RESEARCH Open Access

Approximate selection theorems with n-connectedness

Hoonjoo Kim*

*Correspondence: hoonjoo@sehan.ac.kr Department of Mathematics Education, Sehan University, YoungAm-gun, Chunnam 526-702, Korea

Abstract

We establish new approximate selection theorems for almost lower semicontinuous multimaps with *n*-connectedness. Our results unify and extend the approximate selection theorems in many published works and are applied to topological semilattices with path-connected intervals.

MSC: 54C60; 54C65; 55M10

Keywords: lower semicontinuity; almost lower semicontinuity; quasi-lower semicontinuity; approximate selection theorems; *D*-spaces; *LC*-metric spaces; topological semilattice with path-connected intervals

1 Introduction

Since Michael [1] constructed continuous ϵ -approximate selections for the lower semi-continuous maps with convex values in Banach spaces, the result has been improved in many ways. It was extended to lower semicontinuous maps with convex values except on a set of topological dimension less than or equal to zero by Michael and Pixley [2] in 1980. And Ben-El-Mechaiekh and Oudadess [3] generalized the theorem in [2] to a class of lower semicontinuous multimaps with nonconvex values in LC-metric spaces, which have generalized convex metric structures introduced by Horvath [4].

Using the concept of *n*-connectedness, Kim [5] introduced an *LD*-metric space and extended the result in [3] to *LD*-metric spaces which are more general than *LC*-metric spaces.

On the other hand, in LC-spaces, Wu and Li [6] obtained the approximate selection theorems for quasi-lower semicontinuous multimaps which were generalized by the author and Lee [7] to almost lower semicontinuous multimaps in C-spaces.

In this paper, we establish a new approximate selection theorem for almost lower semi-continuous multimaps with D-set values except on a set of topological dimension less than or equal to zero in LD-spaces. The corollary of this gives a correct and simple proof for the result in [8].

We also establish some approximate selection theorems for almost lower semicontinuous multimaps in D-spaces and apply the results to topological semilattices with path connected intervals. Our results unify and extend the approximate selection theorems in [1-3, 5-9].

2 Preliminaries

A *multimap* (or simply a *map*) $F: X \multimap Y$ is a function from a set X into the power set of Y; that is, a function with the *values* $F(x) \subset Y$ for $x \in X$. For $A \subset X$, let $F(A) := \bigcup \{F(x) \mid x \in A\}$. Throughout this paper, we assume that multimaps have nonempty values otherwise explicitly stated or obvious from the context. Let $\langle X \rangle$ denote the set of all nonempty finite subsets of a set X.

Let *X* be a topological space. A *C-structure* on *X* is given by a map $\Gamma:\langle X\rangle \longrightarrow X$ such that

- (1) for all $A \in \langle X \rangle$, $\Gamma_A = \Gamma(A)$ is nonempty and contractible; and
- (2) for all $A, B \in \langle X \rangle$, $A \subset B$ implies $\Gamma_A \subset \Gamma_B$.

A pair (X, Γ) is then called a *C-space* by Horvath [4] and an *H-space* by Bardaro and Ceppitelli [10]. For examples of a *C-space*, see [4, 10]. For an (X, Γ) , a subset *C* of *X* is said to be Γ -convex (or a *C-set*) if $A \in \langle C \rangle$ implies $\Gamma_A \subset C$.

For a uniform space X with a uniform structure \mathcal{U} , $A \subset X$ and $U \in \mathcal{U}$, the set U(A) is defined to be $\{y \in X : (x,y) \in U \text{ for some } x \in A\}$ and if $x \in X$, $U(x) = U(\{x\})$.

A *C*-space (X, Γ) is called an *LC*-space if X is a uniform space and there exists a base $\{V_i : i \in I\}$ for the uniform structure such that for each $i \in I$, $\{x \in X : C \cap V_i(x) \neq \emptyset\}$ is Γ -convex whenever $C \subset X$ is Γ -convex.

A *C*-space (X, Γ) is called an *LC-metric space* if *X* is equipped with a metric *d* such that for any $\epsilon > 0$, the set $B(C, \epsilon) = \{x \in X : d(x, C) < \epsilon\}$ is Γ -convex whenever $C \subset X$ is Γ -convex, and open balls are Γ -convex. For details, see Horvath [4].

A topological space X is said to be n-connected for $n \ge 0$ if every continuous map $f: S^k \to X$ for $k \le n$ has a continuous extension over B^{k+1} , where S^k is the unit sphere and B^{k+1} is the closed unit ball in \mathbb{R}^{k+1} . Note that a contractible space is n-connected for every $n \ge 0$.

The following is introduced by Kim [5]. Let X be a topological space. A *D-structure* on X is a map $\mathcal{D}: \langle X \rangle \longrightarrow X$ such that it satisfies the following conditions:

- (1) for each $A \in \langle X \rangle$, $\mathcal{D}(A)$ is nonempty and *n*-connected for all n > 0;
- (2) for each $A, B \in \langle X \rangle$, $A \subset B$ implies $\mathcal{D}(A) \subset \mathcal{D}(B)$.

The pair (X, \mathcal{D}) is called a *D-space*; a subset *C* of *X* is said to be a \mathcal{D} -set if $\mathcal{D}(A) \subset C$ for each $A \in \langle C \rangle$.

A *D*-space (X, \mathcal{D}) is called an *LD*-space if *X* is a uniform space and if there exists a base $\{V_i : i \in I\}$ for the uniform structure such that for each $i \in I$, the set $\{x \in X : C \cap V_i(x) \neq \emptyset\}$ is a \mathcal{D} -set whenever $C \subset X$ is a \mathcal{D} -set.

A *D*-space (X, \mathcal{D}) is called an *LD-metric space* if *X* is a metric space such that for each $\epsilon > 0$, $B(C, \epsilon)$ is a \mathcal{D} -set whenever $C \subset X$ is a \mathcal{D} -set and open balls are \mathcal{D} -sets.

Let *X* be a topological space and (Y, \mathcal{D}) be a *D*-space with a uniformity \mathcal{U} . A multimap $F: X \multimap Y$ is called:

- (1) *lower semicontinuous* (lsc) at $x \in X$ if for each open set W with $W \cap F(x) \neq \emptyset$, there is a neighborhood U(x) of x such that $F(z) \cap W \neq \emptyset$ for all $z \in U(x)$;
- (2) *quasi-lower semicontinuous* (qlsc) at $x \in X$ if for each $V \in \mathcal{U}$, there are $y \in F(x)$ and a neighborhood U(x) of x such that $F(z) \cap V(y) \neq \emptyset$ for all $z \in U(x)$;
- (3) almost lower semicontinuous (alsc) at $x \in X$ if for each $V \in \mathcal{U}$, there is a neighborhood U(x) of x such that $\bigcap_{z \in U(x)} V(F(z)) \neq \emptyset$.

If *F* is lsc (qlsc, alsc, resp.) at each $x \in X$, *F* is called *lsc* (*qlsc*, *alsc*, resp.). As in [7, Proposition 3], (1) \Longrightarrow (2) \Longrightarrow (3).

For $V \in \mathcal{U}$, a continuous function $f : X \to Y$ is called a *V-approximate selection* of *F* if for all $x \in X$, $f(x) \in V(F(x))$.

Let (Y, \mathcal{D}) be an LD-metric space. For $\epsilon > 0$, f is called an ϵ -approximate selection of F if for all $x \in X$, $f(x) \in B(F(x), \epsilon)$.

Let X be a topological space. If $Z \subset X$, then $\dim_X Z \leq 0$ means that $\dim E \leq 0$ for every set $E \subset Z$ which is closed in X, where $\dim E$ denotes the covering dimension of E. Note that if $\dim_X Z \leq 0$, then any locally finite open covering of Z has a disjoint locally finite open refinement.

3 Approximate selection theorems on \mathcal{D} -spaces

As a main tool, we need Proposition 1 of Kim [5].

Proposition 3.1 Let X be a paracompact topological space and \mathcal{R} be a locally finite open covering of X, (Y, \mathcal{D}) be a D-space, and $\eta : \mathcal{R} \to Y$ be a function. Then there exists a continuous function $f : X \to Y$ such that

$$f(x) \in \mathcal{D}(\{\eta(O) : O \in \mathcal{R}, x \in O\})$$

for each $x \in X$.

With Proposition 3.1, we establish the V-approximate selection theorem which is the key result of this paper.

Theorem 3.2 Let X be a paracompact topological space and Z be a closed subset of X with $\dim_X Z \leq 0$. Let (Y,\mathcal{D}) be an LD-space with a uniformity \mathcal{U} and $\mathcal{D}(\{y\}) = \{y\}$ for all $y \in Y$. If $F: X \multimap Y$ is an also multimap such that F(x) is a \mathcal{D} -set for all $x \in X \setminus Z$, then F has a V-approximate selection for each $V \in \mathcal{U}$.

Furthermore, if X is a precompact uniform space or a compact topological space, there is a subset $A \in \langle Y \rangle$ such that $f(X) \subset \mathcal{D}(A)$.

Proof For each $V \in \mathcal{U}$ and $x \in X$, there is a neighborhood U(x) of x such that $\bigcap_{z \in U(x)} V(F(z)) \neq \emptyset$, because F is alsc. Since X is paracompact, the open cover $\{U(x) : x \in X\}$ of X has a locally finite refinement $\{\tilde{U}(x) : x \in X\}$. And since $\dim_X Z \leq 0$, the relatively open cover $\{\tilde{U}(x) \cap Z : x \in Z\}$ of Z has a relatively open disjoint refinement $\{W(x) : x \in Z\}$. Z is closed in X so the collection $\mathcal{R} = \{\tilde{U}(x) \cap (W(x) \cup (X \setminus Z)) : x \in X\}$ forms a locally finite open cover of X.

For each $O \in \mathcal{R}$, choose x_o such that $O \subset U(x_o)$ and $y_o \in \bigcap_{z \in U(x_o)} V(F(z))$. Define $\eta : \mathcal{R} \to Y$ by $\eta(O) = y_o$ for all $O \in \mathcal{R}$. Then $\eta(O) \in \bigcap_{z \in U(x_o)} V(F(z)) \subset \bigcap_{z \in O} V(F(z))$, so $\{\eta(O) : O \in \mathcal{R}, x \in O\} \subset V(F(x))$ for all $x \in X$. By Proposition 3.1, there is a continuous function $f : X \to Y$ such that $f(x) \in \mathcal{D}(\{\eta(O) : O \in \mathcal{R}, x \in O\})$.

We now show that $f(x) \in V(F(x))$ for all $x \in X$. If $x \in Z$, there exists a unique $O \in \mathcal{R}$ such that $x \in O$, that is, $\{\eta(O) : O \in \mathcal{R}, x \in O\}$ is a singleton. So, $f(x) \in \mathcal{D}(\{\eta(O) : O \in \mathcal{R}, x \in O\}) = \{\eta(O)\} \subset V(F(x))$. If $x \in X \setminus Z$, since F(x) is a \mathcal{D} -set, $\mathcal{D}(\{\eta(O) : O \in \mathcal{R}, x \in O\}) \subset V(F(x))$, that is, $f(x) \in V(F(x))$.

If *X* is a precompact uniform space or a compact topological space, \mathcal{R} can be chosen finite. Take $A = \{\eta(O) : O \in \mathcal{R}\}$, then $A \in \langle Y \rangle$ and $f(X) \subset \mathcal{D}(A)$.

Remark If $Z = \emptyset$, then the condition ' $\mathcal{D}(\{y\}) = \{y\}$ for all $y \in Y$ ' can be omitted. In that case, if (Y, \mathcal{D}) is an LC-space with a uniformity \mathcal{U} and F is qlsc, then Theorem 3.2 becomes [6, Theorem 3.1].

Proposition 3.3 *Each singleton is a* \mathcal{D} -set in an LD-metric space (X, \mathcal{D}) , so $\mathcal{D}(\{x\}) = \{x\}$.

Proof For each $x \in X$, $\{x\} = \bigcap_{\epsilon>0} B(x, \epsilon)$. Since all open balls and their intersection are \mathcal{D} -sets, $\{x\}$ is a \mathcal{D} -set. Therefore $\mathcal{D}(\{x\}) \subset \{x\}$, *i.e.*, $\mathcal{D}(\{x\}) = \{x\}$.

For *LD*-metric spaces, Theorem 3.2 reduces to the following.

Corollary 3.4 Let X be a paracompact space, (Y, \mathcal{D}) be an LD-metric space, and Z be a closed subset of X with $\dim_X Z \leq 0$. If $F: X \multimap Y$ is an also multimap such that F(x) is a \mathcal{D} -set for all $x \in X \setminus Z$, then for $\epsilon > 0$, F has an ϵ -approximate selection.

For LC-metric spaces, Corollary 3.4 reduces to the following.

Corollary 3.5 Let X be a paracompact space, (Y, Γ) be an LC-metric space, and Z be a closed subset of X with $\dim_X Z \leq 0$. If $F: X \multimap Y$ is an also multimap such that F(x) is Γ -convex for all $x \in X \setminus Z$, then for $\epsilon > 0$, F has an ϵ -approximate selection.

Remark Corollary 3.5 is Theorem 3.2 in [8] which is a partial generalization of Lemma 2 in [3]. In the proof of Lemma 2 in [3] and Theorem 3.2 in [8], for the subset E of Z, it is claimed that $B(F(x), \epsilon)$ is Γ -convex whenever $x \in E$ and $x \in X \setminus E$, but it cannot be analogized from the assumption that F(x) is Γ -convex for all $x \notin Z$.

Theorem 3.3 in [6] shows that if X = Z and (Y, Γ) is a C-space with a uniformity \mathcal{U} and F has a V-approximate selection for each $V \in \mathcal{U}$, then F is qlsc. Using the same pattern of its proof, we also obtain the same result when (Y, \mathcal{D}) is a D-space with a uniformity \mathcal{U} . Since a qlsc map is also, so the inverse of Theorem 3.2 also holds.

Theorem 3.6 Let X be a paracompact topological space and Z be a closed subset of X with $\dim_X Z \leq 0$. Let (Y, \mathcal{D}) be an LD-space with a uniformity \mathcal{U} and $\mathcal{D}(\{y\}) = \{y\}$ for all $y \in Y$. And let $F: X \multimap Y$ be a multimap such that F(x) is a \mathcal{D} -set for all $x \in X \setminus Z$. Then F is also if and only if F has a V-approximate selection for each $V \in \mathcal{U}$.

The following notion is motivated by Hadžić [11]. Let (X, \mathcal{D}) be a D-space with a uniformity \mathcal{U} and K be a nonempty subset of X. We say that K is of generalized Zima type whenever for every $V \in \mathcal{U}$, there exists a $V_1 \in \mathcal{U}$ such that for every $N \in \langle K \rangle$ and every \mathcal{D} -set M of K, the following implication holds:

$$M \cap V_1(z) \neq \emptyset$$
, $\forall z \in N \implies M \cap V(u) \neq \emptyset$, $\forall u \in \mathcal{D}(N)$.

Note that an *LD*-space (X, \mathcal{D}) is of generalized Zima type. If $Z = \emptyset$, then the *LD*-space condition of *Y* can be weakened in Theorem 3.6.

Theorem 3.7 Let X be a paracompact topological space, (Y, \mathcal{D}) be a D-space with a uniformity U, and $F: X \multimap Y$ be a multimap with D-set values such that F(X) is of generalized Zima type. Then F is also if and only if F has a V-approximate selection for each $V \in U$.

The proof of Theorem 3.7 proceeds in the same fashion as Theorem 2 in [7], except that all Γ -convex sets in a C-space is replaced by \mathcal{D} -sets in a \mathcal{D} -space.

Let X be a topological space and Y be a uniform space with a uniformity \mathcal{U} . The multimaps $F, T: X \multimap Y$ are said to be *topologically separated* if for each $x \in X$, there exist a neighborhood U(x) of x and an element $Y \in \mathcal{U}$ such that $F(U(x)) \cap V(T(x)) = \emptyset$.

Theorem 3.8 Let X be a compact topological space and Z be a closed subset of X with $\dim_X Z \leq 0$. And let (Y, \mathcal{D}) be an LD-space with a uniformity \mathcal{U} and $\mathcal{D}(\{y\}) = \{y\}$ for all $y \in Y$. If $F, T : X \multimap Y$ are two multimaps such that

- (1) F and T are topologically separated;
- (2) T is upper semicontinuous; and
- (3) F is an also multimap such that F(x) is a \mathcal{D} -set for all $x \in X \setminus Z$.

Then, for each $V \in \mathcal{U}$, F has a V-approximate selection $f: X \to Y$ such that

$$f(x) \notin T(x)$$

for all $x \in X$.

Using Theorem 3.2, the proof of Theorem 3.8 proceeds in precisely the same fashion as Theorem 3.6 in [6].

Particular forms 1. Zheng [9, Theorem 2.2]: Y is a locally convex space, $Z = \emptyset$, and F is sub-lower semicontinuous, that is, for each $x \in X$ and each neighborhood V of 0 in Y, there is $z \in F(x)$ and a neighborhood U(x) of x in X such that for each $y \in U(x)$, $z \in F(y) + V$. Note that if Y is a topological vector space, then F is sub-lower semicontinuous if and only if F is qlsc; see [6, Proposition 1.2].

2. Wu and Li [6, Theorem 3.6]: (Y, \mathcal{D}) is an LC-space with a uniformity \mathcal{U} , $Z = \emptyset$, and F is qlsc.

Proposition 3.9 Let X be a topological space and Y be a metric space. If a multimap $F: X \multimap Y$ is also at $x \in X$, then F is also at $x \in X$.

Proof For $\epsilon > 0$, there is a neighborhood U(x) of x such that

$$\bigcap_{z\in U(x)} B\big(F(z),\epsilon/2\big)\neq\emptyset.$$

Select any $y \in \bigcap_{z \in U(x)} B(F(z), \epsilon/2)$. For each $z \in U(x)$, choose $y_z \in F(z)$ such that $d(y, y_z) < \epsilon/2$. Note that $y_x \in F(x)$ and $d(y_x, y_z) \le d(y_x, y) + d(y, y_z) < \epsilon$ for each $z \in U(x)$. Hence $y_z \in B(y_x, \epsilon) \cap F(z)$ for all $z \in U(x)$.

The following result is a generalization of Theorem 3.7 in [6].

Theorem 3.10 Let X be a paracompact topological space, (Y, \mathcal{D}) be an LD-metric space, and Z be a closed subset of X with $\dim_X Z \leq 0$. If $F, T: X \multimap Y$ are two multimaps such that

(1) F and T are topologically separated;

- (2) T is upper semicontinuous; and
- (3) F is an also multimap such that F(x) is a \mathcal{D} -set for all $x \in X \setminus Z$.

Then for each $\epsilon > 0$, *F has an* ϵ -approximate selection $f: X \to Y$ such that

$$f(x) \notin T(x)$$

for all $x \in X$.

Proof For each fixed $\epsilon > 0$ and each $x \in X$, by (1) and (2), there exists a neighborhood U(x) of x and an $\eta(x) > 0$ such that $\eta(x) < \epsilon$, $F(U(x)) \cap B(T(x), \eta(x)) = \emptyset$, and $T(U(x)) \subset B(T(x), \eta(x)/2)$. Let $\zeta(x) = \eta(x)/2$. For each $y \in U(x)$, we assert $F(y) \cap B(T(y), \zeta(x)) = \emptyset$. Otherwise, there exist points $p \in T(y)$ and $z \in F(y)$ such that $d(p,z) < \zeta(x)$. Because $y \in U(x)$ and $T(y) \subset B(T(x), \zeta(x))$, so $p \in B(T(x), \zeta(x))$. Consequently, there is a point $b \in T(x)$ such that $d(p,b) < \zeta(x)$. Hence $d(b,z) < \eta(x)$, and thus $z \in F(y) \cap B(T(x), \eta(x)) \subset F(U(x)) \cap B(T(x), \eta(x)) = \emptyset$. It is a contradiction.

Let $\delta(x) = \sup\{r : 0 < r < \epsilon \text{ and } F(x) \cap B(T(x), r) = \emptyset\}$. Obviously, $\delta(x) \le \epsilon$ and for each $y \in U(x)$, $\delta(y) \ge \zeta(x)$. Now, we assert that $F(x) \cap B(T(x), \delta(x)) = \emptyset$. Otherwise, there exist points $y \in F(x)$ and $z \in T(x)$ such that $d(y, z) < \delta(x)$. Consequently, there is a number r > d(y, z) such that $0 < r < \epsilon$ and $F(x) \cap B(T(x), r) = \emptyset$. But $y \in F(x) \cap B(T(x), r)$, it is a contradiction.

By Proposition 3.9, $F: X \multimap Y$ is qlsc, so there exist a point $y_x \in F(x)$ and an open neighborhood N(x) of x in X such that $N(x) \subset U(x)$ and

$$F(z) \cap B(y_x, \zeta(x)) \neq \emptyset \tag{*}$$

for all $z \in N(x)$. Since X is paracompact, the open cover $\{N(x) : x \in X\}$ has a locally finite open refinement $\{V(x) : x \in X\}$. Since $\dim_X Z \leq 0$, the relative open cover $\{V(x) \cap Z : x \in Z\}$ of Z has a relatively open disjoint refinement $\{W(x) : x \in Z\}$. Z is closed in X, so the collection $\mathcal{R} = \{V(x) \cap (W(x) \cup (X \setminus Z)) : x \in X\}$ forms a locally finite open cover of X.

For each $O \in \mathcal{R}$, choose a point x_o such that $O \subset V(x_o)$ and define $\eta : \mathcal{R} \to Y$ by $\eta(O) = y_{x_o}$ such that $y_{x_o} \in F(x_o)$ satisfying the condition (*) for all $z \in V(x_o)$. By Proposition 3.1, there is a continuous function $f : X \to Y$ such that $f(x) \in \mathcal{D}(\{\eta(O) : O \in \mathcal{R}, x \in O\})$. For each $x \in X$ and $O \in \mathcal{R}$ such that $x \in O$, by (*), we have $F(x) \cap B(\eta(O), \zeta(x_o)) \neq \emptyset$ and $\delta(x) \geq \zeta(x_o)$ because $x \in O \subset V(x_o) \subset N(x_o)$, so $F(x) \cap B(\eta(O), \delta(x)) \neq \emptyset$.

Note that for $x \in Z$, $f(x) = \eta(O) = y_{x_0}$ since $\{O \in \mathcal{R} : x \in O\}$ is a singleton. Hence $f(x) \in \{y \in Y : F(x) \cap B(y, \delta(x)) \neq \emptyset\}$.

For each $x \in X \setminus Z$,

$$f(x) \in \mathcal{D}(\{\eta(O) : O \in \mathcal{R}, x \in O\}) \subset \{y \in Y : F(x) \cap B(y, \delta(x)) \neq \emptyset\}$$

since F(x) and $B(F(x), \delta(x))$ are \mathcal{D} -sets.

So, $F(x) \cap B(f(x), \delta(x)) \neq \emptyset$ for all $x \in X$ and hence

$$F(x) \cap B(f(x), \epsilon) \neq \emptyset$$
 and $f(x) \notin T(x)$.

4 Approximate selection theorems on topological ordered spaces

A *semilattice* is a partially ordered set X, with the partial ordering denoted by \leq , for which any pair (x, x') of elements has a least upper bound. Any nonempty set $A \in \langle X \rangle$ has a least

upper bound, denoted by $\sup A$. In a partially ordered set (X, \leq) , two arbitrary elements x and x' do not have to be comparable, but, in the case where $x \leq x'$, the set $[x, x'] = \{y \in X : x \leq y \leq x'\}$ is called *an order interval*.

The following is due to Horvath and Ciscar [12]: Let (X, \leq) be a semilattice such that for each $A \in \langle X \rangle$, $\Delta(A)$ is defined by $\bigcup_{a \in A} [a, \sup A]$. Then

- (1) $\Delta(A)$ is well defined;
- (2) $A \subset \Delta(A)$;
- (3) if $A \subset B$, then $\Delta(A) \subset \Delta(B)$.

A subset $E \subset X$ is said to be *convex* if, for any subset $A \in \langle E \rangle$, we have $\Delta(A) \subset E$.

If *X* is a topological semilattice with path-connected intervals, then for any $A \in \langle X \rangle$ and $n \ge 0$, $\Delta(A)$ is *n*-connected by [12, Lemma 1], that is, (X, \le, Δ) is a *D*-space.

Note that $\Delta(\{x\}) = \{x\}$ for all $x \in X$.

In this section, we assume that (Y, \leq, Δ) is a topological semilattice with path-connected intervals. From the results of Section 3, we obtain the following theorems.

Theorem 4.1 Let X be a paracompact topological space, Z be a closed subset of X with $\dim_X Z \leq 0$, and \mathcal{U} be a uniformity of (Y, \leq, Δ) such that for each $V \in \mathcal{U}$, the set $\{y \in Y : C \cap V(y) \neq \emptyset\}$ is convex whenever C is a convex subset of Y. And let $F \subseteq X \times Y$ be a binary relation such that F(x) is convex for all $x \in X \setminus Z$. Then F is also if and only if F has a V-approximate selection for each $V \in \mathcal{U}$.

Theorem 4.2 Let X be a paracompact topological space and \mathcal{U} be a uniformity of (Y, \leq, Δ) . And let $F \subseteq X \times Y$ be a binary relation with convex values and F(X) be of generalized Zima type. Then F is also if and only if F has a V-approximate selection for each $V \in \mathcal{U}$.

Theorem 4.3 Let X be a compact topological space and Z be a closed subset of X with $\dim_X Z \leq 0$. And let \mathcal{U} be a uniformity of (Y, \leq, Δ) such that for each $V \in \mathcal{U}$, the set $\{x \in X : C \cap V(x) \neq \emptyset\}$ is convex whenever $C \subset X$ is convex. If $F, T \subseteq X \times Y$ are two binary relations such that

- (1) F and T are topologically separated;
- (2) T is upper semicontinuous; and
- (3) F is an also relation such that F(x) is convex for all $x \in X \setminus Z$.

Then for each $V \in \mathcal{U}$, F has a V-approximate selection $f: X \to Y$ such that

$$f(x) \notin T(x)$$

for all $x \in X$.

Theorem 4.4 Let X be a paracompact topological space and Z be a closed subset of X with $\dim_X Z \leq 0$. Assume that (Y, \leq, Δ) is a metric space and has the following properties:

- (i) for any $\epsilon > 0$, the set $B(C, \epsilon)$ is convex whenever C is a convex subset of Y; and
- (ii) open balls are convex.

If $F, T \subseteq X \times Y$ are two binary relations such that

- (1) F and T are topologically separated;
- (2) T is upper semicontinuous; and
- (3) F is an alsc relation such that F(x) is convex for all $x \in X \setminus Z$.

Then for each $\epsilon > 0$, *F has an* ϵ -approximate selection $f: X \to Y$ such that

 $f(x) \notin T(x)$

for all $x \in X$.

Competing interests

The author declares that she has no competing interests.

Abbreviations

alsc: almost lower semicontinuity; lsc: lower semicontinuity; glsc: guasi-lower semicontinuity.

Acknowledgements

This paper was supported by the Sehan University Research Fund in 2013.

Received: 23 September 2012 Accepted: 26 February 2013 Published: 19 March 2013

References

- 1. Michael, E: Convex structures and continuous selections. Can. J. Math. 11, 556-575 (1959)
- 2. Michael, E, Pixley, C: A unified theorem on continuous selections. Pac. J. Math. 87, 187-188 (1980)
- 3. Ben-El-Mechaiekh, H, Oudadess, M: Some selection theorems without convexity. J. Math. Anal. Appl. 195, 614-618 (1995)
- 4. Horvath, CD: Contractibility and generalized convexity. J. Math. Anal. Appl. 156, 341-357 (1991)
- 5. Kim, I-S: Selection theorems with *n*-connectedness. J. Korean Math. Soc. **35**, 165-175 (1998)
- 6. Wu, X, Li, F: Approximate selection theorems in H-spaces with applications. J. Math. Anal. Appl. 231, 118-132 (1999)
- 7. Kim, H, Lee, SJ: Approximate selections of almost lower semicontinuous multimaps in *C*-spaces. Nonlinear Anal. **64**, 401-408 (2006)
- 8. Chu, L-J, Huang, C-H: Generalized selection theorems without convexity. Nonlinear Anal. 73, 3224-3231 (2010)
- 9. Zheng, X: Approximate selection theorems and their applications. J. Math. Anal. Appl. 212, 88-97 (1997)
- 10. Bardaro, C, Ceppitelli, R: Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities. J. Math. Anal. Appl. 132, 484-490 (1988)
- 11. Hadžić, O: Almost fixed point and best approximation theorems in H-spaces. Bull. Aust. Math. Soc. 53, 447-454 (1996)
- 12. Horvath, CD, Ciscar, JVL: Maximal elements and fixed points for binary relations on topological ordered spaces. J. Math. Econ. 25, 291-306 (1996)

doi:10.1186/1029-242X-2013-113

Cite this article as: Kim: Approximate selection theorems with *n*-connectedness. *Journal of Inequalities and Applications* 2013 **2013**:113.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com