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1 Introduction
Since Michael [] constructed continuous ε-approximate selections for the lower semi-
continuous maps with convex values in Banach spaces, the result has been improved in
many ways. It was extended to lower semicontinuous maps with convex values except
on a set of topological dimension less than or equal to zero by Michael and Pixley [] in
. And Ben-El-Mechaiekh and Oudadess [] generalized the theorem in [] to a class
of lower semicontinuous multimaps with nonconvex values in LC-metric spaces, which
have generalized convex metric structures introduced by Horvath [].
Using the concept of n-connectedness, Kim [] introduced an LD-metric space and

extended the result in [] to LD-metric spaces which are more general than LC-metric
spaces.
On the other hand, in LC-spaces,Wu and Li [] obtained the approximate selection the-

orems for quasi-lower semicontinuous multimaps which were generalized by the author
and Lee [] to almost lower semicontinuous multimaps in C-spaces.
In this paper, we establish a new approximate selection theorem for almost lower semi-

continuousmultimapswithD-set values except on a set of topological dimension less than
or equal to zero in LD-spaces. The corollary of this gives a correct and simple proof for
the result in [].
We also establish some approximate selection theorems for almost lower semicontin-

uous multimaps in D-spaces and apply the results to topological semilattices with path
connected intervals. Our results unify and extend the approximate selection theorems in
[–, –].
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2 Preliminaries
Amultimap (or simply amap) F : X � Y is a function from a setX into the power set of Y ;
that is, a functionwith the values F(x)⊂ Y for x ∈ X. ForA⊂ X, let F(A) :=

⋃{F(x) | x ∈ A}.
Throughout this paper, we assume that multimaps have nonempty values otherwise ex-
plicitly stated or obvious from the context. Let 〈X〉 denote the set of all nonempty finite
subsets of a set X.
Let X be a topological space. A C-structure on X is given by a map � : 〈X〉 � X such

that
() for all A ∈ 〈X〉, �A = �(A) is nonempty and contractible; and
() for all A,B ∈ 〈X〉, A⊂ B implies �A ⊂ �B.

A pair (X,�) is then called a C-space by Horvath [] and an H-space by Bardaro and
Ceppitelli []. For examples of a C-space, see [, ]. For an (X,�), a subset C of X is
said to be �-convex (or a C-set) if A ∈ 〈C〉 implies �A ⊂ C.
For a uniform space X with a uniform structure U , A ⊂ X and U ∈ U , the set U(A) is

defined to be {y ∈ X : (x, y) ∈U for some x ∈ A} and if x ∈ X, U(x) =U({x}).
A C-space (X,�) is called an LC-space if X is a uniform space and there exists a base

{Vi : i ∈ I} for the uniform structure such that for each i ∈ I , {x ∈ X : C ∩ Vi(x) �= ∅} is
�-convex whenever C ⊂ X is �-convex.
A C-space (X,�) is called an LC-metric space if X is equipped with a metric d such

that for any ε > , the set B(C, ε) = {x ∈ X : d(x,C) < ε} is �-convex whenever C ⊂ X is
�-convex, and open balls are �-convex. For details, see Horvath [].
A topological space X is said to be n-connected for n ≥  if every continuous map f :

Sk → X for k ≤ n has a continuous extension over Bk+, where Sk is the unit sphere and
Bk+ is the closed unit ball in R

k+. Note that a contractible space is n-connected for every
n≥ .
The following is introduced by Kim []. Let X be a topological space. A D-structure on

X is a map D : 〈X〉� X such that it satisfies the following conditions:
() for each A ∈ 〈X〉, D(A) is nonempty and n-connected for all n≥ ;
() for each A,B ∈ 〈X〉, A⊂ B implies D(A) ⊂D(B).
The pair (X,D) is called a D-space; a subset C of X is said to be a D-set if D(A) ⊂ C for

each A ∈ 〈C〉.
A D-space (X,D) is called an LD-space if X is a uniform space and if there exists a base

{Vi : i ∈ I} for the uniform structure such that for each i ∈ I , the set {x ∈ X : C ∩Vi(x) �= ∅}
is a D-set whenever C ⊂ X is a D-set.
A D-space (X,D) is called an LD-metric space if X is a metric space such that for each

ε > , B(C, ε) is a D-set whenever C ⊂ X is a D-set and open balls are D-sets.
Let X be a topological space and (Y ,D) be a D-space with a uniformity U . A multimap

F : X � Y is called:
() lower semicontinuous (lsc) at x ∈ X if for each open setW withW ∩ F(x) �= ∅, there

is a neighborhood U(x) of x such that F(z)∩W �= ∅ for all z ∈U(x);
() quasi-lower semicontinuous (qlsc) at x ∈ X if for each V ∈ U , there are y ∈ F(x) and a

neighborhood U(x) of x such that F(z)∩V (y) �= ∅ for all z ∈ U(x);
() almost lower semicontinuous (alsc) at x ∈ X if for each V ∈ U , there is a

neighborhood U(x) of x such that
⋂

z∈U(x)V (F(z)) �= ∅.
If F is lsc (qlsc, alsc, resp.) at each x ∈ X, F is called lsc (qlsc, alsc, resp.). As in [, Propo-

sition ], () =⇒ () =⇒ ().
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For V ∈ U , a continuous function f : X → Y is called a V -approximate selection of F if
for all x ∈ X, f (x) ∈ V (F(x)).
Let (Y ,D) be an LD-metric space. For ε > , f is called an ε-approximate selection of F

if for all x ∈ X, f (x) ∈ B(F(x), ε).
Let X be a topological space. If Z ⊂ X, then dimX Z ≤  means that dimE ≤  for every

set E ⊂ Z which is closed in X, where dimE denotes the covering dimension of E. Note
that if dimX Z ≤ , then any locally finite open covering of Z has a disjoint locally finite
open refinement.

3 Approximate selection theorems onD-spaces
As a main tool, we need Proposition  of Kim [].

Proposition . Let X be a paracompact topological space andR be a locally finite open
covering of X, (Y ,D) be a D-space, and η :R → Y be a function. Then there exists a con-
tinuous function f : X → Y such that

f (x) ∈D
({

η(O) :O ∈R,x ∈ O
})

for each x ∈ X.

With Proposition ., we establish the V -approximate selection theorem which is the
key result of this paper.

Theorem. Let X be a paracompact topological space and Z be a closed subset of X with
dimX Z ≤ . Let (Y ,D) be an LD-space with a uniformity U and D({y}) = {y} for all y ∈ Y .
If F : X � Y is an alsc multimap such that F(x) is a D-set for all x ∈ X\Z, then F has a
V-approximate selection for each V ∈ U .
Furthermore, if X is a precompact uniform space or a compact topological space, there is

a subset A ∈ 〈Y 〉 such that f (X) ⊂D(A).

Proof For each V ∈ U and x ∈ X, there is a neighborhood U(x) of x such that⋂
z∈U(x)V (F(z)) �= ∅, because F is alsc. Since X is paracompact, the open cover {U(x) : x ∈

X} of X has a locally finite refinement {Ũ(x) : x ∈ X}. And since dimX Z ≤ , the relatively
open cover {Ũ(x)∩Z : x ∈ Z} of Z has a relatively open disjoint refinement {W (x) : x ∈ Z}.
Z is closed in X so the collectionR = {Ũ(x)∩ (W (x)∪ (X\Z)) : x ∈ X} forms a locally finite
open cover of X.
For each O ∈ R, choose xo such that O ⊂ U(xo) and yo ∈ ⋂

z∈U(xo)V (F(z)). Define
η :R → Y by η(O) = yo for all O ∈ R. Then η(O) ∈ ⋂

z∈U(xo)V (F(z)) ⊂ ⋂
z∈O V (F(z)), so

{η(O) : O ∈ R,x ∈ O} ⊂ V (F(x)) for all x ∈ X. By Proposition ., there is a continuous
function f : X → Y such that f (x) ∈D({η(O) :O ∈R,x ∈O}).
We now show that f (x) ∈ V (F(x)) for all x ∈ X. If x ∈ Z, there exists a uniqueO ∈R such

that x ∈O, that is, {η(O) :O ∈R,x ∈O} is a singleton. So, f (x) ∈D({η(O) :O ∈R,x ∈O}) =
{η(O)} ⊂ V (F(x)). If x ∈ X\Z, since F(x) is a D-set, D({η(O) : O ∈ R,x ∈ O}) ⊂ V (F(x)),
that is, f (x) ∈ V (F(x)).
If X is a precompact uniform space or a compact topological space, R can be chosen

finite. Take A = {η(O) :O ∈R}, then A ∈ 〈Y 〉 and f (X) ⊂D(A). �
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Remark IfZ = ∅, then the condition ‘D({y}) = {y} for all y ∈ Y ’ can be omitted. In that case,
if (Y ,D) is an LC-space with a uniformity U and F is qlsc, then Theorem . becomes [,
Theorem .].

Proposition . Each singleton is a D-set in an LD-metric space (X,D), so D({x}) = {x}.

Proof For each x ∈ X, {x} = ⋂
ε> B(x, ε). Since all open balls and their intersection are

D-sets, {x} is a D-set. Therefore D({x})⊂ {x}, i.e., D({x}) = {x}. �

For LD-metric spaces, Theorem . reduces to the following.

Corollary . Let X be a paracompact space, (Y ,D) be an LD-metric space, and Z be a
closed subset of X with dimX Z ≤ . If F : X � Y is an alsc multimap such that F(x) is a
D-set for all x ∈ X\Z, then for ε > , F has an ε-approximate selection.

For LC-metric spaces, Corollary . reduces to the following.

Corollary . Let X be a paracompact space, (Y ,�) be an LC-metric space, and Z be a
closed subset of X with dimX Z ≤ . If F : X � Y is an alsc multimap such that F(x) is
�-convex for all x ∈ X\Z, then for ε > , F has an ε-approximate selection.

Remark Corollary . is Theorem . in [] which is a partial generalization of Lemma 
in []. In the proof of Lemma  in [] and Theorem . in [], for the subset E of Z, it is
claimed that B(F(x), ε) is �-convex whenever x ∈ E and x ∈ X\E, but it cannot be analo-
gized from the assumption that F(x) is �-convex for all x /∈ Z.

Theorem . in [] shows that if X = Z and (Y ,�) is a C-space with a uniformity U and
F has a V -approximate selection for each V ∈ U , then F is qlsc. Using the same pattern
of its proof, we also obtain the same result when (Y ,D) is a D-space with a uniformity U .
Since a qlsc map is alsc, so the inverse of Theorem . also holds.

Theorem. Let X be a paracompact topological space and Z be a closed subset of X with
dimX Z ≤ . Let (Y ,D) be an LD-space with a uniformity U and D({y}) = {y} for all y ∈ Y .
And let F : X � Y be a multimap such that F(x) is a D-set for all x ∈ X\Z. Then F is alsc
if and only if F has a V-approximate selection for each V ∈ U .

The following notion is motivated by Hadžić []. Let (X,D) be a D-space with a uni-
formity U and K be a nonempty subset of X. We say that K is of generalized Zima type
whenever for every V ∈ U , there exists a V ∈ U such that for every N ∈ 〈K〉 and every
D-setM of K , the following implication holds:

M ∩V(z) �= ∅, ∀z ∈N =⇒ M ∩V (u) �= ∅, ∀u ∈D(N).

Note that an LD-space (X,D) is of generalized Zima type.
If Z = ∅, then the LD-space condition of Y can be weakened in Theorem ..

Theorem . Let X be a paracompact topological space, (Y ,D) be a D-space with a uni-
formity U , and F : X � Y be a multimap withD-set values such that F(X) is of generalized
Zima type. Then F is alsc if and only if F has a V-approximate selection for each V ∈ U .

http://www.journalofinequalitiesandapplications.com/content/2013/1/113
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The proof of Theorem . proceeds in the same fashion as Theorem  in [], except that
all �-convex sets in a C-space is replaced by D-sets in a D-space.
Let X be a topological space and Y be a uniform space with a uniformity U . The mul-

timaps F ,T : X � Y are said to be topologically separated if for each x ∈ X, there exist a
neighborhood U(x) of x and an element V ∈ U such that F(U(x))∩V (T(x)) = ∅.

Theorem . Let X be a compact topological space and Z be a closed subset of X with
dimX Z ≤ . And let (Y ,D) be an LD-space with a uniformity U and D({y}) = {y} for all
y ∈ Y . If F ,T : X � Y are two multimaps such that
() F and T are topologically separated;
() T is upper semicontinuous; and
() F is an alsc multimap such that F(x) is a D-set for all x ∈ X\Z.

Then, for each V ∈ U , F has a V-approximate selection f : X → Y such that

f (x) /∈ T(x)

for all x ∈ X.

Using Theorem ., the proof of Theorem . proceeds in precisely the same fashion as
Theorem . in [].

Particular forms . Zheng [, Theorem .]: Y is a locally convex space, Z = ∅, and F
is sub-lower semicontinuous, that is, for each x ∈ X and each neighborhood V of  in Y ,
there is z ∈ F(x) and a neighborhoodU(x) of x inX such that for each y ∈U(x), z ∈ F(y)+V .
Note that if Y is a topological vector space, then F is sub-lower semicontinuous if and only
if F is qlsc; see [, Proposition .].
. Wu and Li [, Theorem .]: (Y ,D) is an LC-space with a uniformity U , Z = ∅, and F

is qlsc.

Proposition . Let X be a topological space and Y be a metric space. If a multimap
F : X � Y is alsc at x ∈ X, then F is qlsc at x ∈ X.

Proof For ε > , there is a neighborhood U(x) of x such that

⋂

z∈U(x)

B
(
F(z), ε/

) �= ∅.

Select any y ∈ ⋂
z∈U(x) B(F(z), ε/). For each z ∈ U(x), choose yz ∈ F(z) such that d(y, yz) <

ε/. Note that yx ∈ F(x) and d(yx, yz) ≤ d(yx, y) + d(y, yz) < ε for each z ∈ U(x). Hence yz ∈
B(yx, ε)∩ F(z) for all z ∈U(x). �

The following result is a generalization of Theorem . in [].

Theorem . Let X be a paracompact topological space, (Y ,D) be an LD-metric space,
and Z be a closed subset of X with dimX Z ≤ . If F ,T : X � Y are two multimaps such
that
() F and T are topologically separated;

http://www.journalofinequalitiesandapplications.com/content/2013/1/113
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() T is upper semicontinuous; and
() F is an alsc multimap such that F(x) is a D-set for all x ∈ X\Z.

Then for each ε > , F has an ε-approximate selection f : X → Y such that

f (x) /∈ T(x)

for all x ∈ X.

Proof For each fixed ε >  and each x ∈ X, by () and (), there exists a neighborhood
U(x) of x and an η(x) >  such that η(x) < ε, F(U(x)) ∩ B(T(x),η(x)) = ∅, and T(U(x)) ⊂
B(T(x),η(x)/). Let ζ (x) = η(x)/. For each y ∈ U(x), we assert F(y) ∩ B(T(y), ζ (x)) = ∅.
Otherwise, there exist points p ∈ T(y) and z ∈ F(y) such that d(p, z) < ζ (x). Because y ∈
U(x) and T(y) ⊂ B(T(x), ζ (x)), so p ∈ B(T(x), ζ (x)). Consequently, there is a point b ∈ T(x)
such that d(p,b) < ζ (x). Hence d(b, z) < η(x), and thus z ∈ F(y)∩ B(T(x),η(x))⊂ F(U(x))∩
B(T(x),η(x)) = ∅. It is a contradiction.
Let δ(x) = sup{r :  < r < ε and F(x)∩B(T(x), r) = ∅}. Obviously, δ(x)≤ ε and for each y ∈

U(x), δ(y) ≥ ζ (x). Now, we assert that F(x)∩B(T(x), δ(x)) = ∅. Otherwise, there exist points
y ∈ F(x) and z ∈ T(x) such that d(y, z) < δ(x). Consequently, there is a number r > d(y, z)
such that  < r < ε and F(x)∩ B(T(x), r) = ∅. But y ∈ F(x)∩ B(T(x), r), it is a contradiction.
By Proposition ., F : X � Y is qlsc, so there exist a point yx ∈ F(x) and an open neigh-

borhood N(x) of x in X such that N(x)⊂U(x) and

F(z)∩ B
(
yx, ζ (x)

) �= ∅ (∗)

for all z ∈ N(x). Since X is paracompact, the open cover {N(x) : x ∈ X} has a locally finite
open refinement {V (x) : x ∈ X}. Since dimX Z ≤ , the relative open cover {V (x) ∩ Z : x ∈
Z} of Z has a relatively open disjoint refinement {W (x) : x ∈ Z}. Z is closed in X, so the
collectionR = {V (x)∩ (W (x)∪ (X\Z)) : x ∈ X} forms a locally finite open cover of X.
For each O ∈R, choose a point xo such that O ⊂ V (xo) and define η :R→ Y by η(O) =

yxo such that yxo ∈ F(xo) satisfying the condition (∗) for all z ∈ V (xo). By Proposition .,
there is a continuous function f : X → Y such that f (x) ∈ D({η(O) : O ∈ R,x ∈ O}). For
each x ∈ X and O ∈R such that x ∈O, by (∗), we have F(x)∩B(η(O), ζ (xo)) �= ∅ and δ(x)≥
ζ (xo) because x ∈O ⊂ V (xo) ⊂N(xo), so F(x)∩ B(η(O), δ(x)) �= ∅.
Note that for x ∈ Z, f (x) = η(O) = yxo since {O ∈ R : x ∈ O} is a singleton. Hence f (x) ∈

{y ∈ Y : F(x)∩ B(y, δ(x)) �= ∅}.
For each x ∈ X\Z,

f (x) ∈D
({

η(O) :O ∈R,x ∈ O
}) ⊂ {

y ∈ Y : F(x)∩ B
(
y, δ(x)

) �= ∅}

since F(x) and B(F(x), δ(x)) are D-sets.
So, F(x)∩ B(f (x), δ(x)) �= ∅ for all x ∈ X and hence

F(x)∩ B
(
f (x), ε

) �= ∅ and f (x) /∈ T(x). �

4 Approximate selection theorems on topological ordered spaces
A semilattice is a partially ordered set X, with the partial ordering denoted by≤, for which
any pair (x,x′) of elements has a least upper bound. Any nonempty set A ∈ 〈X〉 has a least

http://www.journalofinequalitiesandapplications.com/content/2013/1/113
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upper bound, denoted by sup A. In a partially ordered set (X,≤), two arbitrary elements
x and x′ do not have to be comparable, but, in the case where x ≤ x′, the set [x,x′] = {y ∈
X : x≤ y ≤ x′} is called an order interval.
The following is due to Horvath and Ciscar []: Let (X,≤) be a semilattice such that for

each A ∈ 〈X〉, �(A) is defined by
⋃

a∈A[a, supA]. Then
() �(A) is well defined;
() A ⊂ �(A);
() if A⊂ B, then �(A) ⊂ �(B).
A subset E ⊂ X is said to be convex if, for any subset A ∈ 〈E〉, we have �(A) ⊂ E.
If X is a topological semilattice with path-connected intervals, then for any A ∈ 〈X〉 and

n≥ , �(A) is n-connected by [, Lemma ], that is, (X,≤,�) is a D-space.
Note that �({x}) = {x} for all x ∈ X.
In this section, we assume that (Y ,≤,�) is a topological semilattice with path-connected

intervals. From the results of Section , we obtain the following theorems.

Theorem . Let X be a paracompact topological space, Z be a closed subset of X with
dimX Z ≤ , and U be a uniformity of (Y ,≤,�) such that for each V ∈ U , the set {y ∈ Y :
C ∩V (y) �= ∅} is convex whenever C is a convex subset of Y . And let F ⊆ X × Y be a binary
relation such that F(x) is convex for all x ∈ X\Z. Then F is alsc if and only if F has a
V-approximate selection for each V ∈ U .

Theorem. Let X be a paracompact topological space andU be a uniformity of (Y ,≤,�).
And let F ⊆ X×Y be a binary relation with convex values and F(X) be of generalized Zima
type. Then F is alsc if and only if F has a V-approximate selection for each V ∈ U .

Theorem . Let X be a compact topological space and Z be a closed subset of X with
dimX Z ≤ . And let U be a uniformity of (Y ,≤,�) such that for each V ∈ U , the set {x ∈ X :
C∩V (x) �= ∅} is convex whenever C ⊂ X is convex. If F ,T ⊆ X×Y are two binary relations
such that
() F and T are topologically separated;
() T is upper semicontinuous; and
() F is an alsc relation such that F(x) is convex for all x ∈ X\Z.

Then for each V ∈ U , F has a V-approximate selection f : X → Y such that

f (x) /∈ T(x)

for all x ∈ X.

Theorem. Let X be a paracompact topological space and Z be a closed subset of X with
dimX Z ≤ . Assume that (Y ,≤,�) is a metric space and has the following properties:

(i) for any ε > , the set B(C, ε) is convex whenever C is a convex subset of Y ; and
(ii) open balls are convex.

If F ,T ⊆ X × Y are two binary relations such that
() F and T are topologically separated;
() T is upper semicontinuous; and
() F is an alsc relation such that F(x) is convex for all x ∈ X\Z.

http://www.journalofinequalitiesandapplications.com/content/2013/1/113
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Then for each ε > , F has an ε-approximate selection f : X → Y such that

f (x) /∈ T(x)

for all x ∈ X.

Competing interests
The author declares that she has no competing interests.

Abbreviations
alsc: almost lower semicontinuity; lsc: lower semicontinuity; qlsc: quasi-lower semicontinuity.

Acknowledgements
This paper was supported by the Sehan University Research Fund in 2013.

Received: 23 September 2012 Accepted: 26 February 2013 Published: 19 March 2013

References
1. Michael, E: Convex structures and continuous selections. Can. J. Math. 11, 556-575 (1959)
2. Michael, E, Pixley, C: A unified theorem on continuous selections. Pac. J. Math. 87, 187-188 (1980)
3. Ben-El-Mechaiekh, H, Oudadess, M: Some selection theorems without convexity. J. Math. Anal. Appl. 195, 614-618

(1995)
4. Horvath, CD: Contractibility and generalized convexity. J. Math. Anal. Appl. 156, 341-357 (1991)
5. Kim, I-S: Selection theorems with n-connectedness. J. Korean Math. Soc. 35, 165-175 (1998)
6. Wu, X, Li, F: Approximate selection theorems in H-spaces with applications. J. Math. Anal. Appl. 231, 118-132 (1999)
7. Kim, H, Lee, SJ: Approximate selections of almost lower semicontinuous multimaps in C-spaces. Nonlinear Anal. 64,

401-408 (2006)
8. Chu, L-J, Huang, C-H: Generalized selection theorems without convexity. Nonlinear Anal. 73, 3224-3231 (2010)
9. Zheng, X: Approximate selection theorems and their applications. J. Math. Anal. Appl. 212, 88-97 (1997)
10. Bardaro, C, Ceppitelli, R: Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax

inequalities. J. Math. Anal. Appl. 132, 484-490 (1988)
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