
Hussain et al. Journal of Inequalities and Applications 2013, 2013:114
http://www.journalofinequalitiesandapplications.com/content/2013/1/114

RESEARCH Open Access

α-admissible mappings and related fixed
point theorems
Nawab Hussain1, Erdal Karapınar2, Peyman Salimi3 and Farhana Akbar4*

*Correspondence:
ridaf75@yahoo.com
4Department of Mathematics,
GDCW, Bosan Road, Multan,
Pakistan
Full list of author information is
available at the end of the article

Abstract
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1 Introduction
Fixed point theory is one of the outstanding subfields of nonlinear functional analysis. It
has been used in the research areas ofmathematics and nonlinear sciences (see, e.g., [–]).
In  Banach [] proved that in a completemetric space every contraction has a unique
fixed point. In the proof of this theorem, he not only showed the existence and uniqueness
of a fixed point, but also provided amethod (generally, iterative) for constructing the fixed
point. This property of the Banach theorem differentiates it from other fixed point theo-
rems. Therefore, the Banach fixed point theorem has attracted great attention of authors
since then (see, e.g., [–]). On the other hand, the fixed point technique suggested by
Banach attracted many researchers to solve various concrete problems.

2 Main results
In an attempt to generalize the Banach contraction principle, many researchers extended
the following result in certain directions.

Theorem  (See, e.g., [, , ]) Let (X,d) be a complete metric space and f : X → X be a
mapping.Assume that there exists a function β : [,∞)→ [, ] such that, for any bounded
sequence {tn} of positive reals, β(tn) →  implies tn →  and

d(fx, fy) ≤ β
(
d(x, y)

)
d(x, y)

for all x, y ∈ X. Then f has a unique fixed point.

Definition  (See, e.g., []) Let f : X → X and α : X × X → R+. We say that f is an α-
admissible mapping if

α(x, y)≥  implies α(fx, fy) ≥ , x, y ∈ X.
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Example  (cf. []) Let X =R. Define f : X → X and α : X ×X → [,∞) by

fx =

{
ln |x| if x �= ,
 otherwise

and α(x, y) =

{
 if x ≥ y,
 otherwise.

Then f is α-admissible.

Our first result is the following.

Theorem  Let (X,d) be a complete metric space and f : X → X be an α-admissible map-
ping. Assume that there exists a function β : [,∞) → [, ] such that, for any bounded
sequence {tn} of positive reals, β(tn) →  implies tn →  and

(
d(fx, fy) + �

)α(x,fx)α(y,fy) ≤ β
(
d(x, y)

)
d(x, y) + � (.)

for all x, y ∈ X where � ≥ . Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn,xn+)≥  for all n, then α(x, fx)≥ .

If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Proof Let x ∈ X such that α(x, fx) ≥ . Define a sequence {xn} in X by xn = f nx = fxn–
for all n ∈ N. If xn+ = xn for some n ∈ N, then x = xn is a fixed point for f and the result is
proved. Hence, we suppose that xn+ �= xn for all n ∈ N. Since f is an α-admissible mapping
and α(x, fx) ≥ , we deduce that α(x,x) = α(fx, f x) ≥ . By continuing this process,
we get α(xn, fxn) ≥  for all n ∈N∪ {}. By the inequality (.), we have

d(fxn–, fxn) + � ≤ (
d(fxn–, fxn) + �

)α(xn–,fxn–)α(xn ,fxn)

≤ β
(
d(xn–,xn)

)
d(xn–,xn) + �,

then

d(xn,xn+) ≤ β
(
d(xn–,xn)

)
d(xn–,xn), (.)

which implies d(xn,xn+)≤ d(xn–,xn). It follows that the sequence {d(xn,xn+)} is decreas-
ing. Thus, there exists d ∈ R+ such that limn→∞ d(xn,xn+) = d. We will prove that d = .
From (.) we have

d(xn,xn+)
d(xn–,xn)

≤ β
(
d(xn–,xn)

) ≤ ,

which implies limn→∞ β(d(xn–,xn)) = . Using the property of the function β , we conclude
that

lim
n→∞d(xn,xn+) = . (.)

Next, we will prove that {xn} is a Cauchy sequence. Suppose, to the contrary, that {xn}
is not a Cauchy sequence. Then there is ε >  and sequences {m(k)} and {n(k)} such that,
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for all positive integers k, we have

n(k) >m(k) > k, d(xn(k),xm(k)) ≥ ε and d(xn(k),xm(k)–) < ε.

By the triangle inequality, we derive that

ε ≤ d(xn(k),xm(k))≤ d(xn(k),xm(k)–) + d(xm(k)–,xm(k))

< ε + d(xm(k)–,xm(k)),

k ∈N. Taking the limit as k → +∞ in the above inequality and using (.), we get

lim
k→+∞

d(xn(k),xm(k)) = ε. (.)

Again, by the triangle inequality, we find that

d(xn(k),xm(k))≤ d(xm(k),xm(k)+) + d(xm(k)+,xn(k)+) + d(xn(k)+,xn(k))

and

d(xn(k)+,xm(k)+)≤ d(xm(k),xm(k)+) + d(xm(k),xn(k)) + d(xn(k)+,xn(k)).

Taking the limit as k → +∞, together with (.) and (.), we deduce that

lim
k→+∞

d(xn(k)+,xm(k)+) = ε. (.)

From (.), (.) and (.) we have

d(xn(k)+,xm(k)+) + � ≤ (
d(xn(k)+,xm(k)+) + �

)α(xn(k),fxn(k))α(xm(k),fxm(k))

=
(
d(fxn(k), fxm(k)) + �

)α(xn(k),fxn(k))α(xm(k),fxm(k))

≤ β
(
d(xn(k),xm(k))

)
d(xn(k),xm(k)) + �.

Hence,

d(xn(k)+,xm(k)+)
d(xn(k),xm(k))

≤ β
(
d(xn(k),xm(k))

) ≤ .

Letting k → ∞ in the above inequality, we get

lim
n→∞β

(
d(xn(k),xm(k))

)
= .

That is, limk→∞ d(xn(k),xm(k)) =  < ε, which is a contradiction. Hence {xn} is a Cauchy
sequence. Since X is complete, then there is z ∈ X such that xn → z. First, we suppose that
f is continuous. Since f is continuous, then we have

fz = lim
n→∞ fxn = lim

n→∞xn+ = z.
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So, z is a fixed point of f . Next, we suppose that (b) holds. Then α(z, fz) ≥ . Now, by (.)
we have

d(fz,xn+) + � ≤ (
d(fz, fxn) + �

)α(z,fz)α(xn,fxn)

≤ β
(
d(z,xn)

)
d(z,xn) + �.

That is, d(fz,xn+)≤ β(d(z,xn))d(z,xn), and so we get

d(fz, z) ≤ d(fz,xn+) + d(z,xn+) ≤ β
(
d(z,xn)

)
d(z,xn) + d(z,xn+).

Letting n → ∞ in the above inequality, we get d(fz, z) = , that is, z = fz. �

Example  LetX = [,∞) be endowedwith the usual metric d(x, y) = |x–y| for all x, y ∈ X
and f : X → X be defined by

fx =

⎧⎨
⎩

x
x+ if x ∈ [, ],

x if x ∈ (,∞).

Define also α : X ×X → [, +∞) and β : [,∞)→ [, ] by

α(x, y) =

⎧⎨
⎩ if x, y ∈ [, ],

 otherwise
and β(t) =


 + t

.

We prove that Theorem  can be applied to f , but Theorem  cannot be applied to f .
Clearly, (X,d) is a complete metric space. We show that f is an α-admissible mapping.

Let x, y ∈ X, if α(x, y) ≥ , then x, y ∈ [, ]. On the other hand, for all x ∈ [, ], we have
fx ≤ . It follows that α(fx, fy) ≥ . Thus the assertion holds. In reason of the above argu-
ments, α(, f ) ≥ .
Now, if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n ∈N∪ {} and xn → x as

n→ +∞, then {xn} ⊂ [, ] and hence x ∈ [, ]. This implies that α(x, fx)≥ .
Let x, y ∈ [, ] and y≥ x. We get

(
d(fx, fy) + �

)α(x,fx)α(y,fy) = fy – fx + � =
y

y + 
–

x
x + 

+ �

=
y – x

( + x)( + y)
+ �

≤ y – x
 + y – x

+ � = β
(
d(x, y)

)
d(x, y) + �.

Otherwise, α(x, fx)α(y, fy) =  and so

(
d(fx, fy) + �

)α(x,fx)α(y,fy) =  ≤ β
(
d(x, y)

)
d(x, y) + �,

then the condition of Theorem  holds. Hence, f has a fixed point. Let x =  and y = .
Then

d(f , f ) =  >


=


 + | – | | – | = β

(
d(, )

)
d(, ),

that is, the contractive condition of Theorem  does not hold for this example.
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Theorem  Let (X,d) be a complete metric space and f : X → X be an α-admissible map-
ping. Assume that there exists a function β : [,∞) → [, ] such that, for any bounded
sequence {tn} of positive reals, β(tn) →  implies tn →  and

(
α(x, fx)α(y, fy) + 

)d(fx,fy) ≤ β(d(x,y))d(x,y) (.)

for all x, y ∈ X. Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn,xn+)≥  for all n, then α(x, fx)≥ .

If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Proof Let x ∈ X such that α(x, fx) ≥ . Define a sequence {xn} in X by xn = f nx = fxn–
for all n ∈ N. If xn+ = xn for some n ∈ N, then x = xn is a fixed point for f and the result is
proved. Hence, we suppose that xn+ �= xn for all n ∈N. As in Theorem , we conclude that
α(xn, fxn) ≥  for all n ∈N∪ {}. Due to (.) we have

d(fxn–,fxn) ≤ (
α(xn–, fxn–)α(xn, fxn) + 

)d(fxn–,fxn)
≤ β(d(xn–,xn))d(xn–,xn),

which yields that

d(xn,xn+) ≤ β
(
d(xn–,xn)

)
d(xn–,xn). (.)

So, we conclude that d(xn,xn+) ≤ d(xn–,xn). It follows that the sequence dn := d(xn,xn+)
is decreasing. Thus, there exists d ∈R+ such that dn → d as n→ ∞. We claim that d = .
Suppose, to the contrary, that d > . Considering (.), we obtain

d(xn,xn+)
d(xn–,xn)

≤ β
(
d(xn–,xn)

) ≤ ,

which implies limn→∞ β(d(xn–,xn)) = . Hence, d = limn→∞ dn = limn→∞ d(xn–,xn) = ,
which is a contradiction. Hence, we derive that

lim
n→∞d(xn,xn+) = .

Weprove that {xn} is a Cauchy sequence. Suppose, to the contrary, that {xn} is not aCauchy
sequence. Then there is ε >  and sequences {m(k)} and {n(k)} such that, for all positive
integers k,

n(k) >m(k) > k, d(xn(k),xm(k)) ≥ ε and d(xn(k),xm(k)–) < ε.

Following the related lines in the proof of Theorem , we get

lim
k→+∞

d(xn(k),xm(k)) = ε (.)

and

lim
k→+∞

d(xn(k)+,xm(k)+) = ε. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/114
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Now, from (.), (.) and (.), we have

d(xn(k)+,xm(k)+) ≤ (
α(xn(k), fxn(k))α(xm(k), fxm(k)) + 

)d(xn(k)+,xm(k)+)

=
(
α(xn(k), fxn(k))α(xm(k), fxm(k)) + 

)d(fxn(k),fxm(k))

≤ β(d(xn(k),xm(k)))d(xn(k),xm(k)).

Hence,

d(xn(k)+,xm(k)+)
d(xn(k),xm(k))

≤ β
(
d(xn(k),xm(k))

) ≤ .

By taking limit as k → ∞, we get

lim
n→∞β

(
d(xn(k),xm(k))

)
= .

That is, limk→∞ d(xn(k),xm(k)) =  < ε, which is a contradiction. Hence {xn} is a Cauchy
sequence. SinceX is complete, then there is z ∈ X such that xn → z. First of all, we suppose
that f is continuous. We obtain that

fz = lim
n→∞ fxn = lim

n→∞xn+ = z

due to the continuity of f . Thus, we derived that z is a fixed point of f .
Next, we suppose that (b) holds. Then, α(z, fz) ≥ . Now, by (.) we have

d(fz,xn+) ≤ (
α(z, fz)α(xn, fxn) + 

)d(fz,fxn)
≤ β(d(z,xn))d(z,xn).

That is, d(fz,xn+)≤ β(d(z,xn))d(z,xn), and so we get

d(fz, z) ≤ d(fz,xn+) + d(z,xn+) ≤ β
(
d(z,xn)

)
d(z,xn) + d(z,xn+).

By taking the limit as n→ ∞, we get d(fz, z) = , i.e., z = fz. �

Example  Let X = [,∞) be endowedwith the usual metric d(x, y) = |x–y| for all x, y ∈ X
and f : X → X be defined by

fx =

⎧⎨
⎩


x

 if x ∈ [, ],

lnx if x ∈ (,∞).

Define also α : X ×X → [, +∞) and β : [,∞)→ [, ] by

α(x, y) =

⎧⎨
⎩ if x, y ∈ [, ],

 otherwise
and β(t) =



.

We prove that Theorem  can be applied to f , but Theorem  cannot be applied to f .
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By a similar method to that in the proof of Example , we can show that f is an α-
admissiblemapping and α(xn, fxn) ≥ , xn → x as n→ +∞ implies that α(x, fx)≥ . Clearly,
α(, f ) ≥ .
Let x, y ∈ [, ]. Then

(
α(x, fx)α(y, fy) + 

)d(fx,fy) = |fx–fy| = 

 |x–y||x+y|

≤ 

 |x–y| = β(d(x,y))d(x,y).

Otherwise, α(x, fx)α(y, fy) = , and so

(
α(x, fx)α(y, fy) + 

)d(fx,fy) ≤ (
α(x, fx)α(y, fy) + 

)d(fx,fy)
= d(fx,fy) =  ≤ β(d(x,y))d(x,y),

then the contractive condition of Theorem  holds and f has a fixed point. Let x =  and
y = ; then

d(f , f ) = ln >


=



| – | = β
(
d(, )

)
d(, ).

That is, the contractive condition of Theorem  does not hold for this example.

Theorem  Let (X,d) be a complete metric space and f : X → X be an α-admissible map-
ping. Assume that there exists a function β : [,∞) → [, ] such that, for any bounded
sequence {tn} of positive reals, β(tn) →  implies tn →  and

α(x, fx)α(y, fy)d(fx, fy)≤ β
(
d(x, y)

)
d(x, y) (.)

for all x, y ∈ X. Suppose that either
(a) f is continuous, or
(b) if {xn} is a sequence in X such that xn → x, α(xn,xn+)≥  for all n, then α(x, fx)≥ .

If there exists x ∈ X such that α(x, fx) ≥ , then f has a fixed point.

Proof Let x ∈ X such that α(x, fx) ≥ . Define a sequence {xn} in X by xn = f nx = fxn–
for all n ∈ N. If xn+ = xn for some n ∈ N, then x = xn is a fixed point for f and the result is
proved. Hence, we suppose that xn+ �= xn for all n ∈N. As in Theorem , we conclude that
α(xn, fxn) ≥  for all n ∈N∪ {}. Now, by (.) we have

α(xn–, fxn–)α(xn, fxn)d(fxn–, fxn) ≤ β
(
d(xn–,xn)

)
d(xn–,xn),

then

d(xn,xn+) ≤ β
(
d(xn–,xn)

)
d(xn–,xn). (.)

It yields that d(xn,xn+)≤ d(xn–,xn). It follows that the sequence {d(xn,xn+)} is decreas-
ing. Consequently, there exists d ∈ R+ such that d(xn,xn+) → d as n → ∞. Regarding
(.), we observe that

d(xn,xn+)
d(xn–,xn)

≤ β
(
d(xn–,xn)

) ≤ .
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Thus, we find that limn→∞ β(d(xn–,xn)) =  by the property of the function β . Hence,

lim
n→∞d(xn,xn+) = .

Next, we will show that the sequence {xn} is Cauchy. Suppose, to the contrary, that {xn}
is not a Cauchy sequence. Then there is ε >  and sequences {m(k)} and {n(k)} such that,
for all positive integers k,

n(k) >m(k) > k, d(xn(k),xm(k)) ≥ ε and d(xn(k),xm(k)–) < ε.

Again, by following the lines of the proof of Theorem , we derive that

lim
k→+∞

d(xn(k),xm(k)) = ε (.)

and

lim
k→+∞

d(xn(k)+,xm(k)+) = ε. (.)

Combining (.), (.) and (.), we have

d(xn(k)+,xm(k)+) ≤ α(xn(k), fxn(k))α(xm(k), fxm(k))d(xn(k)+,xm(k)+)

= α(xn(k), fxn(k))α(xm(k), fxm(k))d(fxn(k), fxm(k))

≤ β
(
d(xn(k),xm(k))

)
d(xn(k),xm(k)).

Hence,

d(xn(k)+,xm(k)+)
d(xn(k),xm(k))

≤ β
(
d(xn(k),xm(k))

) ≤ .

By taking limit as k → ∞, we get

lim
n→∞β

(
d(xn(k),xm(k))

)
= .

That is, limk→∞ d(xn(k),xm(k)) = . Hence {xn} is a Cauchy sequence. Since X is complete,
then there is z ∈ X such that xn → z.
First, suppose that f is continuous. Since f is continuous, then we have

fz = lim
n→∞ fxn = lim

n→∞xn+ = z.

So, z is a fixed point of f .
We suppose that (b) holds. Then α(z, fz) ≥ . Now, by (.) we have

d(fz,xn+) ≤ α(z, fz)α(xn, fxn)d(fz, fxn)

≤ β
(
d(z,xn)

)
d(z,xn).

http://www.journalofinequalitiesandapplications.com/content/2013/1/114


Hussain et al. Journal of Inequalities and Applications 2013, 2013:114 Page 9 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/114

That is, d(fz,xn+)≤ β(d(z,xn))d(z,xn), and so we get

d(fz, z) ≤ d(fz,xn+) + d(z,xn+) ≤ β
(
d(z,xn)

)
d(z,xn) + d(z,xn+).

Letting n → ∞ in the above inequality, we get d(fz, z) = , i.e., z = fz. �

Example  LetX = [,∞) be endowedwith the usualmetric d(x, y) = |x–y| for all x, y ∈ X
and f : X → X be defined by

fx =

⎧⎨
⎩


 ( – x) if x ∈ [, ],

x if x ∈ (,∞).

Define also α : X ×X → [, +∞) and β : [,∞)→ [, ] by

α(x, y) =

⎧⎨
⎩ if x, y ∈ [, ],

 otherwise
and β(t) =



.

We prove that Theorem  can be applied to f (here, a fixed point is u =
√
 – ), but The-

orem  cannot be applied to f .
By a similar method to that in the proof of Example , we can show that f is an α-

admissiblemapping and α(xn, fxn) ≥ , xn → x as n→ +∞ implies that α(x, fx)≥ . Clearly,
α(, f ) ≥ .
Let x, y ∈ [, ]. Then

α(x, fx)α(y, fy)d(fx, fy) = |fx – fy| = 


|x – y||x + y| ≤ 

|x – y| = β

(
d(x, y)

)
d(x, y).

Otherwise, α(x, fx)α(y, fy) = , and so

α(x, fx)α(y, fy)d(fx, fy) =  ≤ β
(
d(x, y)

)
d(x, y),

then the conditions of Theorem  hold and f has a fixed point. Let x =  and y = ; then

d(f , f ) =  >


=


| – | = β

(
d(, )

)
d(, ).

That is, the contractive condition of Theorem  does not hold for this example.

Theorem  Assume that all the hypotheses of Theorems ,  and  hold. Adding the
following condition:
(c) if x = fx then α(x, fx)≥ ,

we obtain the uniqueness of the fixed point of f .

Proof Suppose that z and z* are two fixed points of f such that z �= z*. Then α(z, fz) ≥  and
α(z*, fz*) ≥ .
For Theorem  we have

d
(
fz, fz*

)
+ � ≤ (

d
(
fz, fz*

)
+ �

)α(z,fz)α(z*,fz*) ≤ β
(
d
(
z, z*

))
d
(
z, z*

)
+ �.

http://www.journalofinequalitiesandapplications.com/content/2013/1/114
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For Theorem  we have

()d(fz,fz
*) ≤ (

α(z, fz)α
(
z*, fz*

)
+ 

)d(fz,fz*) ≤ ()β(d(z,z
*))d(z,z*).

For Theorem  we have

d
(
fz, fz*

) ≤ α(z, fz)α
(
z*, fz*

)
d
(
fz, fz*

) ≤ β
(
d
(
z, z*

))
d
(
z, z*

)
.

Hence, all the three inequalities separately imply that β(d(z, z*)) = . Thus d(z, z*) = , i.e.,
z = z* as required. �

Remark  By utilizing the technique of Samet et al. [], we can obtain corresponding
coupled fixed point results from our Theorems ,  and .
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