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1 Introduction
Let H be a Hilbert space, and let T : H → H be a mapping. The mapping T is called
Lipshitzian if there exists L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈H .

If L = , then T is called nonexpansive and if ≤ L < , then T is called contractive.
The mapping T :H →H is said to be pseudocontractive (see, for example, [, ]) if

‖Tx – Ty‖ ≤ ‖x – y‖ + ∥∥(I – T)x – (I – T)y
∥∥, ∀x, y ∈H (.)

and it is said to be strongly pseudocontractive if there exists k ∈ (, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈H . (.)

Let F(T) := {x ∈H : Tx = x}, and let K be a nonempty subset ofH . Amapping T : K → K
is called hemicontractive if F(T) �= ∅ and

∥∥Tx – x∗∥∥ ≤ ∥∥x – x∗∥∥ + ‖x – Tx‖, ∀x ∈H ,x∗ ∈ F(T).

It is easy to see that the class of pseudocontractive mappings with fixed points is a sub-
class of the class of hemicontractions. For the importance of fixed points of pseudocon-
tractions, the reader may consult [].
In , Ishikawa [] proved the following result.
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Theorem . Let K be a compact convex subset of a Hilbert space H , and let T : K → K
be a Lipschitzian pseudocontractive mapping.
For arbitrary x ∈ K , let {xn} be a sequence defined iteratively by the Ishikawa iterative

scheme
⎧⎨
⎩
xn+ = ( – αn)xn + αnTyn,

yn = ( – βn)xn + βnTxn, n≥ ,
(.)

where {αn} and {βn} are sequences satisfying the conditions
(i) ≤ αn ≤ βn ≤ ;
(ii) limn→∞ βn = ;
(iii)

∑∞
n= αnβn = ∞.

Then the sequence {xn} converges strongly to a fixed point of T .

Another iterative scheme which has been studied extensively in connection with fixed
points of pseudocontractive mappings is the S-iterative scheme introduced by Sahu and
Petruşel [] in .
In this paper, we establish strong convergence for the S-iterative scheme associated with

Lipschitzian hemicontractive mappings in Hilbert spaces.

2 Main results
We need the following lemma.

Lemma . [] For all x, y ∈H and λ ∈ [, ], the following well-known identity holds:

∥∥( – λ)x + λy
∥∥ = ( – λ)‖x‖ + λ‖y‖ – λ( – λ)‖x – y‖.

Now we prove our main results.

Theorem . Let K be a compact convex subset of a real Hilbert space H , and let T : K →
K be a Lipschitzian hemicontractive mapping satisfying

‖x – Ty‖ ≤ ‖Tx – Ty‖, ∀x, y ∈ K . (C)

Let {βn} be a sequence in [, ] satisfying
(iv)

∑∞
n= βn = ∞;

(v) limn→∞ βn = .
For arbitrary x ∈ K , let {xn} be a sequence defined iteratively by the S-iterative scheme

⎧⎨
⎩
xn+ = Tyn,

yn = ( – βn)xn + βnTxn, n≥ .
(.)

Then the sequence {xn} converges strongly to the fixed point of T .

Proof From Schauder’s fixed point theorem, F(T) is nonempty since K is a compact con-
vex set and T is continuous. Let x∗ ∈ F(T). Using the fact that T is hemicontractive, we
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obtain

∥∥Txn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ + ‖xn – Txn‖ (.)

and

∥∥Tyn – x∗∥∥ ≤ ∥∥yn – x∗∥∥ + ‖yn – Tyn‖. (.)

With the help of (.), (.) and Lemma ., we obtain the following estimates:

∥∥yn – x∗∥∥ =
∥∥( – βn)xn + βnTxn – x∗∥∥

=
∥∥( – βn)

(
xn – x∗) + βn

(
Txn – x∗)∥∥

= ( – βn)
∥∥xn – x∗∥∥ + βn

∥∥Txn – x∗∥∥

– βn( – βn)‖xn – Txn‖

≤ ( – βn)
∥∥xn – x∗∥∥ + βn

(∥∥xn – x∗∥∥ + ‖xn – Txn‖
)

– βn( – βn)‖xn – Txn‖

=
∥∥xn – x∗∥∥ + β

n‖xn – Txn‖, (.)

‖yn – Tyn‖ =
∥∥( – βn)xn + βnTxn – Tyn

∥∥

=
∥∥( – βn)(xn – Tyn) + βn(Txn – Tyn)

∥∥

= ( – βn)‖xn – Tyn‖ + βn‖Txn – Tyn‖

– βn( – βn)‖xn – Txn‖. (.)

Substituting (.) and (.) in (.) we obtain

∥∥Tyn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ + ( – βn)‖xn – Tyn‖ + βn‖Txn – Tyn‖

– βn( – βn)‖xn – Txn‖. (.)

Also, with the help of condition (C) and (.), we have

∥∥xn+ – x∗∥∥ =
∥∥Tyn – x∗∥∥

≤ ∥∥xn – x∗∥∥ + ( – βn)‖xn – Tyn‖ + βn‖Txn – Tyn‖

– βn( – βn)‖xn – Txn‖

≤ ∥∥xn – x∗∥∥ + ‖Txn – Tyn‖ – βn( – βn)‖xn – Txn‖

≤ ∥∥xn – x∗∥∥ + L‖xn – yn‖ – βn( – βn)‖xn – Txn‖

=
∥∥xn – x∗∥∥ + Lβ

n‖xn – Txn‖ – βn( – βn)‖xn – Txn‖

=
∥∥xn – x∗∥∥ – βn

(
 –

(
 + L

)
βn

)‖xn – Txn‖. (.)

Now, by limn→∞ βn = , there exists n ∈N such that for all n≥ n,

βn ≤ 
( + L)

, (.)
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and with the help of (.), (.) yields

∥∥xn+ – x∗∥∥ ≤ ∥∥xn – x∗∥∥ –


βn‖xn – Txn‖,

which implies



βn‖xn – Txn‖ ≤ ∥∥xn – x∗∥∥ –

∥∥xn+ – x∗∥∥,

so that




n∑
j=N

βj‖xj – Txj‖ ≤ ∥∥xN – x∗∥∥ –
∥∥xn+ – x∗∥∥.

The rest of the argument follows exactly as in the proof of theoremof []. This completes
the proof. �

Theorem . Let K be a compact convex subset of a real Hilbert space H , and let T :
K → K be a Lipschitzian hemicontractive mapping satisfying condition (C). Let {βn} be a
sequence in [, ] satisfying conditions (iv) and (v).
Assume that PK : H → K is the projection operator of H onto K . Let {xn} be a sequence

defined iteratively by

⎧⎨
⎩
xn+ = PK (Tyn),

yn = PK (( – βn)xn + βnTxn), n≥ .

Then the sequence {xn} converges strongly to a fixed point of T .

Proof The operator PK is nonexpansive (see, e.g., []). K is a Chebyshev subset of H so
that PK is a single-valued mapping. Hence, we have the following estimate:

∥∥xn+ – x∗∥∥ =
∥∥PK (Tyn) – PKx∗∥∥

≤ ∥∥Tyn – x∗∥∥

≤ ∥∥xn – x∗∥∥ – βn
(
 –

(
 + L

)
βn

)‖xn – Txn‖.

The setK = K ∪T(K) is compact, and so the sequence {‖xn–Txn‖} is bounded. The rest of
the argument follows exactly as in the proof of Theorem .. This completes the proof.�

Remark . In Theorem ., putting αn = ,  ≤ αn ≤ βn ≤  implies βn = , which con-
tradicts limn→∞ βn = . Hence the S-iterative scheme is not the special case of Ishikawa
iterative scheme.

Remark . In Theorems . and ., condition (C) is not new; it is due to Liu et al. [].
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