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Abstract
In this paper, we prove the Hyers-Ulam stability of C*-ternary 3-derivations and of
C*-ternary 3-homomorphisms for the functional equation

f (x1 + x2, y1 + y2, z1 + z2) =
∑

1≤i,j,k≤2

f (xi , yj , zk)

in C*-ternary algebras.
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1 Introduction and preliminaries
Ternary algebraic operations were considered in the nineteenth century by several math-
ematicians such as Cayley [] who introduced the notion of a cubic matrix, which in turn
was generalized by Kapranov, Gelfand and Zelevinskii []. The simplest example of such
non-trivial ternary operation is given by the following composition rule:

{a,b, c}ijk =
∑

≤l,m,n≤N

anilbljmcmkn (i, j,k = , , . . . ,N).

Ternary structures and their generalization, the so-called n-ary structures, raise certain
hopes in view of their applications in physics. Some significant physical applications are
as follows (see [, ]).
() The algebra of nonions generated by two matrices

⎛
⎜⎝
  
  
  

⎞
⎟⎠ and

⎛
⎜⎝

  
  ω

ω  

⎞
⎟⎠ (

ω = e
π i


)

was introduced by Sylvester as a ternary analog of Hamiltons quaternions (cf. []).
() The quark model inspired a particular brand of ternary algebraic systems. The so-

called Nambu mechanics is based on such structures (see []).
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There are also some applications, although still hypothetical, in the fractional quantum
Hall effect, the nonstandard statistics, supersymmetric theory, and Yang-Baxter equation
(cf. [, , ]).
A C*-ternary algebra is a complex Banach space A, equipped with a ternary product

(x, y, z) → [x, y, z] of A into A, which is C-linear in the outer variables, conjugate C-linear
in the middle variable, and associative in the sense that [x, y, [z,w, v]] = [x, [w, z, y], v] =
[[x, y, z],w, v], and satisfies ‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖[x,x,x]‖ = ‖x‖ (see []). Every
left Hilbert C*-module is a C*-ternary algebra via the ternary product [x, y, z] := 〈x, y〉z.
If a C*-ternary algebra (A, [·, ·, ·]) has an identity, i.e., an element e ∈ A such that x =

[x, e, e] = [e, e,x] for all x ∈ A, then it is routine to verify thatA, endowedwith x◦y := [x, e, y]
and x* := [e,x, e], is a unital C*-algebra. Conversely, if (A,◦) is a unital C*-algebra, then
[x, y, z] := x ◦ y* ◦ z makes A into a C*-ternary algebra.
Throughout this paper, assume that C*-ternary algebras A and B are induced by unital

C*-algebras with units e and e′, respectively.
A C-linear mapping H : A → B is called a C*-ternary homomorphism if H([x, y, z]) =

[H(x),H(y),H(z)] for all x, y, z ∈ A. If, in addition, the mapping H is bijective, then the
mapping H : A → B is called a C*-ternary algebra isomorphism. A C-linear mapping δ :
A→ A is called a C*-ternary derivation if

δ
(
[x, y, z]

)
=

[
δ(x), y, z

]
+

[
x, δ(y), z

]
+

[
x, y, δ(z)

]

for all x, y, z ∈ A (see []).
In , Ulam [] gave a talk before theMathematics Club of the University ofWiscon-

sin in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms:
We are given a group G and a metric group G′ with metric ρ(·, ·). Given ε > , does there

exist a δ >  such that if f : G → G′ satisfies ρ(f (xy), f (x)f (y)) < δ for all x, y ∈ G, then a
homomorphism h :G →G exists with ρ(f (x),h(x)) < ε for all x ∈G?
In , Hyers [] gave the first partial solution to Ulam’s question for the case of ap-

proximate additive mappings under the assumption that G and G′ are Banach spaces.
Then, Aoki [] and Bourgin [] considered the stability problem with unbounded
Cauchy differences. In , Rassias [] generalized the theorem of Hyers [] by con-
sidering the stability problem with unbounded Cauchy differences. In , Gajda [],
following the same approach as that by Rassias [], gave an affirmative solution to this
question for p > . It was shown by Gajda [] as well as by Rassias and Šemrl [], that
one cannot prove a Rassias-type theorem when p = . Gǎvruta [] obtained the gener-
alized result of the Rassias theorem which allows the Cauchy difference to be controlled
by a general unbounded function. During the last two decades, a number of articles and
research monographs have been published on various generalizations and applications of
the Hyers-Ulam stability to a number of functional equations and mappings, for exam-
ple, Cauchy-Jensen mappings, k-additive mappings, invariant means, multiplicative map-
pings, bounded nth differences, convex functions, generalized orthogonality mappings,
Euler-Lagrange functional equations, differential equations, and Navier-Stokes equations.
The stability problems of several functional equations have been extensively investigated
by a number of authors and there are many interesting results, containing ternary homo-
morphisms and ternary derivations, concerning this problem (see [–]).
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Let X and Y be complex vector spaces. A mapping f : X × X × X → Y is called a
-additive mapping if f is additive for each variable, and a mapping f : X ×X ×X → Y is
called a -C-linear mapping if f is C-linear for each variable.
A -C-linear mapping H : A× A× A → B is called a C*-ternary -homomorphism if it

satisfies

H
(
[x, y, z], [x, y, z], [x, y, z]

)
=

[
H(x,x,x),H(y, y, y),H(z, z, z)

]

for all x, y, z,x, y, z,x, y, z ∈ A.
For a given mapping f : A → B, we define

Dλ,μ,ν f (x,x, y, y, z, z)

:= f (λx + λx,μy +μy,νz + νz) – λμν
∑

≤i,j,k≤

f (xi, yj, zk)

for all λ,μ,ν ∈ S := {λ ∈C : |λ| = } and all x,x, y, y, z, z ∈ A.
Bae and Park [] proved the Hyers-Ulam stability of -homomorphisms in C*-ternary

algebras for the functional equation

Dλ,μ,ν f (x,x, y, y, z, z) = .

Lemma . [] Let X and Y be complex vector spaces, and let f : X × X × X → Y
be a -additive mapping such that f (λx,μy,νz) = λμνf (x, y, z) for all λ,μ,ν ∈ S and all
x, y, z ∈ X. Then f is -C-linear.

Theorem . [] Let p,q, r ∈ (,∞) with p + q + r <  and θ ∈ (,∞), and let f : A → B
be a mapping such that

∥∥Dλ,μ,ν f (x,x, y, y, z, z)
∥∥

≤ θ ·max
{‖x‖,‖x‖}p ·max

{‖y‖,‖y‖}q ·max
{‖z‖,‖z‖}r ()

and

∥∥f ([x, y, z], [x, y, z], [x, y, z]) – [
f (x,x,x), f (y, y, y), f (z, z, z)

]∥∥

≤ θ

∑
i=

‖xi‖p · ‖yi‖q · ‖zi‖r ()

for all λ,μ,ν ∈ S and all x,x,x, y, y, y, z, z, z ∈ A. Then there exists a unique
C*-ternary -homomorphism H : A → B such that

∥∥f (x, y, z) –H(x, y, z)
∥∥ ≤ θ

 – p+q+r
‖x‖p · ‖y‖q · ‖z‖r ()

for all x, y, z ∈ A.
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2 C*-ternary 3-homomorphisms in C*-ternary algebras
Theorem . Let p,q, r ∈ (,∞) with p + q + r <  and θ ∈ (,∞), and let f : A →
B be a mapping satisfying () and (). If there exists an (x, y, z) ∈ A such that
limn→∞ 

n f (
nx, ny, nz) = e′, then the mapping f is a C*-ternary -homomorphism.

Proof By Theorem ., there exists a unique C*-ternary -homomorphism H : A → B
satisfying (). Note that

H(x, y, z) := lim
n→∞


n

f
(
nx, ny, nz

)

for all x, y, z ∈ A. By the assumption, we get that

H(x, y, z) = lim
n→∞


n

f
(
nx, ny, nz

)
= e′.

It follows from () that

∥∥[
H(x,x,x),H(y, y, y),H(z, z, z)

]
–

[
H(x,x,x),H(y, y, y), f (z, z, z)

]∥∥
=

∥∥H(
[x, y, z], [x, y, z], [x, y, z]

)
–

[
H(x,x,x),H(y, y, y), f (z, z, z)

]∥∥
= lim

n→∞

n

∥∥f ([nx, ny, z], [nx, ny, z], [nx, ny, z])

–
[
f
(
nx, nx, nx

)
, f

(
ny, ny, ny

)
, f (z, z, z)

]∥∥

≤ lim
n→∞

θn(p+q)

n

∑
i=

‖xi‖p · ‖yi‖q · ‖zi‖r = 

for all x,x,x, y, y, y, z, z, z ∈ A. So,

[
H(x,x,x),H(y, y, y),H(z, z, z)

]
=

[
H(x,x,x),H(y, y, y), f (z, z, z)

]

for all x,x,x, y, y, y, z, z, z ∈ A. Letting x = y = x, x = y = y and x = y = z in
the last equality, we get f (z, z, z) = H(z, z, z) for all z, z, z ∈ A. Therefore, the map-
ping f is a C*-ternary -homomorphism. �

Theorem . Let pi,qi, ri ∈ (,∞) (i = , , ) such that pi �=  or qi �=  or ri �=  for some
 ≤ i≤  and θ ,η ∈ (,∞), and let f : A → B be a mapping such that

∥∥Dλ,μ,ν f (x,x, y, y, z, z)
∥∥

≤ θ
(‖x‖p · ‖x‖p · ‖y‖q · ‖y‖q

+ ‖y‖q · ‖y‖q · ‖z‖r · ‖z‖r + ‖x‖p · ‖x‖p · ‖z‖r · ‖z‖r
)

()

and

∥∥f ([x, y, z], [x, y, z], [x, y, z]) – [
f (x,x,x), f (y, y, y), f (z, z, z)

]∥∥
≤ η‖x‖p · ‖x‖p · ‖x‖p · ‖y‖q · ‖y‖q · ‖y‖q · ‖z‖r · ‖z‖r · ‖z‖r ()
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for all λ,μ,ν ∈ S and all x,x,x, y, y, y, z, z, z ∈ A. Then the mapping f : A → B is a
C*-ternary -homomorphism.

Proof Letting xi = yj = zk =  (i, j,k = , ) in (), we get f (, , ) = . Putting λ = μ = ν = ,
x =  and yj = zk =  (j,k = , ) in (), we have f (x, , ) =  for all x ∈ A. Similarly, we
get f (, y, ) = f (, , z) =  for all y, z ∈ A. Setting λ = μ = ν = , x = , y =  and z =
z = , we have f (x, y, ) =  for all x, y ∈ A. Similarly, we get f (x, , z) = f (, y, z) = 
for all x, y, z ∈ A. Now letting λ = μ = ν =  and y = z =  in (), we have

f (x + x, y, z) = f (x, y, z) + f (x, y, z)

for all x,x, y, z ∈ A.
Similarly, one can show that the other equations hold. So, f is -additive.
Letting x = y = z =  in (), we get f (λx,μy,νz) = λμνf (x, y, z) for all λ,μ,ν ∈ S

and all x, y, z ∈ A. So, by Lemma ., the mapping f is -C-linear.
Without any loss of generality, we may suppose that p �= .
Let p < . It follows from () that

∥∥f ([x, y, z], [x, y, z], [x, y, z]) – [
f (x,x,x), f (y, y, y), f (z, z, z)

]∥∥
= lim

n→∞

n

∥∥f ([nx, y, z], [x, y, z], [x, y, z])

–
[
f
(
nx,x,x

)
, f (y, y, y), f (z, z, z)

]∥∥
≤ η lim

n→∞
np
n

× (‖x‖p · ‖x‖p · ‖x‖p · ‖y‖q · ‖y‖q · ‖y‖q · ‖z‖r · ‖z‖r · ‖z‖r
)

= 

for all x,x,x, y, y, y, z, z, z ∈ A.
Let p > . It follows from () that

∥∥f ([x, y, z], [x, y, z], [x, y, z]) – [
f (x,x,x), f (y, y, y), f (z, z, z)

]∥∥
= lim

n→∞n
∥∥∥∥f

([

n

x, y, z
]
, [x, y, z], [x, y, z]

)

–
[
f
(


n

x,x,x
)
, f (y, y, y), f (z, z, z)

]∥∥∥∥
≤ η lim

n→∞
n

np

× (‖x‖p · ‖x‖p · ‖x‖p · ‖y‖q · ‖y‖q · ‖y‖q · ‖z‖r · ‖z‖r · ‖z‖r
)

= 

for all x,x,x, y, y, y, z, z, z ∈ A. Therefore,

f
(
[x, y, z], [x, y, z], [x, y, z]

)
=

[
f (x,x,x), f (y, y, y), f (z, z, z)

]

http://www.journalofinequalitiesandapplications.com/content/2013/1/124


Dehghanian et al. Journal of Inequalities and Applications 2013, 2013:124 Page 6 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/124

for all x,x,x, y, y, y, z, z, z ∈ A. So, the mapping f : A → B is a C*-ternary -homo-
morphism. �

Theorem . Let ϕ : A → [,∞) and ψ : A → [,∞) be functions such that

ϕ(x, . . . ,x) = 

if xi =  for some  ≤ i ≤  and


n

ψ
(
x, . . . , nxi, . . . ,x

)
=  or nψ

(
x, . . . ,


n

xi, . . . ,x
)
= .

Suppose that f : A → B is a mapping satisfying

∥∥Dλ,μ,ν f (x,x, y, y, z, z)
∥∥ ≤ ϕ(x,x, y, y, z, z)

and

∥∥f ([x, y, z], [x, y, z], [x, y, z]) – [
f (x,x,x), f (y, y, y), f (z, z, z)

]∥∥
≤ ψ(x,x,x, y, y, y, z, z, z)

for all λ,μ,ν ∈ S and all x,x,x, y, y, y, z, z, z ∈ A. Then the mapping f is a
C*-ternary -homomorphism.

Proof The proof is similar to the proof of Theorem .. �

Corollary . Let pi,qi, ri ∈ (,∞) (i = , , ) such that pi �=  or qi �=  or ri �=  for some
 ≤ i≤  and θ ,η ∈ (,∞), and let f : A → B be a mapping such that

∥∥Dλ,μ,ν f (x,x, y, y, z, z)
∥∥ ≤ θ‖x‖p · ‖x‖p · ‖y‖q · ‖y‖q · ‖z‖r · ‖z‖r

and

∥∥f ([x, y, z], [x, y, z], [x, y, z]) – [
f (x,x,x), f (y, y, y), f (z, z, z)

]∥∥
≤ η‖x‖p · ‖x‖p · ‖x‖p · ‖y‖q · ‖y‖q · ‖y‖q · ‖z‖r · ‖z‖r · ‖z‖r

for all λ,μ,ν ∈ S and all x,x,x, y, y, y, z, z, z ∈ A. Then the mapping f : A → B is a
C*-ternary -homomorphism.

3 C*-ternary 3-derivations on C*-ternary algebras
Definition . A -C-linear mapping D : A → A is called a C*-ternary -derivation if it
satisfies

D
(
[x, y, z], [x, y, z], [x, y, z]

)
=

[
D(x,x,x),

[
y, y*, y

]
,
[
z, z*, z

]]
+

[[
x,x*,x

]
,D(y, y, y),

[
z, z*, z

]]
+

[[
x,x*,x

]
,
[
y, y*, y

]
,D(z, z, z)

]

for all x,x,x, y, y, y, z, z, z ∈ A.
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Theorem . Let p,q, r ∈ (,∞) with p + q + r <  and θ ∈ (,∞), and let f : A → A be a
mapping such that

∥∥Dλ,μ,ν f (x,x, y, y, z, z)
∥∥

≤ θ ·max
{‖x‖,‖x‖}p ·max

{‖y‖,‖y‖}q ·max
{‖z‖,‖z‖}r ()

and

∥∥f ([x, y, z], [x, y, z], [x, y, z]) – [
f (x,x,x),

[
y, y*, y

]
,
[
z, z*, z

]]
–

[[
x,x*,x

]
, f (y, y, y),

[
z, z*, z

]]
–

[[
x,x*,x

]
,
[
y, y*, y

]
, f (z, z, z)

]∥∥

≤ θ

∑
i=

‖xi‖p · ‖yi‖q · ‖zi‖r ()

for all λ,μ,ν ∈ S and all x,x,x, y, y, y, z, z, z ∈ A. Then there exists a unique
C*-ternary -derivation δ : A → A such that

∥∥f (x, y, z) – δ(x, y, z)
∥∥ ≤ θ

 – p+q+r
‖x‖p · ‖y‖q · ‖z‖r ()

for all x, y, z ∈ A.

Proof By the same method as in the proof of [, Theorem .], we obtain a -C-linear
mapping δ : A → A satisfying (). The mapping δ(x, y, z) := limj→∞ 

j f (
jx, jy, jz) for all

x, y, z ∈ A.
It follows from () that

∥∥δ
(
[x, y, z], [x, y, z], [x, y, z]

)
–

[
δ(x,x,x),

[
y, y*, y

]
,
[
z, z*, z

]]
–

[[
x,x*,x

]
, δ(y, y, y),

[
z, z*, z

]]
–

[[
x,x*,x

]
,
[
y, y*, y

]
, δ(z, z, z)

]∥∥
= lim

n→∞

n

∥∥f (n[x, y, z], n[x, y, z], n[x, y, z])

–
[
f
(
nx, nx, nx

)
,
[
ny, ny*, 

ny
]
,
[
nz, nz*, 

nz
]]

–
[[
nx, nx*, 

nx
]
, f

(
ny, ny, ny

)
,
[
nz, nz*, 

nz
]]

–
[[
nx, nx*, 

nx
]
,
[
ny, ny*, 

ny
]
, f

(
nz, nz, nz

)]∥∥

≤ lim
n→∞

θn(p+q+r)

n

∑
i=

‖xi‖p · ‖yi‖q · ‖zi‖r = 

for all x,x,x, y, y, y, z, z, z ∈ A.
Now, let T : A → A be another -derivation satisfying (). Then we have

∥∥δ(x, y, z) – T(x, y, z)
∥∥ =


n

∥∥δ
(
nx, ny, nz

)
– T

(
nx, ny, nz

)∥∥

≤ 
n

∥∥δ
(
nx, ny, nz

)
– f

(
nx, ny, nz

)∥∥

http://www.journalofinequalitiesandapplications.com/content/2013/1/124
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+

n

∥∥f (nx, ny, nz) – T
(
nx, ny, nz

)∥∥

≤ θ(p+q+r–)n+

 – p+q+r
‖x‖p · ‖y‖q · ‖z‖r ,

which tends to zero as n → ∞ for all x, y, z ∈ A. So, we can conclude that δ(x, y, z) =
T(x, y, z) for all x, y, z ∈ A. This proves the uniqueness of δ.
Therefore, the mapping δ : A → A is a unique C*-ternary -derivation satisfying ().

�

Corollary . Let ε ∈ (,∞), and let f : A → A be a mapping satisfying

∥∥Dλ,μ,ν f (x,x, y, y, z, z)
∥∥ ≤ ε

and

∥∥f ([x, y, z], [x, y, z], [x, y, z]) – [
f (x,x,x),

[
y, y*, y

]
,
[
z, z*, z

]]
–

[[
x,x*,x

]
, f (y, y, y),

[
z, z*, z

]]
–

[[
x,x*,x

]
,
[
y, y*, y

]
, f (z, z, z)

]∥∥ ≤ ε

for all λ,μ,ν ∈ S and all x,x,x, y, y, y, z, z, z ∈ A. Then there exists a unique
C*-ternary -derivation δ : A → A such that

∥∥f (x, y, z) – δ(x, y, z)
∥∥ ≤ ε



for all x, y, z ∈ A.
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