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1 Introduction

Since Michael [1] constructed continuous e-approximate selections for the lower semi-
continuous maps with convex values in Banach spaces, the result has been improved in
many ways. It was extended to lower semicontinuous maps with convex values except
on a set of topological dimension less than or equal to zero by Michael and Pixley [2] in
1980. And Ben-El-Mechaiekh and Oudadess [3] generalized the theorem in [2] to a class
of lower semicontinuous multimaps with nonconvex values in LC-metric spaces, which
have generalized convex metric structures introduced by Horvath [4].

Using the concept of n-connectedness, Kim [5] introduced an LD-metric space and
extended the result in [3] to LD-metric spaces which are more general than LC-metric
spaces.

On the other hand, in LC-spaces, Wu and Li [6] obtained the approximate selection the-
orems for quasi-lower semicontinuous multimaps which were generalized by the author
and Lee [7] to almost lower semicontinuous multimaps in C-spaces.

In this paper, we establish a new approximate selection theorem for almost lower semi-
continuous multimaps with D-set values except on a set of topological dimension less than
or equal to zero in LD-spaces. The corollary of this gives a correct and simple proof for
the result in [8].

We also establish some approximate selection theorems for almost lower semicontin-
uous multimaps in D-spaces and apply the results to topological semilattices with path
connected intervals. Our results unify and extend the approximate selection theorems in
[1-3,5-9].
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2 Preliminaries
A multimap (or simply a map) F : X —o Y is a function from a set X into the power set of Y;
thatis, a function with the values F(x) C Y forx € X.For A C X,let F(A) := [ J{F(x) | x € A}.
Throughout this paper, we assume that multimaps have nonempty values otherwise ex-
plicitly stated or obvious from the context. Let (X) denote the set of all nonempty finite
subsets of a set X.

Let X be a topological space. A C-structure on X is given by a map I'" : (X) — X such
that

(1) forall A € (X), T4 =T'(A) is nonempty and contractible; and

(2) forall A,Be (X),A C BimpliesT'y C I'p.

A pair (X,I') is then called a C-space by Horvath [4] and an H-space by Bardaro and
Ceppitelli [10]. For examples of a C-space, see [4, 10]. For an (X,T), a subset C of X is
said to be I'-convex (or a C-set) if A € (C) implies 'y C C.
For a uniform space X with a uniform structure U, A C X and U € U, the set U(A) is
defined to be {y € X : (x,5) € U for some x € A} and if x € X, U(x) = U({x}).
A C-space (X,TI) is called an LC-space if X is a uniform space and there exists a base
{V; . i € I} for the uniform structure such that for each i€ I, {x € X : C N Vj(x) # @} is
I'-convex whenever C C X is I'-convex.
A C-space (X,T) is called an LC-metric space if X is equipped with a metric d such
that for any € > 0, the set B(C,¢) = {x € X : d(x, C) < €} is I'-convex whenever C C X is
I"-convex, and open balls are I'-convex. For details, see Horvath [4].
A topological space X is said to be n-connected for n > 0 if every continuous map f :
Sk — X for k < n has a continuous extension over B**!, where S* is the unit sphere and
B**1 is the closed unit ball in R**1. Note that a contractible space is #-connected for every
n>0.
The following is introduced by Kim [5]. Let X be a topological space. A D-structure on
X isamap D: (X) — X such that it satisfies the following conditions:
(1) for each A € (X), D(A) is nonempty and n-connected for all n > 0;
(2) foreach A,B € (X), A C B implies D(A) C D(B).
The pair (X, D) is called a D-space; a subset C of X is said to be a D-set if D(A) C C for
each A € (C).
A D-space (X, D) is called an LD-space if X is a uniform space and if there exists a base
{V; :i € I} for the uniform structure such that for each i € I, the set {x € X : C N V;(x) # @}
is a D-set whenever C C X is a D-set.
A D-space (X, D) is called an LD-metric space if X is a metric space such that for each
€ >0, B(C,¢) is a D-set whenever C C X is a D-set and open balls are D-sets.
Let X be a topological space and (Y, D) be a D-space with a uniformity /. A multimap
F:X —o Y is called:
(1) lower semicontinuous (Isc) at x € X if for each open set W with W N F(x) # ¢, there
is a neighborhood U (x) of x such that F(z) N W # ¢ for all z € U(x);

(2) quasi-lower semicontinuous (qlsc) at x € X if for each V € U, there are y € F(x) and a
neighborhood U(x) of x such that F(z) N V(y) # ¥ for all z € U(x);

(3) almost lower semicontinuous (alsc) at x € X if for each V € U, there is a
neighborhood U(x) of x such that ﬂzeu(x) V(F(2)) # 0.

If F is Isc (qlsc, alsc, resp.) at each x € X, F is called Isc (glsc, alsc, resp.). As in [7, Propo-
sition 3], (1) = (2) = (3).
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For V € U, a continuous function f : X — Y is called a V-approximate selection of F if
forallx € X, f(x) € V(F(x)).

Let (Y, D) be an LD-metric space. For € > 0, f is called an e-approximate selection of F
iffor all x € X, f(x) € B(F(x), €).

Let X be a topological space. If Z C X, then dimy Z < 0 means that dimE < 0 for every
set E C Z which is closed in X, where dim E denotes the covering dimension of E. Note
that if dimy Z < 0, then any locally finite open covering of Z has a disjoint locally finite

open refinement.

3 Approximate selection theorems on D-spaces

As a main tool, we need Proposition 1 of Kim [5].

Proposition 3.1 Let X be a paracompact topological space and R be a locally finite open
covering of X, (Y, D) be a D-space, and n: R — Y be a function. Then there exists a con-
tinuous function f : X — Y such that

fx) e D({n(0): 0 e R,x € 0})

foreachx e X.

With Proposition 3.1, we establish the V-approximate selection theorem which is the

key result of this paper.

Theorem 3.2 Let X be a paracompact topological space and Z be a closed subset of X with
dimy Z < 0. Let (Y, D) be an LD-space with a uniformity U and D({y}) = {y} forally € Y.
IfF: X — Y is an alsc multimap such that F(x) is a D-set for all x € X\Z, then F has a
V-approximate selection for each V e U.

Furthermore, if X is a precompact uniform space or a compact topological space, there is
a subset A € (Y) such that f(X) C D(A).

Proof For each V € U and x € X, there is a neighborhood U(x) of x such that
ﬂzeu(x) V(F(z)) # ¥, because F is alsc. Since X is paracompact, the open cover {U(x):x €
X} of X has a locally finite refinement {U(x) : x € X}. And since dimx Z < 0, the relatively
open cover {I(x)NZ:x € Z} of Zhasa relatively open disjoint refinement {W(x) : x € Z}.
Z is closed in X so the collection R = {{(x) N (W (x) U (X\Z)) : x € X} forms a locally finite
open cover of X.

For each O € R, choose x, such that O C U(x,) and y, € mzel[(xg) V(F(z)). Define
n:R — Y by n(O) =y, for all O € R. Then 5(O) € ﬂzelj(xa) V(F(2)) C o V(F(2)), so
{n(0): 0 e R,x € O} C V(F(x)) for all x € X. By Proposition 3.1, there is a continuous
function f : X — Y such that f(x) € D({n(0): O € R,x € O}).

We now show that f(x) € V(F(x)) for all x € X. If x € Z, there exists a unique O € R such
thatx € O, thatis, {#(O) : O € R,x € O} isasingleton. So, f(x) € D({n(0): O € R,x € O}) =
{n(0)} C V(F(x)). If x € X\Z, since F(x) is a D-set, D({n(0) : O € R,x € O}) C V(F(x)),
that is, f(x) € V(F(x)).

If X is a precompact uniform space or a compact topological space, R can be chosen
finite. Take A = {n(0) : O € R}, then A € (Y) and f(X) C D(A). d
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Remark IfZ = ¢}, then the condition “D({y}) = {y} forall y € Y’ can be omitted. In that case,
if (Y, D) is an LC-space with a uniformity ¢/ and F is qlsc, then Theorem 3.2 becomes [6,
Theorem 3.1].

Proposition 3.3 Each singleton is a D-set in an LD-metric space (X, D), so D({x}) = {x}.

Proof For each x € X, {x} = (.., B(x,€). Since all open balls and their intersection are
D-sets, {x} is a D-set. Therefore D({x}) C {x}, i.e., D({x}) = {x}. a

For LD-metric spaces, Theorem 3.2 reduces to the following.

Corollary 3.4 Let X be a paracompact space, (Y, D) be an LD-metric space, and Z be a
closed subset of X with dimy Z < 0.IfF : X — Y is an alsc multimap such that F(x) is a
D-set for all x € X\Z, then for € > 0, F has an e-approximate selection.

For LC-metric spaces, Corollary 3.4 reduces to the following.

Corollary 3.5 Let X be a paracompact space, (Y,T") be an LC-metric space, and Z be a
closed subset of X with dimxZ < 0. If F: X —o Y is an alsc multimap such that F(x) is
I"-convex for all x € X\Z, then for € > 0, F has an e-approximate selection.

Remark Corollary 3.5 is Theorem 3.2 in [8] which is a partial generalization of Lemma 2
in [3]. In the proof of Lemma 2 in [3] and Theorem 3.2 in [8], for the subset E of Z, it is
claimed that B(F(x),€) is I'-convex whenever x € E and x € X\E, but it cannot be analo-
gized from the assumption that F(x) is I"-convex for all x ¢ Z.

Theorem 3.3 in [6] shows that if X = Z and (Y, T") is a C-space with a uniformity ¢/ and
F has a V-approximate selection for each V € U, then F is qlsc. Using the same pattern
of its proof, we also obtain the same result when (Y, D) is a D-space with a uniformity U.
Since a glsc map is alsc, so the inverse of Theorem 3.2 also holds.

Theorem 3.6 Let X be a paracompact topological space and Z be a closed subset of X with
dimy Z < 0. Let (Y, D) be an LD-space with a uniformity U and D({y}) = {y} forally e Y.
And let F: X — Y be a multimap such that F(x) is a D-set for all x € X\Z. Then F is alsc
if and only if F has a V-approximate selection for each V € U.

The following notion is motivated by Hadzi¢ [11]. Let (X, D) be a D-space with a uni-
formity ¢/ and K be a nonempty subset of X. We say that K is of generalized Zima type
whenever for every V' € U, there exists a V; € U such that for every N € (K) and every
D-set M of K, the following implication holds:

MNVi(z)#9, VzeN = MNV@u)#9, VYueDN).

Note that an LD-space (X, D) is of generalized Zima type.
If Z = (J, then the LD-space condition of Y can be weakened in Theorem 3.6.

Theorem 3.7 Let X be a paracompact topological space, (Y, D) be a D-space with a uni-
formityU, and F : X —o Y be a multimap with D-set values such that F(X) is of generalized
Zima type. Then F is alsc if and only if F has a V -approximate selection for each V e U.
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The proof of Theorem 3.7 proceeds in the same fashion as Theorem 2 in [7], except that
all I"'-convex sets in a C-space is replaced by D-sets in a D-space.

Let X be a topological space and Y be a uniform space with a uniformity /. The mul-
timaps F, T : X — Y are said to be topologically separated if for each x € X, there exist a
neighborhood U(x) of x and an element V € U such that F(U(x)) N V(T (x)) = @.

Theorem 3.8 Let X be a compact topological space and Z be a closed subset of X with
dimy Z < 0. And let (Y, D) be an LD-space with a uniformity U and D({y}) = {y} for all
yeY.IfF,T:X — Y are two multimaps such that

(1) F and T are topologically separated;

(2) T is upper semicontinuous; and

(3) Fisan alsc multimap such that F(x) is a D-set for all x € X\Z.
Then, for each V € U, F has a V-approximate selection f : X — Y such that

fx) & T(x)
forallx € X.

Using Theorem 3.2, the proof of Theorem 3.8 proceeds in precisely the same fashion as
Theorem 3.6 in [6].

Particular forms 1. Zheng [9, Theorem 2.2]: Y is a locally convex space, Z = ¥, and F
is sub-lower semicontinuous, that is, for each x € X and each neighborhood V of 0 in Y,
thereis z € F(x) and a neighborhood U (x) of x in X such that foreachy € U(x),z € F(y)+ V.
Note that if Y is a topological vector space, then F is sub-lower semicontinuous if and only
if F is glsc; see [6, Proposition 1.2].

2. Wu and Li [6, Theorem 3.6]: (Y, D) is an LC-space with a uniformity U, Z =, and F

is qlsc.

Proposition 3.9 Let X be a topological space and Y be a metric space. If a multimap
F:X —oYisalscatx € X, then F is qlscat x € X.

Proof For € > 0, there is a neighborhood U(x) of x such that

() B(F(2),€/2) #0.

zel(x)

Select any y € ﬂzeu(x) B(F(z),€/2). For each z € U(x), choose y, € F(z) such that d(y,y,) <
€/2. Note that y, € F(x) and d(ys,,) < d(yx,y) + d(5,y.) < € for each z € U(x). Hence y, €
B(yx,€) N F(z) for all z € U(x). O

The following result is a generalization of Theorem 3.7 in [6].

Theorem 3.10 Let X be a paracompact topological space, (Y, D) be an LD-metric space,
and Z be a closed subset of X with dimy Z < 0.IfF,T : X — Y are two multimaps such
that

(1) F and T are topologically separated;
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(2) T is upper semicontinuous; and
(3) F is an alsc multimap such that F(x) is a D-set for all x € X\Z.
Then for each € > 0, F has an €-approximate selection f : X — Y such that

fx) & T(x)
forallx € X.

Proof For each fixed € > 0 and each x € X, by (1) and (2), there exists a neighborhood
U(x) of x and an n(x) > 0 such that n(x) < €, F(U(x)) N B(T(x),n(x)) =@, and T(U(x)) C
B(T(x),n(x)/2). Let ¢(x) = n(x)/2. For each y € U(x), we assert F(y) N B(T(y), ¢ (x)) = @.
Otherwise, there exist points p € T(y) and z € F(y) such that d(p,z) < ¢ (x). Because y €
U(x) and T(y) C B(T(x),¢(x)), so p € B(T (x), ¢ (x)). Consequently, there is a point b € T'(x)
such that d(p, b) < ¢ (x). Hence d(b, z) < n(x), and thus z € F(y) N B(T (x), n(x)) C F(U(x)) N
B(T(x),n(x)) = @. It is a contradiction.

Let 8(x) = sup{r: 0 <7 < € and F(x) N B(T'(x),r) = #}. Obviously, §(x) < € and for each y €
U(x),3(y) > ¢ (x). Now, we assert that F(x) N B(T (x), §(x)) = . Otherwise, there exist points
y € F(x) and z € T(x) such that d(y,z) < §(x). Consequently, there is a number r > d(y,2)
such that 0 < r < € and F(x) N B(T'(x),r) = ¥. But y € F(x) N B(T'(x),r), it is a contradiction.

By Proposition 3.9, F : X — Y is qlsc, so there exist a point y, € F(x) and an open neigh-
borhood N(x) of x in X such that N(x) C U(x) and

F(z) N B(yx £ () # V) (*)

for all z € N(x). Since X is paracompact, the open cover {N(x) : x € X} has a locally finite
open refinement {V'(x) : x € X}. Since dimy Z < 0, the relative open cover {(V(x)NZ:x €
Z} of Z has a relatively open disjoint refinement {W(x) : x € Z}. Z is closed in X, so the
collection R = {V(x) N (W (x) U (X\Z)) : x € X} forms a locally finite open cover of X.

For each O € R, choose a point x, such that O C V(x,) and define : R — Y by n(O) =
¥x, such that y, € F(x,) satisfying the condition (x) for all z € V'(x,). By Proposition 3.1,
there is a continuous function f : X — Y such that f(x) € D({n(0) : O € R,x € O}). For
each x € X and O € R such that x € O, by (), we have F(x) N B(1(O), ¢ (x,)) # ¥ and §(x) >
Z(x,) because x € O C V(x,) C N(x,), so F(x) N B(n(0),s(x)) #?.

Note that for x € Z, f(x) = n(O) = y,, since {O € R : x € O} is a singleton. Hence f(x) €
{y e Y:F(x) N B(y,8(x)) #0}.

For each x € X\ Z,

fx) eD({n(0):0eR,x€0}) C{yeY:Fx)NB(y8x) #9}

since F(x) and B(F(x),8(x)) are D-sets.
So, F(x) N B(f(x),5(x)) # ¥ for all x € X and hence

Fx)NB(f(x),e) #9 and f(x) ¢ T(x). O
4 Approximate selection theorems on topological ordered spaces

A semilattice is a partially ordered set X, with the partial ordering denoted by <, for which
any pair (x,x") of elements has a least upper bound. Any nonempty set A € (X) has a least
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upper bound, denoted by sup A. In a partially ordered set (X, <), two arbitrary elements
x and x” do not have to be comparable, but, in the case where x < ¥/, the set [x,x'] = {y €
X :x <y <«'}is called an order interval.

The following is due to Horvath and Ciscar [12]: Let (X, <) be a semilattice such that for
each A € (X), A(A) is defined by | J,,.,[4,supA]. Then

(1) A(A) is well defined;

(2) AC A(A);

(3) if A C B, then A(A) C A(B).

A subset E C X is said to be convex if, for any subset A € (E), we have A(A) C E.

If X is a topological semilattice with path-connected intervals, then for any A € (X) and
n >0, A(A) is n-connected by [12, Lemma 1], that is, (X, <, A) is a D-space.

Note that A({x}) = {x} for all x € X.

In this section, we assume that (Y, <, A) is a topological semilattice with path-connected
intervals. From the results of Section 3, we obtain the following theorems.

Theorem 4.1 Let X be a paracompact topological space, Z be a closed subset of X with
dimy Z < 0, and U be a uniformity of (Y, <, A) such that for each V € U, the set {y € Y :
CNV(y) #9} is convex whenever C is a convex subset of Y. And let F C X x Y be a binary
relation such that F(x) is convex for all x € X\Z. Then F is alsc if and only if F has a
V-approximate selection for each V e U.

Theorem 4.2 Let X be a paracompact topological space and U be a uniformity of (Y, <, A).
And let F C X X Y be a binary relation with convex values and F(X) be of generalized Zima
type. Then F is alsc if and only if F has a V-approximate selection for each V € U.

Theorem 4.3 Let X be a compact topological space and Z be a closed subset of X with
dimy Z < 0. And let U be a uniformity of (Y, <, A) such that for each V € U, the set {x € X :
CNV(x) # 0} is convex whenever C C X is convex. If F, T C X x Y are two binary relations
such that

(1) F and T are topologically separated;

(2) T is upper semicontinuous; and

(3) Fisan alsc relation such that F(x) is convex for all x € X\Z.
Then for each V € U, F has a V-approximate selection f : X — Y such that

fx) & T(x)
forallx e X.

Theorem 4.4 Let X be a paracompact topological space and Z be a closed subset of X with
dimy Z < 0. Assume that (Y, <, A) is a metric space and has the following properties:

(i) for any € > 0, the set B(C, €) is convex whenever C is a convex subset of Y; and

(i) open balls are convex.
IfF,T C X x Y are two binary relations such that

(1) Fand T are topologically separated,;

(2) T is upper semicontinuous; and

(3) F is an alsc relation such that F(x) is convex for all x € X\Z.
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Then for each € > 0, F has an €-approximate selection f : X — Y such that

fx) ¢ T(x)

forallx e X.
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