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Abstract

To reduce the difficulty and complexity in computing the projection from a real
Hilbert space onto a nonempty closed convex subset, researchers have provided a
hybrid steepest-descent method for solving VI(F, K) and a subsequent three-step
relaxed version of this method. In a previous study, the latter was used to develop a
modified and relaxed hybrid steepest-descent (MRHSD) method. However, choosing
an efficient and implementable nonexpansive mapping is still a difficult problem. We
first establish the strong convergence of the MRHSD method for variational
inequalities under different conditions that simplify the proof, which differs from
previous studies. Second, we design an efficient implementation of the MRHSD
method for a type of variational inequality problem based on the approximate
projection contraction method. Finally, we design a set of practical numerical
experiments. The results demonstrate that this is an efficient implementation of the
MRHSD method.

Keywords: hybrid steepest-descent method, variational inequalities, approximate
projection contraction method, strong convergence, nonexpansive mapping

1 Introduction
Let H be a real Hilbert space with inner product < •, • > and norm || • ||, let K be a

nonempty closed convex subset of H, and let F: H ® H be an operator. Then the var-

iational inequality problem VI(F, K) involves finding x* Î K such that

x∗ ∈ K,< x − x∗, F(x∗) >≥ 0,∀x ∈ K. (1)

Variational inequality problems were introduced by Hartman and Stampacchia and

were subsequently expanded in several classic articles [1,2]. Variational inequality the-

ory provides a method for unifying the treatment of equilibrium problems encountered

in areas as diverse as economics, optimal control, game theory, transportation science,

and mechanics. Variational inequality problems have many applications, such as in

mathematical optimization problems, complementarity problems and fixed point pro-

blems [3-7]. Thus, it is important to solve variational inequality problems and much

research has been devoted to this topic [8-12].
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It is known that

x∗ is the solution of VI(F,K) ⇔ x∗ = PK[x∗ − βF(x∗)], β > 0.

where PK is the projection from H onto K, i.e.,

PK(x) = argminy∈K
∥∥x − y

∥∥ , ∀x ∈ H.

Thus, we can solve a variational inequality problem using a fixed-point problem with

some appropriate conditions. For example, if F is a strongly monotone and Lipschitzian

mapping on K and b > 0 is small enough, then PK is a contraction. Hence, Banach’s

fixed point theorem guarantees convergence of the Picard iterates generated by PK[x -

bF(x)]. Such a method is called a projection method, as described elsewhere [13-17].

To reduce the complexity of computing the projection PK, Yamada and Deutsch

developed a hybrid steepest-descent method for solving VI(F, K) [7,8], but choosing an

efficient and implementable nonexpansive mapping is still a difficult problem. Subse-

quently, Xu and Kim [9] and Zeng et al. [10] proved the convergence of hybrid stee-

pest-descent method. Noor introduced iterations after analysis of several three-step

iterative methods [18]. Ding et al. provided a three-step relaxed hybrid steepest-descent

method for variational inequalities [11] and Yao et al. [19] provided a simple proof of

the method under different conditions. Our group has described a modified and

relaxed hybrid steepest descent (MRHSD) method that makes greater use of historical

information and minimizes information loss [20].

This article makes three new contributions compared to previous results. First, we

prove a strong convergence of the MRHSD method under different and suitable

restrictions imposed on the parameters (Condition 3.2). The proof of strong conver-

gence is different from the previous proof [20]. Second, based on the approximate pro-

jection contraction method, we design an efficient implementation of the MRHSD

method for a type of variational inequality problem. Third, we design some practical

numerical experiments and the results verify that it is efficient implementation.

Furthermore, the MRHSD method under Condition 3.2 is more efficient than under

Condition 3.1.

The remainder of the article is organized as follows. In Section 2, we review several

lemmas and preliminaries. In Section 3, we prove the convergence theorem. We dis-

cuss an implementation of the MRHSD method for a type of variational inequality pro-

blem in Section 4. Section 5 presents numerical experiments and results applicable to

finance and statistics. Section 6 concludes.

2 Preliminaries
To prove the convergence theorem, we first introduce several lemmas and the main

results reported by others [10,11,21].

Lemma 1 Let {xn} and {yn} be bounded sequences in a Banach space X and let {ζn}

be a sequence in [0, 1] with 0 < lim inf
n→∞ ζn ≤ lim sup

n→∞
ζn < 1 .

Suppose

xn+1 = (1 − ζn)yn + ζnxn ∀n ≥ 0
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and

lim sup
n→∞

(
∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖) ≤ 0 ∀n ≥ 0.

Then lim
n→∞

∥∥yn − xn
∥∥ = 0 .

Lemma 2 Let {sn} be a sequence of non-negative real numbers satisfying the inequality:

sn+1 ≤ (1 − αn)sn + αnτn + γn,∀n ≥ 0,

where {an}, {τn}, and {gn} satisfy the following conditions:

(1) an ⊂ [0, 1],
∞∑
n=0

αn = ∞, or
∞∏
n=0

(1 − αn) = 0;

(2) lim sup
n→∞

τn ≤ 0 ;

(3) gn ⊂ [0, ∞),
∞∑
n=0

γn < ∞ .

Then lim
n→∞ sn = 0 .

Lemma 3 (Demiclosedness principle) Assume that T is a nonexpansive self-mapping

on a nonempty closed convex subset K of a Hilbert space H. If T has a fixed point, then

(I - T) is demiclosed; that is, whenever {xn} is a sequence in K weakly converging to

some x Î K and the sequence {(I - T)xn} strongly converges to some y Î H, it follows

that (I - T)x = y, where I is the identity operator of H.

The following lemma is an immediate result of the inner product of a Hilbert space.

Lemma 4 In a real Hilbert space H, the following inequality holds:

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2 < y, x + y >, ∀x, y ∈ H.

Lemma 5 Let {an} be a sequence nonnegative numbers with and be sequence of real

numbers with lim sup
n→∞

αn < ∞and {bn} be sequence of real numbers with

lim sup
n→∞

βn ≤ 0 . Then

lim sup
n→∞

αnβn ≤ 0.

A basic property of the projection mapping onto a closed convex subset of Hilbert

space will be given out in the following lemma.

Lemma 6 Let K be a nonempty closed convex subset of H. ∀ x, y Î H and z Î K,

(1) <PK(x) - x, z - PK(x) > ≥ 0,

(2) ∥PK(x) - PK(y)∥2 ≤ ∥x - y∥2 - ∥PK(x) - x + y - PK(y)∥2.

We now introduce some basic assumptions. Let F: H ® H be an operator with F:

�-Lipschtz and h-strongly monotone; that is, F satisfies the following conditions:
∥∥F(x) − F(y)

∥∥ ≤ κ
∥∥x − y

∥∥
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and

< F(x) − F(y), x − y >≥ η
∥∥x − y

∥∥2, ∀x, y ∈ K.

Assuming the solution set of VI(F, K) is nonempty, naturally VI(F, K) has a unique

solution x* Î K under these conditions. Following Yamada [8] and to reduce the com-

plexity of computing the projection PK, we replace the projection PK with a nonexpan-

sive mapping T: H ® H with the property that the fixed point set is Fix(T) = K. Now

we introduce some notation. For any given numbers l Î (0, 1) and μ Î (0, 2h/�2), we
define the mapping Tλ

μ : H → H as

Tλ
μx : Tx − λμF(Tx), ∀x ∈ H,

where Tλ
μ satisfies the following property under some conditions.

Lemma 7 If 0 <μ < 2h/�2 and 0 < l < 1, then Tλ
μis a contraction. In fact,

∥∥Tλ
μx − Tλ

μy
∥∥ ≤ (1 − λδ)

∥∥x − y
∥∥ , ∀x, y ∈ H,

where δ = 1 −
√
1 − μ(2η − μκ2) .

3 Convergence theorem
Before analysis and proof, we first review the MRHSD method and related results [20].

Algorithm [20]

Take three fixed numbers t, r, g Î (0, 2h/�2), and let {an} ⊂ [0, 1), {bn}, {gn} ⊂ [0, 1]

and {ln}, {λ′
n}, {λ′′

n} ⊂ (0, 1). Starting with arbitrarily chosen initial points x0 Î H,

compute the sequences {xn}, {x̄n} , {x̃n} such that

Step 1: x̄n = γnxn + (1 − γn)[Txn − λ′′
n+1γ F(Txn)],

Step 2: x̃n = βnxn + (1 − βn)[Tx̄n − λ′
n+1ρF(Tx̄n)],

Step 3: xn+1 = αnx̄n + (1 − αn)[Tx̃n − λn+1tF(Tx̃n)],

where T: H ® H is a nonexpansive mapping. However, choosing an efficient and

implementable nonexpansive mapping T is a difficult problem, and previous studies

did not design numerical experiments or describe an efficient and implementable non-

expansive mapping T [8-11,19,20]. In Section 4, we design an efficient and implemen-

table nonexpansive mapping T for a type of variational problem based on the

approximate projection contraction method. We then review the conditions and theo-

rem presented by Xu et al. [20].

Condition 3.1

(1)
∞∑
1

|αn − αn−1| < ∞ ,
∞∑
1

|βn − βn−1| < ∞ ,
∞∑
1

|γn − γn−1| < ∞;

(2) lim
n→∞ αn = 0 , lim

n→∞ βn = 1 , lim
n→∞ γn = 1 ;

(3) lim
n→∞ λn = 0, lim

n→∞
λn

λn+1
= 1,

∞∑
1

λn = ∞;

(4) λn ≥ max{λ′
n, λ′′

n}, ∀ n ≥ 1.
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Theorem 1 [20]Under the Condition 3.1, the sequence {xn} generated by algorithm

[20]converges strongly to x* Î K, and x* is the unique solution of the VI(F, K).

We provide different conditions and establish a strong convergence theorem for the

MRHSD method for variational inequalities under these conditions. Note that Condi-

tion 3.2 and a strong convergence theorem (Theorem 2) are the first contributions of

the article.

Condition 3.2

(1) 0 < lim inf
n→∞ αn ≤ lim sup

n→∞
αn < 1 , lim

n→∞ βn = 1 , lim
n→∞ γn = 1 ;

(2) lim
n→∞ λn = 0,

∞∑
1

λn = ∞;

(3) λn ≥ max{λ′
n, λ′′

n}, ∀n ≥ 1.

Theorem 2 The sequence {xn} generated by algorithm [20]converges strongly to x* Î
K, and x* is the unique solution of the VI(F, K); assume that an, bn, gn and ln, λ′

n,

λ′′
nsatisfy the Condition 3.2.

Proof. We divide the proof into several steps.

Step 1. [20] The sequences {xn}, {x̄n} , {x̃n} are bounded.

According to Step 1, we have that

{Txn}, {Tx̄n}, {Tx̃n}, {F(Txn)}, {F(Tx̄n)}, {F(Tx̃n)}}

are also bounded and
∥∥xn − x∗∥∥ ≤ M0,∀n ≥ 0,

where M0 = max{3∥x0 - x*∥, 3(r + g + t)∥F(x*)∥/τ}.
and ∥∥x̃n − x∗∥∥ ≤ βn

∥∥xn − x∗∥∥ + (1 − βn)λn+1(γ + ρ)
∥∥F(x∗)

∥∥ ≤ (1 + τ )M0,∥∥x̄n − x∗∥∥ ≤ ∥∥xn − x∗∥∥ + (1 − γn)λ′′
n+1γ

∥∥F(x∗)
∥∥ ≤ (1 + τ )M0.

Step 2. ∥xn+1 - xn∥ ® 0.

Indeed, a series of computations yields:

‖x̄n − x̄n−1‖ =
∥∥∥γnxn − γn−1xn−1 + (1 − γn)T

λ′′
n+1

γ xn − (1 − γn−1)T
λ′′
n

γ xn−1

∥∥∥
≤ ‖γnxn − γn−1xn−1‖ +

∥∥∥(1 − γn)T
λ′′
n+1

γ xn − (1 − γn−1)T
λ′′
n

γ xn−1

∥∥∥
≤ ‖xn − xn−1‖ +

∣∣(1 − γn)λ′′
n+1 − (1 − γn−1)λ′′

n

∣∣ γ ∥∥F(Txn−1)
∥∥

+ |γn − γn−1| (‖xn−1‖ + ‖Txn−1‖) .

(2)

By T
λ′
n+1

ρ x̄n = Tx̄n − λ′
n+1ρF (Tx̄n), T

λ′
n

ρ x̄n−1 = Tx̄n−1 − λ′
nρF (Tx̄n−1) and (2), we can

obtain

∥∥x̃n − x̃n−1
∥∥ =

∥∥∥βnxn − βn−1xn−1 + (1 − βn)T
λ′
n+1

ρ x̄n − (1 − βn−1)T
λ′
n

ρ x̄n−1

∥∥∥
≤ ‖βnxn − βn−1xn−1‖ +

∥∥∥(1 − βn)T
λ′
n+1

ρ x̄n − (1 − βn−1)T
λ′
n

ρ x̄n−1

∥∥∥
≤ ‖xn − xn−1‖ +

∣∣(1 − βn)λ′
n+1 − (1 − βn−1)λ′

n

∣∣ ρ ∥∥F(Tx̄n−1)
∥∥

+ (1 − βn)(1 − λ′
n+1τ

′) |γn − γn−1| (‖xn−1‖ + ‖Txn−1‖)
+ (1 − βn)(1 − λ′

n+1τ
′)

∣∣(1 − γn)λ′′
n+1 − γn−1λ

′′
n

∣∣ γ ∥∥F(Txn−1)
∥∥

+ |βn − βn−1| (‖xn−1‖ + ‖Tx̄n−1‖ + ‖Tx̄n−1‖).

(3)
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Let

ỹn = Tλn+1
t x̃n = Tx̃n − λn+1tF(Tx̃n),

so we obtain

xn+1 = αnx̄n + (1 − αn)ỹn.

Furthermore,

∥∥ỹn − ỹn−1
∥∥ =

∥∥Tx̃n − Tx̃n−1 + λntF(Tx̃n−1) − λn+1tF(Tx̃n)
∥∥

≤ ∥∥Tx̃n − Tx̃n−1
∥∥ + λnt

∥∥F(Tx̃n−1)
∥∥ + λn+1t

∥∥F(Tx̃n)∥∥
≤ ∥∥x̃n − x̃n−1

∥∥ + λnt
∥∥F(Tx̃n−1)

∥∥ + λn+1t
∥∥F(Tx̃n)∥∥ .

(4)

By lim
n→∞ βn = 1 , lim

n→∞ λn = 0 and (3), (4), we obtain:

∥∥ỹn − ỹn−1
∥∥ − ‖xn − xn−1‖

≤ ∣∣(1 − βn)λ′
n+1 − (1 − βn−1)λ′

n

∣∣ ρ ∥∥F(Tx̃n−1)
∥∥

+(1 − βn)(1 − λ′
n+1τ

′) |γn − γn−1| (‖xn−1‖ + ‖Txn−1‖)
+(1 − βn)(1 − λ′

n+1τ
′)

∣∣(1 − γn)λ′′
n+1 − γn−1λ

′′
n

∣∣ γ ∥∥F(Txn−1)
∥∥

+ |βn − βn−1| (‖xn−1‖ + ‖Tx̄n−1‖ + ‖Tx̄n−1‖)
+λnt

∥∥F(Tx̃n−1)
∥∥ + λn+1t

∥∥F(Tx̃n)∥∥ → 0.

(5)

According to Lemma 1, we can obtain

lim
n→∞

∥∥ỹn−1 − xn−1
∥∥ = 0.

Furthermore, using the conditions lim
n→∞ γn = 1 , max

{
λ′
n,λ

′′
n

} ≤ λn → 0, we obtain

‖x̄n − xn‖ =
∥∥−(1 − γn)xn + (1 − γn)

(
Txn − λ′

n+1γ F(Txn)
)∥∥

≤ (1 − γn) ‖xn‖ + (1 − γn) ‖Txn‖ + λ′
n+1γ

∥∥F(Txn)∥∥ → 0.
(6)

According to (5) and (6), we conclude that

‖xn − xn−1‖ =
∥∥αn−1x̄n−1 + (1 − αn−1)ỹn−1 − xn−1

∥∥
≤ αn−1 ‖x̄n−1 − xn−1‖ + (1 − αn−1)

∥∥ỹn−1 − xn−1
∥∥ → 0,

so we immediately obtain

‖xn+1 − xn‖ → 0.

Step 3. ∥xn+1 - Txn∥ ® 0.

In fact,
∥∥x̃n − xn

∥∥ =
∥∥−(1 − βn)xn + (1 − βn)

(
Tx̄n − λ′

n+1ρF (Tx̄n)
)∥∥

≤ (1 − βn) ‖xn‖ + (1 − βn) ‖Tx̄n‖ + λ′
n+1ρ ‖F (Tx̄n)‖ .

(7)

According to the assumptions lim
n→∞ βn = 1 and lim

n→∞ λn = 0, then

∥∥x̃n − xn
∥∥ → 0.
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A series of computations yields:

‖xn+1 − Txn‖ =
∥∥∥αn (x̄n − Txn) + (1 − αn)

(
Tλn+1
t x̃ − Txn

)∥∥∥
≤ αn ‖x̄n − Txn‖ + (1 − αn)

∥∥Tx̃n − Txn
∥∥

+ (1 − αn)λn+1t
∥∥F (

Tx̃n
)∥∥

≤ αn ‖x̄n − Txn‖ +
∥∥x̃n − xn

∥∥ + λn+1t
∥∥F (

Tx̃
)∥∥

≤ αn ‖xn+1 − Txn‖ + αn ‖x̄n − xn+1‖ +
∥∥x̃n − xn

∥∥
+ λn+1t

∥∥F (
Tx̃

)∥∥ .

(8)

Hence, by (6), (7), (8) and Conditions 3.2, we obtain:

‖xn+1 − Txn‖ ≤ αn

1 − αn
‖x̄n − xn+1‖ +

∥∥x̃n − xn
∥∥

1 − αn
+

λn+1t
∥∥F (

Tx̃
)∥∥

1 − αn
→ 0. (9)

Corollary 1 ∥xn - Txn∥ ® 0.

Applying Steps 2 and 3, we get

‖xn+1 − Txn‖ → 0

and

‖xn+1 − xn‖ → 0,

So then

‖xn − Txn‖ ≤ ‖xn+1 − Txn‖ + ‖xn+1 − xn‖ → 0.

Step 4. lim supn→∞ < −F (x∗) ,Tx̃n − x∗ >≤ 0 .

For some x̃ ∈ H , here exits
{
Txni

} → x̃ weakly, and such that

lim sup
n→∞

< −F
(
x∗) ,Txn − x∗ >= lim sup

n→∞
< −F

(
x∗) ,Txni − x∗ > .

According to
{
Txni

} → x̃ , we have

x̃ ∈ Fix (T) = K.

Moreover, we have x* is the unique solution of VI(F, K), so we can obtain:

lim sup
n→∞

< −F
(
x∗) ,Txn − x∗ >

= lim sup
n→∞

< −F
(
x∗) , x̃ − x∗ >

≤ 0.

Since
∥∥Tx̃n − Txn

∥∥ ≤ ∥∥x̃n − xn
∥∥ → 0 , we immediately conclude that

lim sup
n→∞

< −F
(
x∗) ,Tx̃n − x∗ >

≤ lim sup
n→∞

< −F
(
x∗) ,Tx̃n − Txn >

+ lim sup
n→∞

< −F
(
x∗) ,Txn − x∗ >

≤ lim sup
n→∞

< −F
(
x∗) ,Txn − x∗ >

≤ 0.
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Step 5. ∥xn - x*∥ ® 0. To prove this conclusion, we have to apply the Lemma 2 sev-

eral times.

By Step 1 and Lemma 4, we have:

∥∥xn+1 − x∗∥∥2 =
∥∥∥αn

(
x̄n − x∗) + (1 − αn)

(
Tλn+1
t x̃n − x∗

)∥∥∥2

≤ ∥∥αn
(
x̄n − x∗)∥∥2

+ (1 − αn)

∥∥∥(
Tλn+1
t x̃n − Tλn+1

t x∗ + Tλn+1
t x∗ − x∗

)∥∥∥2

≤ ∥∥αn
(
x̄n − x∗)∥∥2 + (1 − αn)

[∥∥∥(
Tλn+1
t x̃n − Tλn+1

t x∗
)∥∥∥ 2

+2 < Tλn+1
t x∗ − x∗,Tλn+1

t x̃n − x∗ >
]

≤ αn
[∥∥xn − x∗∥∥ + (1 − γn) λ′′

n+1γ
∥∥F (

x∗)∥∥]2
+ (1 − αn) (1 − λn+1τ )2

[∥∥xn − x∗∥∥ + (1 − βn)λn+1 (γ + ρ)
∥∥F (

x∗)∥∥]2
+ 2tλn+1 < −F

(
x∗) ,Tx̃n − x∗ − tλn+1F

(
Tx̃n

)
>

≤ αn
∥∥xn − x∗∥∥2 + (1 − γn)λn+1γM + (1 − αn) (1 − λn+1τ )2

∥∥xn − x∗∥∥2
+ (1 − αn) (1 − λn+1τ )2 (1 − βn) λn+1M

+ 2tλn+1 < −F
(
x∗) ,Tx̃n − x∗ − tλn+1F

(
Tx̃n

)
>

≤ (1 − (1 − αn) λn+1τ )
∥∥xn − x∗∥∥2 + (1 − αn) λn+1τw′

n+1,

(10)

where

w′
n+1 =

2t < −F (x∗) ,Tx̃n − x∗ − tλn+1F
(
Tx̃n

)
>

τ (1 − αn)

+
ϕn

τ (1 − αn)
+

ξn

τ (1 − αn)
,

ϕn = (1 − γn) γM,

ξn = (1 − αn) (1 − λn+1τ )2 (1 − βn)M

and M0 ≪ M < ∞.

If we denote

s′n+1 =
∥∥xn+1 − x∗∥∥ , un = (1 − αn)λn+1τ ,

we can rewrite (10):

s′n+1 ≤ (1 − un) s
′
n + unw

′
n + 0.

In fact, un, w
′
n satisfies Lemma 2, according to

lim
n→∞ βn = 1, lim

n→∞ γn = 1, lim
n→∞ λn = 0

and step 4, we obtain

ϕn

τ (1 − αn)
→ 0

and

ξn

τ (1 − αn)
→ 0.
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Furthermore, lim supn→∞ < −F
(
x∗) ,Tx̃n − x∗ >≤ 0, so we have:

lim
n→∞

2t < −F (x∗) ,Tx̃n − x∗ − tλn+1F
(
Tx̃n

)
>

τ (1 − αn)

≤ 2t
τ

lim sup
n→∞

{
< −F

(
x∗) ,Tx̃n − x∗ >

+λn+1 < −F
(
x∗) ,−tF

(
Tx̃n

)
>

}
≤ 2t

τ
lim sup
n→∞

{
< −F

(
x∗) ,Tx̃n − x∗ >

}

+ lim sup
n→∞

{
λn+1 < −F

(
x∗) ,−tF

(
Tx̃n

)
>

}

≤ 0 + 0 = 0.

Consequently we obtain

lim sup
n→∞

w′
n ≤ 0,

and then from Lemma 2, we have
∥∥xn − x∗∥∥ → 0.

which completes the proof.

The following section is our second contribution in this article.

4 Implementation of the MRHSD method for a kind of variational
inequalities
Now we consider the variational inequality problem VI(F, K1 ⋂ K2), which involves

finding x* Î K1 ⋂ K2 such that

x∗ ∈ K1 ∩ K2,< x − x∗, F
(
x∗) >≥ 0,∀x ∈ K1 ∩ K2, (11)

where K1 and K2 are nonempty and closed convex subsets of H.

To reduce the difficulty and complexity in computing the projection PK, we solve VI

(F, K1 ⋂ K2) by the MRHSD method. Then we have to choose an efficient and imple-

mentable nonexpansive mapping T. Based on the spirit of the approximate projection

contraction method, we define Tx as:

Tx = H
(
G(x)

) ≈ PK[x], (12)

where

G(x) = PK 2
(x), H(x) = PK 1

(x).

Assuming that PK2(x) , PK1(x) can be computed without much difficulty, we can effi-

ciently compute Tx. According to Tx ≈ PK[x], we can partly retain the efficiency of the

projection contraction method. Obviously, the fixed point set is Fix(T) = K and T satis-

fies the property of nonexpansive mapping.

5 Numerical experiments
To show the effects of the MRHSD method for VI(F, K1 ⋂ K2), we test a set of pro-

blems that arise in finance and statistics [12,22]. Let HL, HU be given n × n symmetric

matrices, let C be asymmetric, which differs from previous approaches [12,22], and HL
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≤ HU in terms of elements. The problem considered in this section is:

min
{
1
2

‖X − C‖2F |X ∈ K = Sn+ ∩ ß
}
, (13)

where ∥ • ∥F is the matrix Fröbenis norm, i.e.,

‖C‖F =

⎛
⎝ ∞∑

i=1

∞∑
j=1

∣∣Cij
∣∣2

⎞
⎠

1
2

.

Furthermore,

Sn+ =
{
H ∈ IRn×n|HT = H,H �− 0

}

and

ß =
{
H ∈ IRn×n|HT = H,HL ≤ H ≤ HU

}
.

Note that the matrix Fröbenis norm is induced by the inner product

〈A,B〉 = Trace
(
ATB

)
.

It is known that optimization problem (13) is equivalent to the following variational

inequality problem:
〈
X′ − X,∇

(
1
2

‖X − C‖2
)〉

≥ 0,∀X′ ∈ K,

so we obtain
〈
X′ − X,X − C

〉 ≥ 0,∀X′ ∈ K. (14)

To solve variational inequality problem (14) by the MRHSD method, we take one set

of parameter sequences satisfying Condition 3.1.

Condition 3.1.

αn = λn = λ′
n = λ′′

n =
1
n
,

βn = γn = 1 − 1
n
,

γ = ρ = t = c0 > 0.

Furthermore, we take two different parameter sequences satisfying Condition 3.2 to

demonstrate the different effects for different an.

Condition 3.2a.
{

αn = 0.3 − 1/ (100 ∗ n) ; n = 2k
αn = 0.1 − 1/(100 ∗ n); n = 2k − 1;

λn = λ′
n = λ′′

n = 1/ (n + 1) ;{
βn = 1 − 1/n; γn = 1 − 1/n; n = 2k
βn = 1 − 1/n; γn = 1 − 1/(2n); n = 2k − 1;

γ = ρ = t = c0 > 0.
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Condition 3.2b.
{

αn = 0.8 − 1/ (100 ∗ n) ; n = 2k
αn = 0.3 − 1/(100 ∗ n); n = 2k − 1;

λn = λ′
n = λ′′

n = 1/ (n + 1) ;{
βn = 1 − 1/n; γn = 1 − 1/n; n = 2k
βn = 1 − 1/n; γn = 1 − 1/(2n); n = 2k − 1;

γ = ρ = t = c0 > 0.

According to Tx(12), we define TX as

TX = H (G (X)) , (15)

where

G (X) = min (HU,max (X,HL)) ,H (X) = Psn+ (X) ,

which can easily be computed and the fixed point set to Fix(T) = K. Moreover,

according to Theorems 1 and 2, the sequences generated by algorithm [20] under Con-

ditions 3.1 and 3.2 are convergent.

The computation started with ones(n, n) in MATLAB and stopped when ∥xk+1 - xk∥
≤ 10-4 or 10-5. All codes were implemented in MATLAB 7.0 and were run using a

Pentium R 1.70 G processor on a 768 M ASUS notebook computer.

We tested the problem using n = 100, 200, 300, 400, 500. The test results for the

MRHSD method under different conditions and tolerances are reported in Tables 1

and 2.

Test examples

In this example we generate the data in a similar manner as in [12]. Note that it is very

difficult to compute the examples using the extended contraction method [12] when C

is asymmetric. However, the MRHSD method can efficiently compute the examples

when C is asymmetric.

The diagonal elements of C are randomly generated in the interval (0, 2) and the off-

diagonal elements are randomly generated in the interval (-1, 1):

(HU)jj = (HL)jj = 1,

(HU)ij = −(HL)ij = 0.1,∀i �= j, i, j = 1, 2, ...,n.

Table 1 Numerical results for tolerance of 10-4

g = r = t = c0 = 0.01

Matrix Condition 3.1 Condition 3.2a Condition 3.2b

n It cpu It cpu It cpu

100 24 1.04 22 0.98 20 0.84

200 34 8.35 30 7.48 22 5.25

300 41 29.93 36 27.48 26 19.10

400 46 72.46 42 67.63 30 51.84

500 52 149.64 48 142.07 34 98.93
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Matlab code:

C = zeros(n, n); HU = ones(n, n)*0.1; HL = -HU;

for i = 1:n

for j = 1:n

t = mod(t*42108+13846,46273);

C(i, j) = t*2/46273-1;

end;

end;

for i = 1:n

C(i, i) = abs(C(i, i))*2; HU(i, i) = 1; HL(i, i) = 1;

end;

The numerical results demonstrate that this implementation of the MRHSD method

is efficient. Furthermore, the MRHSD Method under Condition 3.2 is more efficient

than under Condition 3.1. These numerical experiments and results are the third con-

tribution of the article.

6 Conclusions and discussions
We have proved strong convergence of the MRHSD method under Condition 3.2,

which differs from Condition 3.1. The proof can be simplified using Condition 3.2,

which imposes suitable restrictions on the parameters. The result can be considered an

improvement and refinement of previous results [20]. In particular, we designed an

efficient implementation of the MRHSD method based on the approximate projection

contraction method. Numerical experiments demonstrated that this is an efficient

implementation and that the MRHSD method under Condition 3.2 is more efficient

than under Condition 3.1. However, choosing an efficient and implementable nonex-

pansive mapping for a general VI(F, K) is still a difficult problem.
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Table 2 Numerical results for tolerance of 10-5

g = r = t = c0 = 0.01

Matrix Condition 3.1 Condition 3.2a Condition 3.2b

n It cpu It cpu It cpu

100 75 3.59 68 2.83 46 2.37

200 106 25.94 96 22.71 66 15.53

300 128 94.37 116 89.52 78 58.30

400 147 236.59 132 205.70 88 138.28

500 165 529.44 148 420.73 100 285.24
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