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Abstract
In this paper, we prove three sharp inequalities as follows: P(a,b) > L2(a,b),
T (a,b) > L5(a,b) andM(a,b) > L4(a,b) for all a,b > 0 with a �= b. Here, Lr(a,b),M(a,b),
P(a,b) and T (a,b) are the rth generalized logarithmic, Neuman-Sándor, first and
second Seiffert means of a and b, respectively.
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1 Introduction
The Neuman-Sándor mean M(a,b) [] and the first and second Seiffert means P(a,b) []
and T(a,b) [] of two positive numbers a and b are defined by

M(a,b) =

⎧⎨
⎩

a–b
 arcsinh( a–ba+b )

, a �= b,

a, a = b,
(.)

P(a,b) =

⎧⎨
⎩

a–b
 arctan(

√
a/b)–π

, a �= b,

a, a = b
(.)

and

T(a,b) =

⎧⎨
⎩

a–b
 arctan( a–ba+b )

, a �= b,

a, a = b,
(.)

respectively.
Recently, thesemeans,M, P andT , have been the subject of intensive research. In partic-

ular, many remarkable inequalities forM, P and T can be found in the literature [, –].
The power meanMp(a,b) of order r of two positive numbers a and b is defined by

Mp(a,b) =

⎧⎨
⎩
( ap+bp )/p, p �= ,√
ab, p = .
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Themain properties forMp(a,b) are given in []. In particular, the function p �→Mp(a,b)
(a �= b) is continuous and strictly increasing on R.
The arithmetic-geometric mean AG(a,b) of two positive numbers a and b is defined as

the common limit of sequences {an} and {bn}, which are given by

a = a, b = b, an+ =
an + bn


, bn+ =

√
anbn.

Let H(a,b) = ab/(a + b), G(a,b) =
√
ab, L(a,b) = (b – a)/(logb – loga), I(a,b) =

/e(bb/aa)/(b–a), A(a,b) = (a+b)/, and S(a,b) =
√
(a + b)/ be the harmonic, geometric,

logarithmic, identric, arithmetic and root-square means of two positive numbers a and b
with a �= b, respectively. Then it is well known that the inequalities

H(a,b) =M–(a,b) <G(a,b) =M(a,b) < L(a,b) < AG(a,b) < I(a,b)

< A(a,b) =M(a,b) <M(a,b) < T(a,b) < S(a,b) =M(a,b)

hold for all a,b >  with a �= b.
For r >  the rth generalized logarithmic mean Lr(a,b) of two positive numbers a and b

is defined by

Lr(a,b) = L/r
(
ar ,br

)
=

⎧⎨
⎩
[ br–ar
r(logb–loga) ]

/r , a �= b,

a, a = b.
(.)

It is not difficult to verify that Lr(a,b) is continuous and strictly increasing with respect
to r ∈ (, +∞) for fixed a,b >  with a �= b.
In [, ] Seiffert proved that the double inequalities

L(a,b) < P(a,b) < I(a,b)

and

A(a,b) < T(a,b) < S(a,b)

hold for all a,b >  with a �= b.
The following bounds for the first Seiffert mean P(a,b) in terms of power mean were

presented by Jagers in []:

M/ < P(a,b) <M/(a,b)

for all a,b >  with a �= b.
Hästö [, ] proved that the function x → T(,x)/Mp(,x) is increasing on (,+∞) if

p≤  and found the sharp lower powermean bound for the SeiffertmeanP(a,b) as follows:

P(a,b) >Mlog/ logπ (a,b)

for all a,b >  with a �= b.
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In [] the authors presented the following best possible Lehmer mean bounds for the
Seiffert means P(a,b) and T(a,b):

L–/(a,b) < P(a,b) < L(a,b) and L(a,b) < T(a,b) < L/(a,b)

for all a,b >  with a �= b. Here, Lp(a,b) = (ap+ + bp+)/(ap + bp) is the Lehmer mean of a
and b.
In [, ] the authors proved that the inequalities

αS(a,b) + ( – α)A(a,b) < T(a,b) < βS(a,b) + ( – β)A(a,b),

Sα (a,b)A–α (a,b) < T(a,b) < Sβ (a,b)A–β (a,b)

and

αT(a,b) + ( – α)G(a,b) < A(a,b) < βT(a,b) + ( – β)G(a,b)

hold for all a,b >  with a �= b if and only if α ≤ ( – π )/[(
√
 – )π ], β ≥ /, α ≤ /,

β ≥  –  logπ/ log, α ≤ / and β ≥ π/.
For all a,b >  with a �= b, the following inequalities can be found in [, ]:

L(a,b) = L(a,b) < AG(a,b) < L/(a,b) <M/(a,b).

Neuman and Sándor [] established that

P(a,b) < A(a,b) <M(a,b) < T(a,b)

and

π


P(a,b) > A(a,b) > arcsinh()M(a,b) >

π


T(a,b)

for all a,b >  with a �= b. In particular, the Ky Fan inequalities

G(a,b)
G(a′,b′)

<
L(a,b)
L(a′,b′)

<
P(a,b)
P(a′,b′)

<
A(a,b)
A(a′,b′)

<
M(a,b)
M(a′,b′)

<
T(a,b)
T(a′,b′)

hold for all  < a,b≤ / with a �= b, a′ =  – a and b′ =  – b.
It is the aim of this paper to find the best possible generalized logarithmic mean bounds

for the Neuman-Sándor and Seiffert means.

2 Lemmas
In order to establish our main results, we need three lemmas, which we present in this
section.

Lemma . The inequality

(
x – 
 logx

)/

<
x – 

 arctanx – π
(.)

holds for all x > .
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Proof Let

f (x) =
x – 
 logx

–
(

x – 
 arctanx – π

)

. (.)

Then f (x) can be rewritten as

f (x) =
(x – )f(x)

( arctanx – π ) logx
, (.)

where

f(x) = ( arctanx – π ) –
(x – ) logx

x + 
.

Simple computations lead to

f() = , (.)

f ′
 (x) =


 + x

f(x), (.)

where

f(x) =  arctanx –
x logx
x + 

– x +

x
– π ,

f() = , (.)

f ′
(x) =

f(x)
(x + )

, (.)

where

f(x) = 
(
x – 

)
logx – x + x +  – x–,

f() = , (.)

f ′
(x) = x logx – x + x – x– + x–,

f ′
() = , (.)

f ′′
 (x) =  logx – x +  + x– – x–,

f ′′
 () =  (.)

and

f ′′′
 (x) = –


x

(x + )(x – )
(
x + x + 

)
<  (.)

for x > .
Inequality (.) implies that f ′′

 (x) is strictly decreasing in [, +∞), then equation (.)
leads to the conclusion that f ′

(x) is strictly decreasing in [, +∞).
From equations (.)-(.) and the monotonicity of f ′

(x), we clearly see that

f(x) <  (.)

for x > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/10
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Therefore, inequality (.) follows from equations (.) and (.) together with inequal-
ity (.). �

Lemma . The inequality

(
x – 
 logx

)/

<
x – 

 arctan x–
x+

(.)

holds for all x > .

Proof Let

g(x) =


log

(
x – 
 logx

)
– log

(
x – 

 arctan x–
x+

)
. (.)

Then simple computations lead to

g() = , (.)

g ′(x) =
[x(x + x + x + ) logx + x – ]g(x)

x(x – ) arctan( x–x+ ) logx
, (.)

where

g(x) =
x(x – ) logx

( + x)[x(x + x + x + ) logx + x – ]
– arctan

x – 
x + 

,

g() = , (.)

g ′
(x) =

xg(x)
( + x)[x(x + x + x + ) logx + x – ]

, (.)

where

g(x) = 
(
x + x – x + x – x + x + 

)
log x

– 
(
x + x + x + x + x – x –  – x– – x– – x–

)
logx

+ 
(
x + x – x – x + x– + x–

)
,

g() = , (.)

g ′
(x) = 

(
x + x – x + x – x + 

)
log x

+ 
(
–x – x – x – x – x + x – x +  + x–

– x– – x– – x–
)
logx + x – x + x – x

– x – x – x +  + x– + x– + x– – x–,

g ′
() = , (.)

g ′′
 (x) = 

(
x + x – x + x – 

)
log x + 

(
–x – x

– x + x + x – x + x –  + x– – x– + x–

+ x– + x–
)
logx + x – x + x – x – x

– x + x –  + x– + x– – x– – x– + x–,
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g ′′
 () = , (.)

g ′′′
 (x) = 

(
x + x – x + 

)
log x + 

(
–x – x – x

+ x + x – x +  – x– – x– + x–

– x– – x– – x–
)
logx + ,x – ,x + x

+ x + x – ,x + , – x– – x– – x–

+ x– + x– – x–,

g ′′′
 () = , (.)

g() (x) = g(x), (.)

where

g(x) = 
(
x + x – 

)
log x + 

(
–x – x

– x + ,x + x –  + x– + x– + x–

– x– + x– + x– + x–
)
logx + ,x – ,x

+ x + ,x + ,x – , + ,x– + x– – x–

+ x– – x– – x– – x–,

g() = , (.)

g ′
(x) = ,(x + ) log x + 

(
–,x – ,x – x + ,x

+ , – x– – x– – x– – x– + x– – x–

– x– – x–
)
logx + ,x – ,x – ,x + ,x + ,

– ,x– – ,x– + x– – ,x– + x– + ,x– + ,x–

< ,(x + )(x – ) logx + 
(
–,x – ,x – x

+ ,x + , – x– – x– – x– – x– + x– – x–

– x– – x–
)
logx + ,x – ,x – ,x + ,x + ,

– ,x– – ,x– + x– – ,x– + x– + ,x– + ,x–

= 
(
–,x – ,x + ,x + ,x +  – x– – x–

– x– – x– + x– – x– – x– – x–
)
logx

+ ,x – ,x – ,x + ,x + , – ,x– – ,x–

+ x– – ,x– + x– + ,x– + ,x–. (.)

Let

g(x) = 
(
–,x – ,x + ,x + ,x +  – x– – x–

– x– – x– + x– – x– – x– – x–
)
logx

+ ,x – ,x – ,x + ,x + , – ,x–

– ,x– + x– – ,x– + x– + ,x– + ,x–.

http://www.journalofinequalitiesandapplications.com/content/2013/1/10
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Then

g() = –, < , (.)

g ′
(x) = x–g(x), (.)

where

g(x) =
(
–,x – ,x + ,x + ,x + x + x

+ x + x – x + x + ,x + ,
)
logx – ,x

– ,x + x + ,x + x + x + x – x

– x + ,x – x – ,x – ,

<
(
–,x – ,x + ,x + ,x + x + x

+ x + x – x + x + ,x + ,x
)
logx

– ,x – ,x + x + ,x + x + x

+ x – x – x + ,x – x – ,x – ,

= –
(
,x + x

)
logx – ,x – x – x – x – ,x – ,

<  (.)

for x > .
Equation (.) and inequality (.) lead to the conclusion that g(x) is strictly decreas-

ing in [, +∞). Then equation (.) implies that

g(x) <  (.)

for x > .
Inequalities (.) and (.) imply that g ′

(x) < . Then equation (.) shows that

g(x) <  (.)

for x > .
From equations (.)-(.) and inequality (.), we clearly see that

g(x) <  (.)

for x > .
Therefore, inequality (.) follows easily from equations (.)-(.) and inequal-

ity (.). �

Lemma . The inequality

arcsinh
(
x – 
x + 

)
–
(x – ) logx
(x – )

<  (.)

holds for all x > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/10
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Proof Let

h(x) = log

[
arcsinh

(
x – 
x + 

)]
– log

[
(x – ) logx
(x – )

]
. (.)

Then simple computations lead to

h() = , (.)

h′(x) =
[x(x + x + ) logx + x – ]h(x)

x(x – ) arcsinh( x–x+ ) logx
, (.)

where

h(x) =

√
x(x – ) logx

(x + )[x(x + x + ) logx + x – ]
√
 + x

– arcsinh

(
x – 
x + 

)
,

h() = , (.)

h′
(x) =

√
xh(x)

(x + )( + x)/[x(x + x + ) logx + x – ]
, (.)

where

h(x) = 
(
x + x + x + x + 

)
log x – 

(
x – 

)(
x + x + x

+ x +  + x– + x–
)
logx + 

(
x – 

)( + x–
)
,

h() = , (.)

h′
(x) = h(x), (.)

where

h(x) = 
(
x + x + x + 

)
log x – 

(
x + x + x + x + x

– x – x –  – x– + x– + x–
)
logx + x – x

+ x – x – x – x +  + x– + x– – x–,

h() = , (.)

h′
(x) = xh(x), (.)

h(x) = 
(
x + x + 

)
log x – 

(
x + x + x – x + x

–  – x– – x– + x– – x– – x–
)
logx + x – x

– x – x – x +  + x– + x– + x– – x– – x–,

h() = , (.)

h′
(x) = xh(x), (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/10
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where

h(x) = (x + ) log x – 
(
x + x – x –  + x– – x–

+ x– + x– – x– + x– + x–
)
logx + x – x – x

+  – x– + x– + x– – x– – x– + x– + x–,

h() = , (.)

h′
(x) =  log x + 

(
–x – x +  + x– + x– – x–

+ x– + x– – x– + x– + x–
)
logx – x – x

+  + x– + x– – x– – x– + x– + x–

– x– – x–,

h′
() = , (.)

h′′
(x) = x–h(x), (.)

where

h(x) = –
(
x + x – x + x + x – x + x + x

– x + x + 
)
logx –

(
x – 

)(
x + x – x

+ x + x + x – x + x + 
)

<  (.)

for all x > .
Equations (.) and (.) together with inequality (.) imply that h(x) is strictly

decreasing in [, +∞). Then equation (.) leads to

h(x) <  (.)

for all x > .
From equations (.)-(.) and inequality (.), we clearly see that

h(x) <  (.)

for all x > .
Therefore, inequality (.) follows from equations (.)-(.) and inequality (.).

�

3 Main results
Theorem . The inequality

P(a,b) > L(a,b)

holds for all a,b > with a �= b,and L(a,b) is the best possible lower generalized logarithmic
mean bound for the first Seiffert mean P(a,b).

http://www.journalofinequalitiesandapplications.com/content/2013/1/10
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Proof From (.) and (.), we clearly see that both P(a,b) and Lr(a,b) are symmetric and
homogenous of degree one.Without loss of generality, we assume that b =  and a = x > .
Then (.) and (.) lead to

L
(
x, 

)
– P

(
x, 

)
=

(
x – 
 logx

)/

–
x – 

 arctanx – π
. (.)

Therefore, P(x, ) > L(x, ) follows from Lemma . and equation (.).
Next, we prove that L(a,b) is the best possible lower generalized logarithmic mean

bound for the first Seiffert mean P(a,b).
For any ε >  and x > , from (.) and (.), one has

L+ε( + x, ) – P( + x, ) =
[

( + x)+ε – 
( + ε) log( + x)

]/(+ε)

–
x

 arctan
√
 + x – π

. (.)

Letting x →  and making use of Taylor expansion, we get

[
( + x)+ε – 

( + ε) log( + x)

]/(+ε)

–
x

 arctan
√
 + x – π

=
[
 +

 + ε


x +

( + ε)( + ε)


x + o
(
x

)]/(+ε)

–
x

x – 
x +


x + o(x)

=
[
 +



x –

 – ε


x + o

(
x

)]
–

[
 +



x –




x + o
(
x

)]

=
ε


x + o

(
x

)
. (.)

Equations (.) and (.) imply that for any ε > , there exists δ = δ(ε) >  such that
L+ε( + x, ) > P( + x, ) for x ∈ (, δ). �

Remark . It follows from (.) and (.) that

lim
x→+∞

P(x, )
Lλ(x, )

= lim
x→+∞

λ/λ( – /x) log/λ x
π ( – x–λ)/λ

= +∞ (.)

for all λ > .
Equation (.) implies that λ >  such that Lλ(a,b) > P(a,b) for all a,b >  does not exist.

Theorem . The inequality

T(a,b) > L(a,b)

holds for all a,b > with a �= b,and L(a,b) is the best possible lower generalized logarithmic
mean bound for the second Seiffert mean T(a,b).

Proof Without loss of generality, we assume that b =  and a = x > . Then (.) and (.)
lead to

L(x, ) – T(x, ) =
(
x – 
 logx

)/

–
x – 

 arctan x–
x+

. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/10
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Therefore, T(x, ) > L(x, ) follows from Lemma . and equation (.).
Next, we prove that L(a,b) is the best possible lower generalized logarithmic mean

bound for the second Seiffert mean T(a,b).
For any ε >  and x > , from (.) and (.), one has

L+ε( + x, ) – T( + x, ) =
[

( + x)+ε – 
( + ε) log( + x)

]/(+ε)

–
x

 arctan x
+x

. (.)

Letting x →  and making use of Taylor expansion, we have

[
( + x)+ε – 

( + ε) log( + x)

]/(+ε)

–
x

 arctan x
+x

=
[
 +

 + ε


x +

( + ε)( + ε)


x + o
(
x

)]/(+ε)

–
x

x – 
x +


x + o(x)

=
[
 +



x +

 + ε


x + o

(
x

)]
–

[
 +



x +




x + o
(
x

)]

=
ε


x + o

(
x

)
. (.)

Equations (.) and (.) imply that for any ε > , there exists δ = δ(ε) >  such that
L+ε( + x, ) > T( + x, ) for x ∈ (, δ). �

Remark . It follows from (.) and (.) that

lim
x→+∞

T(x, )
Lμ(x, )

= lim
x→+∞

μ/μ( – /x) log/μ x
π ( – x–μ)/μ

= +∞ (.)

for all μ > .
Equation (.) implies thatμ >  such that Lμ(a,b) > T(a,b) for all a,b >  does not exist.

Theorem . The inequality

M(a,b) > L(a,b)

holds for all a,b >  with a �= b, and L(a,b) is the best possible lower generalized logarith-
mic mean bound for the Neuman-Sándor mean M(a,b).

Proof Without loss of generality, we assume that b =  and a = x > . Then (.) and (.)
lead to

L(x, ) –M(x, )

=
x – 
 logx

–
(x – )

 arcsinh( x–x+ )

=
x – 

 arcsinh( x–x+ ) logx

[
arcsinh

(
x – 
x + 

)
–
(x – ) logx
(x – )

]
. (.)

Therefore,M(x, ) > L(x, ) follows from Lemma . and equation (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/10
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Next, we prove that L(a,b) is the best possible lower generalized logarithmic mean
bound for the Neuman-Sándor meanM(a,b).
For any ε >  and x > , from (.) and (.), one has

L+ε( + x, ) – T( + x, ) =
[

( + x)+ε – 
( + ε) log( + x)

]/(+ε)

–
x

 arcsinh( x
+x )

. (.)

Letting x →  and making use of Taylor expansion, we have

[
( + x)+ε – 

( + ε) log( + x)

]/(+ε)

–
x

 arcsinh( x
+x )

=
[
 +

 + ε


x +

( + ε)( + ε)


x + o
(
x

)]/(+ε)

–
x

x – 
x +


x + o(x)

=
[
 +



x +

 + ε


x + o

(
x

)]
–

[
 +



x +




x + o
(
x

)]

=
ε


x + o

(
x

)
. (.)

Equations (.) and (.) imply that for any ε > , there exists δ = δ(ε) >  such that
L+ε( + x, ) >M( + x, ) for x ∈ (, δ). �

Remark . It follows from (.) and (.) that

lim
x→+∞

M(x, )
Lν(x, )

= lim
x→+∞

ν/ν( – /x) log/ν x
 arcsinh()( – x–ν)/ν

= +∞ (.)

for all ν > .
Equation (.) implies that ν >  such that Lν(a,b) > M(a,b) for all a,b >  does not

exist.
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