

By using Eq. () and Lemma ., we get, as λ → :

αλα

∫ ∞


xα–e–(λx)

α
E(S̄N(x))dx =

μ

μ

+ o(). ()

On the other hand,

∣∣E(
exp(–iuλSN(x))

)
– 

∣∣ ≤ |λu|E(SN(x)). ()

By using Eq. () and Eq. (), we get, as λ → :

∣∣I(α,λ)∣∣ = αλα

∣∣∣∣
∫ ∞


xα–e–(λx)

α
E
[
exp(–iuλSN(x)) – 

]
dx

∣∣∣∣ ≤ λ|u|
[

μ

μ

+ o()

]
.

Thus, we obtain, as λ → :

I(α,λ) =O(λ). ()

From Eq. (), Eq. () and Eq. () for all α > , we get, as λ → :

ϕWλ
(u) =

ϕα,(u) – 
iu�( + (/α))

[
 + o()

]
. ()

It means that the family of characteristic functions {ϕWλ
(u)} converges to a limit char-

acteristic function ϕα,(u)–
iu�(+/α) . Here ϕα,(u) is the characteristic function of the Weibull dis-

tribution with parameter (α, ).
Therefore, by the continuity theorem for characteristic functions (see, Feller [], p.),

the ergodic distribution function of the process Wλ(t) weakly converges to the limit dis-
tribution function G(x)≡ 

�(+(/α))
∫ x
 exp(–uα)du as λ →  uniformly for x > , i.e.,

lim
λ→

QWλ
(x) =G(x)≡ 

�( + /α)

∫ x


exp

(
–uα

)
du.

This completes the proof of Theorem .. �
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Note that G(x) is the limit distribution for the ‘residual waiting time’ generating by the
sequence {ζn} (see, Feller [], p.).

5 Conclusion
In this paper, a semi-Markovian randomwalk with a discrete interference of chance (X(t))
is considered and the ergodic theorem for this process is discussed under some conditions.
Finally, theweak convergence theorem is proved for the ergodic distribution of the process
Wλ(t) ≡ λX(t), and the limit form of the ergodic distributionG(x) is established. Note that
G(x) is a limit distribution of a residual waiting time of a renewal process generated by the
random variables having the Weibull distribution with parameters (α, ). In the terms of
insurance, here we derived the explicit form of the limit distribution of the amount of the
capital of an insurance company which is working for a long time as E(ζ )→ ∞.
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