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Abstract
In this paper, we prove a generalization of the strong Ekeland variational principle for
a generalized distance (i.e., u-distance) on complete metric spaces. The result present
in this paper extends and improves the corresponding result of Georgiev (J. Math.
Anal. Appl. 131:1-21, 1988) and Suzuki (J. Math. Anal. Appl. 320:788-794, 2006).
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1 Introduction
In , Ekeland [] proved the following, which is called the Ekeland variational principle
(for short, EVP).

Theorem . [] Let (X,d) be a complete metric space with metric d and f be a function
from X into (–∞, +∞] which is proper lower semicontinuous bounded from below. Then
for u ∈ X and λ > , there exists v ∈ X such that

(P) f (v)≤ f (u) – λd(u, v);
(Q) f (w) > f (v) – λd(v,w) for every w �= v.

Later, Takahashi [] showed that this principle is equivalent to the Caristis fixed point
theorem and nonconvex minimization theorem. In , Georgiev [] proved the follow-
ing generalization of Theorem ., which is called the strong Ekeland variational principle.

Theorem . [] Let X be a complete metric space with metric d and f : X → (–∞, +∞]
be proper lower semicontinuous bounded from below. Then, for all u ∈ X, λ >  and δ > ,
there exists v ∈ X satisfying the following:

(P)′ f (v) < f (u) – λd(u, v) + δ;
(Q) f (w) > f (v) – λd(v,w) for every w ∈ X \ {v};
(R) if a sequence {xn} in X satisfies limn→∞(f (xn) + λd(v,xn)) = f (v), then {xn} converges

to v.

On the other hand, Kada et al. [] introduced the concept of w-distance defined on a
metric space and extended the Ekeland variational principle, the Kirk-Caristi fixed point
theorem and the minimization theorem for w-distance. Recently, Suzuki [, ] introduced
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a more general concept than w-distance, which is called τ -distance, and established the
strong Ekeland variational principle for τ -distance. Very recently, Ume [] introduced a
more generalized concept than τ -distance, which is called u-distance, and proved a new
minimization and a new fixed point theorem by using u-distance on a complete metric
space.
In this paper, we prove the strong Ekeland variational principle for u-distance on a

complete metric space. The results of this paper extend and generalize some results in
Georgiev [], Suzuki [], Ansari [] and Park [].

2 Preliminaries
Throughout the paper, we denote by N the set of all positive integers, by R the set of real
numbers, R+ = [,∞). Let us recall the following well-known definition of a u-distance.

Definition . ([] and []) Let X be a complete metric space with metric d. Then a func-
tion p : X × X → R+ is called a u-distance on X if there exists a function θ : X × X ×
[,∞)× [,∞)→R+ such that
(u) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X ;
(u) θ (x, y, , ) = , θ (x, y, s, t)≥ min{s, t} for all x, y ∈ X and s, t ∈ [,∞), and for any

x ∈ X and for every ε > , there exists δ >  such that |s – s| < δ, |t – t| < δ,
s, s, t, t ∈ [,∞) and y ∈ X imply

∣∣θ (x, y, s, t) – θ (x, y, s, t)
∣∣ < ε;

(u) limn→∞ xn = x and limn→∞ sup{θ (wn, zn,,p(wn,xm),p(zn,xm)) :m ≥ n} =  imply
p(y,x) ≤ limn→∞ infp(y,xn) for all y ∈ X ;

(u) limn→∞ sup{p(xn,wm) :m ≥ n} = , limn→∞ sup{p(yn, zm) :m ≥ n} = ,
limn→∞ θ (xn,wn, sn, tn) =  and limn→∞ θ (yn, zn, sn, tn) =  imply
limn→∞ θ (wn, zn, sn, tn) =  or limn→∞ sup{p(wm,xn) :m ≥ n} = ,
limn→∞ sup{p(zm, yn) :m ≥ n} = , limn→∞ θ (xn,wn, sn, tn) =  and
limn→∞ θ (yn, zn, sn, tn) =  imply limn→∞ θ (wn, zn, sn, tn) = ;

(u) limn→∞ θ (wn, zn,p(wn,xn),p(zn,xn)) =  and
limn→∞ θ (wn, zn,p(wn, yn),p(zn, yn)) =  imply limn→∞ d(xn, yn) =  or
limn→∞ θ (an,bn,p(xn,an),p(xn,bn)) =  and
limn→∞ θ (an,bn,p(yn,an),p(yn,bn)) =  imply limn→∞ d(xn, yn) = .

Proposition . [] Let p be a u-distance on a metric space (X,d) and c be a positive real
number. Then a function q : X × X → R+ defined by q(x, y) = c · p(x, y) for every x, y ∈ X is
also a u-distance on X.

Lemma . [] Let (X,d) be a metric space and let p be a u-distance on X. If {xn} is a
p-Cauchy sequence, then {xn} is a Cauchy sequence.

Lemma . [] Let (X,d) be a metric space and p be a u-distance on X. Suppose that a
sequence {xn} of X satisfies

lim
n→∞ sup

{
p(xn,xm) :m > n

}
= 

http://www.journalofinequalitiesandapplications.com/content/2013/1/120


Plubtieng and Seangwattana Journal of Inequalities and Applications 2013, 2013:120 Page 3 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/120

or

lim
n→∞ sup

{
p(xm,xn) :m > n

}
= .

Then, {xn} is a p-Cauchy sequence and {xn} is a Cauchy sequence.

3 Main theorem
Lemma. Let X be a completemetric space and p be a u-distance on X. If a sequence {xn}
of X satisfies limn→∞ p(z,xn) =  for some z ∈ X, then {xn} is a p-Cauchy sequence. More-
over, if a sequence {yn} of X also satisfies limn→∞ p(z, yn) = , then limn→∞ p(xn, yn) = . In
particular, for x, y, z ∈ X, p(z,x) =  and p(z, y) =  imply x = y.

Proof Let θ be a function from X ×X × [,∞)× [,∞) into R+ satisfying (u)-(u). From
limn p(z,xn) = , it follows by (u) that limn→∞ θ (z, z,p(z,xn),p(z,xn)) = . Therefore, {xn}
is a p-Cauchy sequence. �

Theorem . Let X be a complete metric space and T be a mapping from X into itself.
Suppose that there exists a u-distance p onX and r ∈ [, ) such that p(Tx,Tx)≤ r ·p(x,Tx)
for all x ∈ X. Assume that either of the following hold:

(i) If limn→∞ sup{p(xn,xm) :m > n} = , limn→∞ p(xn,Txn ) =  and limn→∞ p(xn, y) = ,
then Ty = y;

(ii) if {xn} and {Txn} converge to y, then Ty = y;
(iii) T is continuous.

Then, there exists x ∈ X such that Tx = x and p(x,x) = .

Proof It is the same as the proof of Theorem  in []. �

Lemma . Let X be a complete metric space, p be a u-distance on X and φ be a function
from X ×X into (–∞,∞] satisfying
() φ(x, z) ≤ φ(x, y) + φ(y, z) for all x, y, z ∈ X ;
() φ(x, ·) : X → (–∞,∞] is lower semicontinuous for any x ∈ X ;
() there exists an x such that infy∈X φ(x, y) > –∞; and
() φ(x, y) = –φ(y,x).

DefineMx = {y ∈ X : φ(x, y)+p(x, y) ≤ }. Let u ∈ X and c ∈R+ such that φ(x,u) <∞ for all
x ∈ X,Mu �= ∅ and c ≥ φ(x,u) – infy∈Mu φ(u, y). Then a function q : X ×X → R+ defined by

q(x, y) =

⎧⎨
⎩

φ(u,x) – infy∈Mx φ(u, y) if x ∈Mu and y ∈Mx,

c + p(x, y) if x /∈Mu or y /∈ Mx

is a u-distance on X.

Proof Let η be a function from X × X × R+ × R+ into R+ satisfying (u)-(u) for a u-
distance. We note that φ(x, y) + φ(y, z) + p(x, y) + p(y, z) ≤  and φ(x, z) + p(x, z) ≤ . Thus,
y ∈ Mx and z ∈My imply z ∈ Mx. If x ∈Mu and y ∈Mx, then

p(x, y) ≤ φ(y,x)≤ q(x, y) = φ(y,x) – inf
y∈Mx

φ(x, y)

≤ φ(x,u) – inf
y∈Mu

φ(x, y) ≤ c.
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Therefore, p(x, y) ≤ q(y,x) ≤ c+p(x, y) for all x, y ∈ X. To complete the proof, we will show
(u)q, (u)q,η , (u)q,η and (u)q,η . Let x, y and z be fixed elements in X. In the case x ∈Mu,
y ∈ Mx, y ∈Mu and z ∈ My, we have z ∈ Mx and hence q(x, z) = q(x, y) ≤ q(x, y) + q(y, z). In
the other case, we note that

q(x, z) ≤ c + p(x, z) ≤ c + p(x, y) + p(y, z)

≤ c + p(x, y) + p(y, z)

= q(x, y) + q(y, z).

This shows (u)q.
We next suppose that limn→∞ xn = x and limn→∞ sup{η(wn, zn,q(wn,xm),q(zn,xm)) :m ≥

n} =  and fix w ∈ X. Since limn→∞ sup{θ (wn, zn,p(wn,xm),p(zn,xm)) :m ≥ n} = , we have
p(w,x) ≤ lim infn→∞ p(w,xn) for all y ∈ X.
In the case that w ∈Mu and there exists a subsequence {xnk } of {xn} such that xnk ∈Mw

for all k ∈N, we have

φ(w,x) + p(w,x) ≤ lim
n→∞ infφ(w,xn) + lim

n→∞p(w,xn)

≤ lim
n→∞ inf

(
φ(w,xn) + p(w,xn)

)

≤ lim
k→∞

inf
(
φ(w,xnk ) + p(w,xnk )

)
≤ ,

and so x ∈Mu. Hence

q(w,x) = φ(u,w) – inf
x∈Mw

φ(u,x) = lim
k→∞

q(w,xnk ) = lim
n→∞ infq(w,xn).

In the other case, we obtain

q(w,x) ≤ c + p(w,x)≤ lim
n→∞ inf

(
c + p(w,xn)

)
= lim

n→∞ infq(w,xn).

This shows (u)q,η . We will show that q satisfies (u)q,η .
Case I: Suppose that limn→∞ sup{q(xn,wm) :m ≥ n} = , limn→∞ sup{q(yn, zm) :m ≥ n} =

, limn→∞ η(xn,wn, sn, tn) = , and limn→∞ η(yn, zn, sn, tn) = .
In the case xn ∈ Mu andwm ∈Mxn, we note that q(xn,wn) = φ(u,xn)– infwm∈Mxn φ(u,wm).

Since φ(xn,wm) + p(xn,wn) ≤ , it follows that

p(xn,wm) ≤ –φ(xn,wn) = φ(wm,xn)

≤ φ(wm,u) + φ(u,xn)

= φ(u,xn) – φ(u,wm)

≤ φ(u,xn) – inf
wm∈Mxn

φ(u,wm) = q(xn,wm).
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Thus,wehave p(xn,wm) ≤ q(xn,wm). This implies that supm≥n p(xn,wn)≤ supm≥n q(xn,wm).
Take n→ ∞, so

 ≤ lim
n→∞ supp(xn,wm) ≤ lim

n→∞ supq(xn,wm) = 

and therefore limn→∞ supp(xn,wm) = .
Similarly, if yn ∈ Mu and zm ∈Myn, then limn→∞ supp(yn, zm) = .
We note that limn→∞ θ (xn,wn, sn, tn) =  = limn→∞ θ (yn, zn, sn, tn) and hence

lim
n→∞η(wn, zn, sn, tn) = .

In the case xn �= Mu or wm �= Mxn, we note that p(xn,wm) ≤ c + p(xn,wm) = q(xn,wm).
Thus, we have p(xn,wm) ≤ q(xn,wm). This implies that supm≥n p(xn,wm) ≤ supm≥n q(xn,
wm). Taking n→ ∞, we obtain

 ≤ lim
n→∞ supp(xn,wm) ≤ lim

n→∞ supq(xn,wm) = 

and therefore limn→∞ supp(xn,wn) = . Similarly as above, if yn �=Mu and zm �=Myn, then
limn→∞ supp(yn, zm) = . We note that limn→∞ θ (xn,wn, sn, tn) =  = limn→∞ θ (yn, zn, sn, tn)
and hence limn→∞ η(wn, zn, sn, tn) = .
Case II: Suppose that limn→∞ sup{q(wm,xn) : m ≥ n} = , limn→∞ sup{q(zm, yn) : m ≥

n} = , limn→∞ η(xn,wn, sn, tn) =  and limn→∞ η(yn, zn, sn, tn) = . Similarly as in Case I, we
can show that limn→∞ η(wn, zn, sn, tn) = . This shows (u)q,η . We will show that q satisfies
(u)q,η .
Case I: Suppose that limn→∞ η(wn, zn,q(xn,wn),q(xn, zn)) =  and limn→∞ η(wn, zn,q(yn,

wn),q(yn, zn)) = . In the case xn ∈ Mu and wn, zn ∈Mxn, we note that q(xn,wn) = φ(u,xn) –
infwn∈Mxn φ(u,wn) and hence q(xn, zn) = φ(u,xn) – infzn∈Mxn φ(u, zn). Thus, we have

θ
(
wn, zn,p(xn,wn),p(xn, zn)

) ≤ θ
(
wn, zn,φ(zn,xn),φ(zn,xn)

)
≤ θ

(
wn, zn,φ(wn,u) + φ(u,xn),φ(zn,u) + φ(u,xn)

)
= θ

(
wn, zn,φ(u,xn) – φ(u,wn),φ(u,xn) – φ(u, zn)

)

≤ θ
(
wn, zn,φ(u,xn) – inf

wn∈Mxn
φ(u,wn),φ(u,xn)

– inf
zn∈Mxn

φ(u, zn)
)

= η
(
wn, zn,q(xn,wn),q(xn, zn)

)
.

Taking n→ ∞, we have

 ≤ lim
n→∞ θ

(
wn, zn,p(xn,wn),p(xn, zn)

) ≤ lim
n→∞η

(
wn, zn,q(xn,wn),q(xn, zn)

)
= .

Therefore limn→∞ θ (wn, zn,p(xn,wn),p(xn, zn)) = . Similarly, if yn ∈ Mu and zn,wn ∈ Myn,
then limn→∞ θ (wn, zn,p(yn,wn),p(yn, zn)) = . In the case xn �= Mu or wn, zn �= Mxn, we
have q(xn,wn) = c + p(xn,wn) and q(xn, zn) = c + p(xn, zn). Since p is a u-distance, we have
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limn→∞ d(xn, yn) = . Hence

θ
(
wn, zn, c + p(xn,wn), c + p(xn, zn)

) ≤ θ
(
wn, zn, c + p(xn,wn), c + p(xn, zn)

)
≤ η

(
wn, zn,q(xn,wn),q(xn, zn)

)
.

Take n→ ∞, thus

 ≤ lim
n→∞ θ

(
wn, zn,p(xn,wn),p(xn, zn)

) ≤ lim
n→∞η

(
wn, zn,q(xn,wn),q(xn, zn)

)
= .

Therefore limn→∞ θ (wn, zn,p(xn,wn),p(xn, zn)) = . Similarly, if yn �= Mu or wn, zn �= Myn,
then limn→∞ θ (wn, zn,p(yn,wn),p(yn, zn)) = . Since p is a u-distance, we have limn→∞ d(xn,
yn) = .
Case II: Suppose that limn→∞ η(wn, zn,q(wn,xn),q(zn,xn)) =  and limn→∞ η(wn, zn,q(wn,

yn),q(zn, yn)) = . Similarly as in Case I, we can show that limn→∞ d(xn, yn) = . This shows
(u)q,η . �

Proposition . Let X be a complete metric space, p be a u-distance on X and φ be a
function from X ×X into (–∞,∞] satisfying
() φ(x, z) ≤ φ(x, y) + φ(y, z) for all x, y, z ∈ X ;
() φ(x, ·) : X → (–∞,∞] is lower semicontinuous for any x ∈ X ;
() there exists an x such that infy∈X φ(x, y) > –∞; and
() φ(x, y) = –φ(y,x).

Define Mx = {y ∈ X : φ(x, y) + p(x, y) ≤ } for all x ∈ X. Then, for each u ∈ X with Mu �= ∅,
there exists x ∈ Mu such that Mx ⊂ {x}. In particular, there exists y ∈ X such that
My ⊂ {y}.

Proof Let u ∈ X with Mu �= ∅. We have u ∈ Mu by φ(u,u) < ∞. If Mu = ∅, the assertion
holds. Suppose thatMu �= ∅ andMx∩ (X{x}) �= ∅ for all x ∈Mu. Let u ∈Mu. We know
that φ(x, y) ≤  for all x ∈ X and y ∈ Mx, we define a mapping T : X → X as follows: For
each x ∈ Mu,Tx satisfies Tx ∈Mx, Tx �= x and

φ(u,Tx) ≤ φ(u,x) + infy∈Mx φ(u, y)


.

For each x /∈Mu, define Tx = u �= x. We also define a function q : X ×X →R
+ by

q(x, y) =

⎧⎨
⎩

φ(u,x) – infy∈Mx φ(u, y) if x ∈Mu and y ∈Mx,

φ(u,u) –  infw∈Mu φ(u,w) +  + p(x, y) if x /∈Mu or y /∈Mx.

By Lemma ., we have q is a u-distance on X. Since y ∈ My and z ∈ My, it follows by
Lemma . that z ∈ Mx. Hence Tx ∈ Mu and MTx ⊂ Mx for all x ∈ Mu. If x ∈ Mu, we
obtain

q
(
Tx,Tx

)
= φ(u,Tx) – inf

y∈MTx
φ(u, y)

≤ φ(u,x) + infy∈Mx φ(u, y)


– inf
y∈Mx

φ(u, y)

=
q(x,Tx)


.
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If x /∈Mu,

q
(
Tx,Tx

)
= q(u,Tu) = φ(u,u) – inf

Tu∈Mu
φ(u,Tu)

≤ φ(u,u) – inf
Tu

φ(u,Tu)

≤ q(x,u)


=
q(x,Tx)


.

We will show (i) in Theorem .. Suppose that limn→∞ sup{q(xn,xm) : m > n} =  and
limn→∞ q(xn, y) = . We may assume xn ∈ Mu and y ∈ Mxn for all n ∈ N by the definition
of q. Then y ∈ Mu and hence Ty ∈ My⊂Mxn. By Lemma . we have limn→∞ q(xn,Ty) =
limn→∞ q(xn, y) =  and Ty = y. Hence, by Theorem ., T has a fixed point. This is a con-
tradiction. So, there is x ∈Mu ⊂Mu such thatMx ⊂ {x}. �

Theorem. Let X be a complete metric space, p be a u-distance on X and φ be a function
from X ×X into (–∞,∞] satisfying
() φ(x, z) ≤ φ(x, y) + φ(y, z) for all x, y, z ∈ X ;
() φ(x, ·) : X → (–∞,∞] is lower semicontinuous for any x ∈ X ;
() there exists an x such that infy∈X φ(x, y) > –∞; and
() φ(x, y) = –φ(y,x).

Then the following hold:
(A) For each u ∈ X , there exists v ∈ X such that φ(u, v)≤  and φ(v,w) + p(v,w) >  for

all w ∈ X \ {v};
(B) For each λ >  and u ∈ X with p(u,u) = , there exists v ∈ X such that

φ(u, v) + λp(u, v) ≤  and φ(v,w) + λp(v,w) >  for all w ∈ X \ {v}.

Proof We will show that (A). For each x ∈ X, we define Mx as in Proposition .. If Mu =
∅, we have u that satisfies φ(u,w) + p(u,w) >  for all w ∈ X with w �= u. If Mu �= ∅ and
there exists v ∈Mu, then it follows by Proposition . thatMv ⊂ {v}. Since v ∈Mu implies
φ(u, v) ≤  andMv ⊂ {v}, this shows that φ(v,w) + p(v,w) >  for all w ∈ X with w �= v.
We will show that (B). By Proposition ., we note that λp is a u-distance. We define

Mx = {y ∈ X : φ(x, y) + λp(x, y) ≤ } for all x ∈ X. Since p(u,u) = , we have Mu �= ∅, and
hence there exists v ∈ Mu such that Mv ⊆ {v} by Proposition .. Therefore v satisfies
φ(u, v) +λp(u, v)≤  and φ(v,w) +λp(v,w) >  for all w ∈ X with w �= v. This completes the
proof. �

Remark . By setting φ(x, y) = f (y) – f (x), where f : X → R is lower semicontinuous
bounded below, and letting p be a τ -distance in Theorem ., we obtain the Ekeland vari-
ational principle proved by Suzuki [].

Theorem. Let X be a completemetric space, p be a u-distance on X and φ be a function
from X ×X into (–∞,∞] satisfying
() φ(x, z) ≤ φ(x, y) + φ(y, z) for all x, y, z ∈ X ;
() φ(x, ·) : X → (–∞,∞] is lower semicontinuous for any x ∈ X ;
() there exists an x such that infy∈X φ(x, y) > –∞; and
() φ(x, y) = –φ(y,x).

Let u ∈ X with p(u,u) = . Then λ >  and δ > , there exists v ∈ X satisfying the following:

http://www.journalofinequalitiesandapplications.com/content/2013/1/120
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(i) φ(u, v)≤ ;
(ii) φ(u, v) + λp(u, v) < δ;
(iii) φ(v,w) + λp(v,w) >  for all w ∈ X \ {v};
(iv) if a sequence {xn} in X satisfies limn(φ(v,xn) + λp(v,xn)) = , then {xn} is p-Cauchy,

limn xn = v and p(v, v) = limn p(v,xn) = .

Proof In the case φ(v,u) = ∞, (i) and (ii) hold for all v ∈ X. We also note that (iii) and (iv)
do not depend on φ(v,u). In the case φ(v,u) < ∞, set λ′ ∈ (,λ) satisfying

λ – λ′

λ′
(
φ(u, v) – inf

x∈X φ(v,x)
)
< δ.

By Theorem .(B), there exists v ∈ X such that φ(u, v) + λ′p(u, v) ≤  and φ(v,w) +
λ′p(v,w) >  for all w ∈ X \ {v}. Thus, we have

φ(u, v) =
(
 +

λ – λ
′

λ′

)
φ(u, v) –

(
λ – λ′

λ′

)
φ(u, v)

≤
(
 +

λ – λ′

λ′

)(
–λ′p(u, v)

)
–

(
λ – λ′

λ′

)
φ(u, v)

= –λ′p(u, v) –
(
λ – λ′)(p(u, v)) –

(
λ – λ′

λ′

)
φ(u, v)

= –λp(u, v) –
(

λ – λ′

λ′

)
φ(u, v)

≤ –λp(u, v) +
(

λ – λ′

λ′

)
φ(u, v) +

(
λ – λ′

λ′

)
inf
x∈X φ(x, v)

= –λp(u, v) +
(

λ – λ′

λ′

)(
φ(u, v) – inf

x∈X φ(v,x)
)

< –λp(u, v) + δ.

Therefore, φ(u, v) + λp(u, v) < δ. For w ∈ X \ {v}, we note that

φ(v,w) > –λ′p(v,w) ≥ –λp(v,w).

So, φ(v,w) + λp(v,w) > . Finally, we will show that (iv). Suppose that a sequence {xn} in X
satisfies limn(φ(v,xn) +λp(v,xn)) = . We note that φ(v,w) +λ′p(v,w) ≥  for all w ∈ X. We
have

lim
n→∞ supp(v,xn) = lim

n→∞ sup

(
λ – λ′

λ – λ′

)
p(v,xn)

= lim
n→∞

λp(v,xn) – λ′p(v,xn)
λ – λ′

≤ lim
n→∞

λp(v,xn) – φ(v,xn)
λ – λ′

≤ lim
n→∞

λp(v,xn) + φ(v,xn)
λ – λ′

= .
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By Lemma ., {xn} is a p-Cauchy sequence. From Lemma ., therefore {xn} is a Cauchy
sequence. By the completeness of X, {xn} converges to some point x ∈ X. From (u), we
have p(v,x) =  and so

φ(v,x) ≤ lim
n→∞ infφ(v,xn)

≤ lim
n→∞

(
φ(v,xn) + λp(v,xn)

)
= .

Thus, if v �= x, then we have

φ(v,x) > –λ′p(v,x)≥ φ(v,x).

This is a contradiction. Hence, we obtain v = x. �

Remark . By setting φ(x, y) = f (y) – f (x), where f : X → R is lower semicontinuous
bounded below. Let p be a τ -distance in Theorem ., we obtain the strong Ekeland vari-
ational principle proved by Suzuki [].
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