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Abstract

The purpose of this article is to investigate the problem of finding a common
element of the solution sets of two different systems of variational inequalities and
the set of fixed points a strict pseudocontraction mapping defined in the setting of a
real Hilbert space. Based on the well-known extragradient method, viscosity
approximation method and Mann iterative method, we propose and analyze a
generalized extra-gradient iterative method for computing a common element.
Under very mild assumptions, we obtain a strong convergence theorem for three
sequences generated by the proposed method. Our proposed method is quite
general and flexible and includes the iterative methods considered in the earlier and
recent literature as special cases. Our result represents the modification, supplement,
extension and improvement of some corresponding results in the references.
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1. Introduction

Let H be a real Hilbert space with inner product ¢., > and norm II . " Let C be a
nonempty closed convex subset of H and S : C — C be a self-mapping on C. We
denote by Fix(S) the set of fixed points of S and by Pc the metric projection of H onto
C. Moreover, we also denote by R the set of all real numbers. For a given nonlinear
mapping A : C — H, consider the following classical variational inequality problem of
finding x* € C such that

(Ax*,x—x*)z 0, Vx € C. (1.1)

The set of solutions of problem (1.1) is denoted by VI(A, C). It is now well known
that the variational inequalities are equivalent to the fixed-point problems, the origin
of which can be traced back to Lions and Stampacchia [1]. This alternative formulation
has been used to suggest and analyze Picard successive iterative method for solving
variational inequalities under the conditions that the involved operator must be
strongly monotone and Lipschitz continuous. Related to the variational inequalities, we
have the problem of finding fixed points of nonexpansive mappings or strict pseudo-
contractions, which is the current interest in functional analysis. Several authors
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considered some approaches to solve fixed point problems, optimization problems, var-
iational inequality problems and equilibrium problems; see, for example, [2-32] and the
references therein.

For finding an element of Fix(S) n VI(A, C) under the assumption that a set C € H is
nonempty, closed and convex, a mapping S : C — C is nonexpansive and a mapping
A : C — H is a-inverse strongly monotone, Takahashi and Toyoda [20] introduced the

following iterative algorithm:

xp = x € C chosen arbitrarily,
Xpi1 = Xy + (1 — 0)SPc(xn — MpAxy,),  Vn >0,

where {0} is a sequence in (0, 1), and {4,;} is a sequence in (0, 2¢x). It was proven in
[20] that if Fix(S) N VI(A, C) # @ then the sequence {x,} converges weakly to some z €
Fix(S) n VI(A, C). Recently, Nadezhkina and Takahashi [19] and Zeng and Yao [32]
proposed some so-called extragra-dient method motivated by the idea of Korpelevich
[33] for finding a common element of the set of fixed points of a nonexpansive map-
ping and the set of solutions of a variational inequality. Further, these iterative meth-
ods were extended in [27] to develop a general iterative method for finding a element
of Fix(S) n VI(4, C).

Let A;, A5 : C —> H be two mappings. In this article, we consider the following pro-
blem of finding (x*, y*) € C x C such that
Vx e C,

0, '

)\‘1A1 *+x*_ *’x_x* >
VXGC,

()»;_A;_x* +y =X x— y*) >

which is called a general system of variational inequalities, where A; >0 and A, >0
are two constants. It was introduced and considered by Ceng et al. [7]. In particular, if
A; = A, = A, then problem (1.2) reduces to the following problem of finding (x% y*) €
C x C such that
Vx e C,

N (1.3)
0, '

MAY* +x* —y* x —x*) >
{
Vx € C,

()QAx* +yF —at,x— y*) >

which was defined by Verma [22] (see also [21]) and it is called a new system of var-
iational inequalities. Further, if x* = y* additionally, then problem (1.3) reduces to the
classical variational inequality problem (1.1). We remark that in [34], Ceng et al. pro-
posed a hybrid extragradient method for finding a common element of the solution set
of a variational inequality problem, the solution set of problem (1.2) and the fixed-
point set of a strictly pseudocontractive mapping in a real Hilbert space. Recently,
Ceng et al. [7] transformed problem (1.2) into a fixed point problem in the following
way:

Lemma 1.1.[7]. For given x,y € C, (x,y) is a solution of problem (1.2) if and only if x
is a fixed point of the mapping G : C — C defined by

G(x) = Pc [Pc(x — A2A2x) — A1A1Pc(x — AAxx)|, Vx e C, (1.4)
where )_/ = Pc(.?_C - )»QAQJ_C)

In particular, if the mapping A; : C — H is a;-inverse strongly monotone for i = 1, 2,
then the mapping G is nonexpansive provided A; € (0, 2a;) fori = 1, 2.
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Utilizing Lemma 1.1, they proposed and analyzed a relaxed extragradient method for
solving problem (1.2). Throughout this article, the set of fixed points of the mapping G
is denoted by I". Based on the extragradient method [33] and viscosity approximation
method [23], Yao et al. [26] introduced and studied a relaxed extragradient iterative
algorithm for finding a common solution of problem (1.2) and the fixed point problem
of a strictly pseudocontraction in a real Hilbert space H.

Theorem 1.1. [[26], Theorem 3.2]. Let C be a nonempty bounded closed convex sub-
set of a real Hilbert space H. Let the mapping A; : C — H be aj-inverse strongly mono-
tone for i = 1, 2. Let S : C — C be a k-strict pseudocontraction mapping such that

1
2
given xo € C arbitrarily, let the sequences {x,}, {y,,} and {z,} be generated iteratively by

2 :=Fx(S)NT #0. Let Q : C — C be a p-contraction mapping with p € [O, ) For

Zn = PC(xn - )¥2A2xn)/
Yn = 0nQxy + (1 — ay)Pc(zn — 21A124), (1.5)
Xer1 = BuXn + YnPc(2n — AMA120) + 8,Syn, YN >0,

where L € (0,2a;) for i = 1, 2, and {a,.}, B}, (¥}, {0,.} are four sequences in [0, 1]
such that

(i) By + Yy + 0, =1 and (v, + 6, )k <y, <(1 - 2p)d,, for all n > 0;

(i) im & = 0 and 30, ay = 00

(iii)0 < liminf 8, <limsup 8, < 1 ;4 liminfs, > 0
n—00 n—00 n—00

. . Vn+1 Vn
(W)”llg’lo (1 - ,Bn+1 B 1- ﬁn) -0
Then the sequence {x,}y generated by (1.5) converges strongly to x* = PoQx* and (x*
y¥) is a solution of the general system of variational inequalities (1.2), where y* = Pc(x*
- AoAox®).
Let By, B, : C — H be two mappings. In this article, we also consider another general
system of variational inequalities, that is, finding (x% y*) € C x C such that
Vx e C,

O (1.6)
0, '

Vx e C,

(w1B1y* +x* —y*, x —x*) =
(;Lszx* +yF —atx— y*) >

where y; >0 and y, >0 are two constants.
Utilizing Lemma 1.1, we know that for given x,y € C, (x,y) is a solution of problem
(1.6) if and only if x is a fixed point of the mapping F : C — C defined by

F(x) = Pc [Pc(x — waBax) — u1BiPe(x — pnaBax)], VxeC, (1.7)

where y = Pc(x — 2Box) In particular, if the mapping B; : C — H is g-inverse
strongly monotone for i = 1, 2, then the mapping F is nonexpansive provided
ui € (0,2@;) for i = 1, 2. Throughout this article, the set of fixed points of the mapping
F is denoted by 75,

Assume that A; : C — H is @;-inverse strongly monotone and and B; : C — H is
Bi-inverse strongly monotone for i = 1, 2. Let S : C — C be a k-strict pseudocontrac-
tion mapping such that £2 :=Fix(S)NI" NIy # . Let Q : C — C be a p-contraction

1
mapping with p € |:O, 2). Motivated and inspired by the research work going on in



Ceng et al. Journal of Inequalities and Applications 2012, 2012:88 Page 4 of 19
http://www.journalofinequalitiesandapplications.com/content/2012/1/88

this area, we propose and analyze the following iterative scheme for computing a com-
mon element of the solution set I” of one general system of variational inequalities
(1.2), the solution set [ of another general system of variational inequalities (1.6), and
the fixed point set Fix(S) of the mapping S:

zp = Pc [PC(xn — p2Baxn) — p1B1Pe(xn — Mszxn)] ’
Yn = oean,, + (1 — (Xn)PC [PC(Zn — AzAzZn) — AlAch(zn — )\.2A2Zn)] ’ (18)
Xni1 = BuXn + YnPc [PC(Zn - )tzAzZn) - AlAlpc(Zn - )LzAzzn)] +6nSyn, VYn=>0,

where A; € (0, 2@;) and y; € (0, 2,3:) for i = 1, 2, and {&,,},{B,.}, {¥,.}, {0, < [0, 1] such
that B, + 9, + 6, = 1 for all n > 0. Furthermore, it is proven that the sequences {x,},
{y,} and {z,} generated by (1.8) converge strongly to the same point x* = PoQx* under
very mild conditions, and (x* y*) and (x*,J*) are a solution of general system of varia-
tional inequalities (1.2) and a solution of general system of variational inequalities
(1.6), respectively, where y* = Pc(x* - A,Ax*) and y* = Po(x* — poBox*)

Our result represents the modification, supplement, extension and improvement of
the above Theorem 1.1 in the following aspects.

(a) our problem of finding an element of Fix(S) n 7" n Iy is more general and more
complex than the problem of finding an element of Fix(S) n /" in the above Theorem
1.1.

(b) Algorithm (1.8) for finding an element of Fix(S)N/'N/7 is also more general and
more flexible than algorithm (1.5) for finding an element of Fix(S) n I" in the above
Theorem 1.1. Indeed, whenever B; = B, = 0, we have

zn = Pc [Pc(xn — waBaxn) — 1 B1Pc(xn — m2Baxy)] = x5, V1 > 0.

In this case, algorithm (1.8) reduces essentially to algorithm (1.5).

(c) Algorithm (1.8) is very different from algorithm (1.5) in the above Theorem YLK
because algorithm (1.8) is closely related to the viscosity approximation method with
the p-contraction Q : C — C and involves the Picard successive iteration for the gen-
eral system of variational inequalities (1.6).

(d) The techniques of proving strong convergence in our result are very different
from those in the above Theorem 1.1 because our techniques depend on the norm
inequality in Lemma 2.2 and the inverse-strong monotonicity of mappings A;, B;: C —>
H for i = 1, 2, the demiclosed-ness principle for strict pseudocontractions, and the
transformation of two general systems of variational inequalities (1.2) and (1.6) into
the fixed-point problems of the nonexpansive self-mappings G: C - Cand F: C - C
(see the above Lemma 1.1, respectively.

2, Preliminaries

Let H be a real Hilbert space whose inner product and norm are ¢., -» and || . ",
respectively. Let C be a nonempty closed convex subset of H. We write — to indicate
that the sequence {x,} converges strongly to x and — to indicate that the sequence {x,}
converges weakly to x. Moreover, we use w,,(x,) to denote the weak w-limit set of the
sequence {x,}, that is,

ww(xn) := {x : x,, = x for some subsequence{x,,} of {x,}}.
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Recall that a mapping A : C — H is called o-inverse strongly monotone if there
exists a constant o >0 such that

(Ax—Ay,x—y) > a||Ax—Ay ?,

Vx,y € C.

It is obvious that any a-inverse strongly monotone mapping is Lipschitz continuous.
A mapping S : C — C is called a strict pseudocontraction [35] if there exists a constant
0 < k <1 such that

||Sx — Sy||2 < ||x+y||2 +k|| (I-=8)x—I-S)y 2,

Vx,y € C. (2.1)

In this case, we also say that S is a k-strict pseudocontraction. Meantime, observe
that (2.1) is equivalent to the following

2
’

1-k
(Sx—Sy,x—y)§||x—y||2— 5 [(I=8)x—(1-S)y Vx,y € C. (2.2)

It is easy to see that if S is a k-strictly pseudocontractive mapping, then 7 - S is

2
-inverse strongly monotone and hence ) k—Lipschitz continuous; for further

detail, we refer to [30] and the references therein. It is clear that the class of strict
pseudocontractions strictly includes the one of nonexpansive mappings which are map-
pings S : C — C such that ||Sx - Sy" < "x - y” forallw, ye C.

For every point x € H, there exists a unique nearest point in C, denoted by Px such
that

, VxeC.

lx — Pexll < x—y

The mapping Pc is called the metric projection of H onto C. We know that Pc is a
firmly nonexpansive mapping of H onto C; that is, there holds the following relation

2
’

(Pcx — Pcy, x —y) = | Pcx — Pey Vx,y € H.

Consequently, Pc is nonexpansive and monotone. It is also known that Pc is charac-
terized by the following properties: Pcx € C and

(x — Pcx, Pox — y) > 0, (2.3)

’, VxeH, yeC. (2.4)

|x=y|* = llx = Pexl? + |y — Pex

See [36] for more details.

In order to prove our main result in the next section, we need the following lemmas.
The following lemma is an immediate consequence of an inner product.

Lemma 2.1. In a real Hilbert space H, there holds the inequality

||x+y||2 < ||x||2+2(y,x+y>, Vx,y € H. (2.5)

Recall that S : C — C is called a quasi-strict pseudocontraction if the fixed point set
of S, Fix(S), is nonempty and if there exists a constant 0 < k <1 such that

|Sx —p|* < |x—p|* + klx — Sx|*> forall x € Cand p € Fix(S). (2.6)

We also say that S is a k-quasi-strict pseudocontraction if condition (2.6) holds.

Page 5 of 19
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The following lemma was proved by Suzuki [37].
Lemma 2.2.[37]Let {x,} and {y,} be bounded sequences in a Banach space X and let

(B,} be a sequence in [0, 1] with 0 < li,fgg}fﬁn = hgli‘ip Bn <1 Suppose x,,.1 = (1 -
By, + Bux, for all integers n = 0 and lim SUP(H)’ml —Vn ” = xn1 —xall) <0, Then,
n—oo
lim [y, — x| = 0.
n—odo
Lemma 2.3. [[17], Proposition 2.1] Assume C is a nonempty closed convex subset of a

real Hilbert space H and let S: C — C be a self-mapping on C.
(a) If S is a k-strict pseudocontraction, then S satisfies the Lipschitz condition

ss—syl < 1 "% ey, vayec 27)

(b) if S is a k-strict pseudocontraction, then the mapping I - S is demiclosed (at 0).
That is, if {x,} is a sequence in C such that x, —~x and (I - S)x, — 0, then
(I—-8)x=0, ie, X € Fix(S)

(c) if S is a k-quasi-strict pseudocontraction, then the fixed point set Fix(S) of S is
closed and convex so that the projection Priys) is well defined.

Lemma 2.4.[24]Let {a,} be a sequence of nonnegative numbers satisfying the condi-
tion

apy1 = (1 - Sn)an + 8,00, VYn >0,

where {0,}, {0,} are sequences of real numbers such that
(i) {0, < [0, 1] and Y72 8n = 00, or equivalently,

[Jaa-6):=lim [J(1-8)=0;
=0 n—oo j=0

(ii) limsupo, <0
n—oo
(i) 32 8nOw is convergent.

Then lim a, =0,
n—oo

3. Strong convergence theorems
We are now in a position to state and prove our main result.

Lemma 3.1. [[26], Lemma 3.1] Let C be a nonempty closed convex subset of a real
Hilbert space H. Let S: C — C be a k-strict pseudocontraction mapping. Let v and 6 be
two nonnegative real numbers. Assume (Y + o)k < . Then

ly(x=p)+8(Sx—Sp)| < (v +8) [x—»

, Vx,yeC. (3.1)

Theorem 3.1. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H. Assume that for i = 1, 2, the mappings A, B; : C — H are aj-inverse strongly
monotone and B-inverse strongly monotone, respectively. Let S : C — C be a k-strict
pseudocontraction mapping such that 2 :=Fix(SYNT' NIy #@. Let Q : C — C be a p-

1
contraction mapping with p € [O, 2) For given xo € C arbitrarily, let the sequences

(.0, W) and {z,} be generated iteratively by

Page 6 of 19
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zn = P [Pe(%n — waBaxn) — u1B1Pc(xn — waBaxa)],
Yn = O{ann + (1 — Oln)PC [Pc(zn - AzAzZn) - A]Alpc(ln - AzAzZT,)] ’ (32)
Xp+1 = ﬂnxn + VnPC [PC(Zn - )\ZAZZn) - )\lAIPC(Zn - )"ZAZZn)] + 5nS)/n, vn >0,

where A; € (O, 2&1) and Wi € (0, 2,8\1‘)for i=1,2, and {0}, {ﬂn}: {’}/n}ﬁ {0} arefour
sequences in [0, 1] such that:
(i) B, + ¥y + 0, =1 and (y, + 5, )k < ¥, <(1 - 2p)d,, for all n > 0;

. o0
(ii) xlgglo an =0 gnd Zn:O oy = 00

(iii) 0 < liminfg, <limsup 8, <1 4,4 liminfs, > 0
n—00 n— 00 n— 00

. . Yn+1 Yn
iv) lim — =0
()"—’00(1—/3m1 1_,3n)

Then, the sequences {x,}, {y,.}, {z,} generated by (3.2) converge strongly to the same
point x* = PoQx*, and (x*, y*) and (x*,y*) are a solution of general system of varia-
tional inequalities (1.2) and a solution of general system of variational inequalities
(1.6), respectively, where y* = Pc(x* - A,Aox*) and y* = Pc(x* — paBax™®).

Proof. Let us show that the mappings I - 1;A; and I - y;Bi are nonexpansive for i = 1,
2. Indeed, since for i = 1, 2, A;, B; are @;-inverse strongly monotone and B\i—inverse

strongly monotone, respectively, we have for all x, ye C

(1= xiAx — (1= mAy[* = | (x = ¥) = MilAix — A) |
=[x — y“2 — 2% (Aix — Ay, x — y) + A7 | Aix — Ain2

< |x=y|* - 2@ Aix — A|” + 22 A — Ag|?
=|x— Y“2 —xi(2@; — ) |Aix —Ai}’”2
< |x—y|?

and

| (x = y) = i(Bix — Bip) |
|lx— )’”2 — wi(2Bi — i) || Bix — BiYH2

< Jx ="

| (1= wiBi)x = (1= wiB)y|*

IA

This shows that both I - A;4; and I - y;Bi are nonexpansive for i = 1, 2.
We divide the rest of the proof into several steps.
Step 1. lim [Ixn1 — x4l = 0,

X—> 00

Indeed, first, we can write (3.2) as x,,,1 = B.x, + (1 - B,)u,, Vn > 0, where

_ xn+11 :gzxn Set z,, = Pc(zn — 22A22,), Yn > 0. It follows that
Yl — iy = Xns2 — Bns1Xns1 _ Xnel — Bnxn
1- .3n+1 1- ,Bn
_ )’n+1PC(2n+1 - )LIAIZMI) + 8n+ls)/n+1 _ J/nPC(Zn - )\lAlzn) + 5nSYn
) 1= Bun 1— B 3.3)
_ Yan [PC(Zm-l — MA1Zyi1) — Pe(zn — )»1A12n)] + 8ne1 (Synse1 — Syn) '
1- ﬂn+l

Yn+1 VYn - - Ons1 Sn )
+ — Pc(z, — MA1Z2,) + — Syn.
(1—ﬁn+1 1—ﬂn> olln = i) (1—ﬁn+1 1-8,)°""

Page 7 of 19
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From Lemma 3.1 and (3.2), we get

[vns1 [Pe(Zne1 — MA1Zna1) — Po(Zn — A1A1Z0)] + 8pa1 (Syner — Syn) |
< [ ve1 et = vn) + 8na1 (Syner — Syn) || + ¥aet [|[Pe(@nir — A1A1Zni1) — Va1
+[vn = Pe(@n — MA1Z) ]| (3.4)
< (V1 +8n01) |yne1 — V| + Vnsr0mer | Qxni1 — PoGner — A1A1Z01) |
+ Vn+1tn ”an — Pc(zZn — MA1Zy) ” .
Note that
[PcZnir — MA1Zni1) — Pe(Zn — 21A1Zn)|| < ||Ener — 11A1Z0i1) — En — 21A1Z0)||
< 1Zne1 — Znll
= ||Pc(zne1 — A2A2zne1) — Pc(zn — A2Azzn) | (3.5)
< [ ni1 — 22422001) — (20 — A2A22,) |
< lzns1 — zall,

and

Izns1 — zall = ||Pc [Pc(xne1 — 12Baxni1) — 1B1Pc(xns1 — 12Boxni1)]
—P¢ [Pc(xn — waBaxn) — 11B1Pe(xn — p2Bax)] |
< || [PC(xn+l — w2Boxni1) — p1B1Pe(xne1 — Mszxml)]
— [Pc(%n — p2Baxn) — w1B1Pc(xn — p2Baxy)]| (3.6)
< |Pc(xns1 — #2Baxns1) — Po(xn — paBaxy) ||
< | (xns1 — 2Baxne1) — (xn — 12Baxa) ||

= xper — xull -

Then it follows from (3.5) and (3.6) that

[yt = yu]

< IPc @nar — MA1Zni1) — Pe @n — MAD) || + e | Qi1 Pe(Znar — A A1Zna1) | 3.7)

+an ” Qxy — Pc(zn — AlAlzn)”

< %1 = xnll + oty [1Qxy, — Pe (Zn — M A1Z) || + @na1 1Qxns1 — Pe (Zni1 — A1A1Zn1) |l
Therefore, from (3.3), (3.4) and (3.7), we have

Vn+1 - -
ltner — unll < 1% — xnll + (1 + )an |Qxn — Pc (Zn — A1A1Zy) ||
1- ﬂn+1
Vn+1 - -
+ (1 + " )Oln+1 1Qxni1 — Pc Zne1 — A1A1Z011) |l
1- ﬂn+1
Vn+1 Vn - -
+ - Pc(zn — AMA1Zn | + |[SYn|) -
LI P - aain L)

This implies that

lim sup (lttn1 — tnll — %01 — x411) < 0.

n—oo

Hence by Lemma 2.2 we get lim,, _, .. llz, - x,/l = 0. Consequently,

lim |41 — %4l = lim (1 — By) lun — x4l = 0. (3.8)

n—oo n—oo

Step 2. lim ||A12n — Ayy* || = lim HAzz,1 — Ayx* || = lim HBIECH — Byj* H = lim ||Bzxn —Bzx*H =0,
n—oo n—oo

n—o00 n—o00

Indeed, let x* € Q. Utilizing Lemma 1.1 we have x* = Sx*, x* = Pc[Pc(x* - A,A%%) -
ﬂ.lAlPC(x* - /lezx*)] and

Page 8 of 19
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x* = PC [PC (x* — ,uszx*) — /L1B1PC (x* — uszx*)] .
Put y* = Pc(x* - A2Axx*) and y* = Pc (x* — uaBox®)| Then &* = Pc(y* - 114,1y*) and
x* = Pc (y* - /LlBly*). Thus it follows that
|Pc(zn — MA1Zn) — Pe(y* — )L1A1}’*)||2
< G — mAiZ) — (7 = 1Ay |

< [ =y P = 1 (21— ) [AiZe — Ay P

= HPC(zn — )»QAQZn) — Pc(x* — A2A2x*) ”2 — )\1 (25[1 — )»1) HAlén — Al)/* H2 (39)
< ||(Zn — )\.QAQZT,) — (x* — )QAQJC*) ”2 — M (25[1 — )\,1) HAlin _A]}/*H2
< ”Zn — X*HZ — )\.2 (&2 — )»2) ”Azzn — Azx* ”2 — )\.1 (2&1 — )»1) HAlzn —Al)/* 2,
and
2w = x*|” = |Pc (& — m1B1n) = Pe (v = waBuy’) |
< | Gn — w1BiE) — (v — MlBl}/*)Hz
IR CIE | e 510
= | Pc (v — maBaxn) — Pe (x* — paBox®)|* — 1 (231 - m) |Bi&n — Buy*|)?
< [ =) = 12 (Bz - Mz) 1Baxn — Boxl|” — (231 - m) |Bi& — Biy*|?
It follows from (3.2), (3.9) and (3.10) that
Ivn = 2|7 < @] Qun — 5% * + (1 = an) | Pe Gn = 21 AsZa) — Pe (v = aAry®) |
<oy Han —x* ”2 + HPC (Zn — MA1Zy) — PC(V* - }‘1A1y*)”2
= an|Qun = |7+ flzn = x| = 22 (@2 = 22) [ Asza — Ao’ |
= (281 =) | Arz, — A
(3.11)
< Qs |7+ =7 = (B = 2 ) 1By — B
- - w12 ~ w12
— 1 <2ﬂ1 — M.) ”len — By ” — A2 ((Xz — )»2) ||A2z,, — Ayx ”
—M (2&1 — )\1) ”Alin —Al}/* ”2
Utilizing the convexity of " . " %, we have
P = [* = | Bu (0 — ) + (1 = Bo) 1 jﬁ [Pc @y — MiA1Zn) = x*) + 8, (Syn — )] 2
< Bulltw — %%+ (1 = B 1f"ﬂ (Pc Gn — MALZn) — x*) + 1f"ﬁ (Syn — x) :
* gk 2
= Bulxa =P p0 | (y"fxl)if;‘n(sy" ), T (P~ A — Q) (3.12)
Vn (yn - x*) +3y (Syn - x*) ’

< Bulltw — %%+ (1 = B +Ma,

1-p*
=< ﬂn”xn - Hz +(1—Bn) ”)’n *X*”z + May,
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where M >0 is some appropriate constant. So, from (3.11) and (3.12) we have
P =217 = o = =z (B2 = 2 ) 1 = B [ B, — B
- (2/91 = m) (1= ) [Bif = Biy”|* = 2z (&2 = 22) (1 = ) [ Aaza — Az’|*
— M (2&1 - Al) (A= B Az — Ag*|) + (M Qe — x*“z)an.
Therefore,
M (2&1 - )\1) A= B) [Arze — Ary*|” + 2 (&2 - Az) (1 = Bu) | Aazn — Agx*|)?
+ (231 - m) (1= o) |Bi% = Buy"|* + 2 (Bz - Mz) (1= o) | B — Box*|’
< [ =7 = s =" + (M + [ Qe — x* ||2) an
< (b = oner =) = v+ (M Qo — 2] e
Since  fim inf 31 Q@ — ) (1= p) > 0.lim inf 32 (& = 22) (1 = f) > O,lim i jur (251 = 1) (1 = i) = O.lim inf a2 (B2 = pi2) (1 = ) = 0,
"x,, - Xyl || — 0 and o,, > 0, we have
Jlim A1z, — Avy*|| = Jlim [A2zn — Asx*| = Jlim |B1xy — B1y*|| = Jlim | B2xn — Bax*|| = 0.
Step 3. lim,, _, .. [|2, - 5|l = lim, , . |%, - 2]l = lim, - = ISy, - 2]l = 0

Indeed, set v, = Pc (2, — A1A1Z,). Noting that Pc is firmly nonexpansive, we have
|20 = V[ = |Pc @n — A2Asz) — P (x* — AoAsx®) ||

< ((zn — h2A22n) — (¥* — A2A0x*) , Zn — ¥*)

= 1 (len = = 22 (Aaza = A2 [+ Jou =y

e = %) = 32 (4020 — A2x) = (& =) )

<3 (lan =7+ 120 =" = e = 20 = 22 (A — A2x) = (" = "))

(=2 + |2 = = Jen =2 = =) )

+200(zn — Zn — (x° — ¥*), Aozy — Aox*) — AJ | Aoz — Aox* ||2),

and
Jo =7 = [P o = 2101 = Pe 7 = k)|
< (&0 — MAL1Zy — (Y — MAYY) Vg — X7
=3 ([ = iz = (= 20|+ Jon =2
— |20 = 2AZ — (7 = MAY) = (v — %) |
=3 ([ =y I+ Jow =17 = Jn =+ (= =)
20 (A — Ay F — v+ (¢ =) = 1 [z — Ar])
=3 (o =17+ o =2 = 20 = v+ (" =)
+201 (A1Zp — A1y, 20 — v + (x* = ¥Y)))
due to (3.9). Thus, we have

[ =3 = Jou = 2P — 20— (" = y) o200 — 20— (" = ). Avza — o) 33 |z, — A%, (3.13)
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and
I = = o =l =+ 5 =) 42 4s2a = A | =+ (=) |
It follows that
I =1 = anl @+ (1~ o~
<l =+ o= x|
<l @ = [ + oo — [~ o =+ ()
20 A, = A | [ — s (7 — )]
Utilizing (3.2), (3.10), (3.12) and (3.13), we have

Jwr = x* < Balla = 2| * + (1 = Bo) yn — *|* + Mar,

Sﬂonnfx*”z*_(l — B [OlnHan*x*Hz

(3.14)

(1= [Pe G — 1Az = Pe (¢ = 1aany")[*] + Moy
2
= Bullwn =2 ”2 +(1 =B [“" [ Qun — x* Hz + (1= an) || Gn — MAZa) — (¥ — MAIY*)”Z] + Mary
= Bullsa =57 + (1= B o] Qo = x| + (1 = ) [0 = *[*] + Metn
< Bullen =P+ (1 = B [en| Qe = '[P+ (1 = ) [ (B = )| ] + Mt
= ﬁn”xn - x*”2 +(1 =By Cthan _x*HZ +(1—=B8n I:”zn —x* Hz - Hzn —Zy— (x* - }’*)”2
+202 (zn — Zn — (x* — ¥*), Aszy — Aox™)] + Mary
< Pl =+ (= ] Qo =2+ = o [l = = o =2 = (=)
+242 [zn — 2o — (" — ¥*)|| | A2zn — Apx*|] + Mary
= o ="* = (1 = B)an = 2 = " =)
+2(1 = Bz an = 20 — (& = )| Aoz — Axx*| + [M+ (1 = )| Q5o — 2| ] .
It follows that
(1= Bl =20 = (" =y = (= Jowor =) Howar =l + (M + Qo = | ey
+2(1 = Bu)ra |zn — 20 — (x* — )| |A2zn — Aox*| .

Note that "x,ﬁl - xn” — 0, o, > 0 and "Azz,, - Azx*” — 0. Then we immediately
deduce that

lim ||z, =2, — (x" —y")| = 0. (3.15)
In the meantime, utilizing (3.10), (3.12) and (3.14) we have
et =217 = Bl =+ (1 = ) [ Qi = [+ [ = x°[
— o= vur =y 200 [Arz = Any | 2 — v+ (o = )] + Mexy
< Bl = + (1= ) [onf| Q@ = ° [+ or = |
— o= v+ =y 200 [Arz = An | 2 — v+ (6 = y) ]+ Mexy
< o= = (= )l = vn s (& =)’
+ 20 (1= B) [z — Ay | 20— va + (& =) + (M + [ Qun — ")t
So, we obtain
(1= Bn)|&n = vn+ (" =y)” < w27 = Jown =277 + 220 (1 = ) [ sz — Ary7|

X & =+ 7 =) |+ (M+ Q=2
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Hence,
lim |z, — v, + (x* — )| = 0.
n—oo

This together with " YV - Uy || <o, || Qx,, - v, " — 0, implies that

lim |20 =y + (x* = y")| = 0. (3.16)

Thus, from (3.15) and (3.16) we conclude that

lim ||z, —yu| = 0.

n—o00

On the other hand, by firm nonexpansiveness of P, we have

%0 —y* HZ = || Pc(®n — p2Baxn) — Pe(x* — Mszx*)H2
< ((xn — m2Baxn) — (¥* — p2Bax*), %y — y*)

1
6w — " = 2 (Bata — Box™) |* + &0 — " [|* = [ (on — x) = pa(Bota — Box*) — (% — V*)”Z)
1 . N
= (=5 [ =y = 50 = 50) = 2 (Baxa = Baw) = (v = 1))
1 o 5 .
= (b =1+ o =y I = o = = " =)
+2042 ¥y — % — (&% — ¥*), Baxy — Box*) — u3 || Baxy — Box* “2> ,
and
|20 = x*||* = | Pc(&n — 11B1%n) — Pe(y* — 11Biy*) |
< (& — u1B1Xn — (V" — 1B1Y*), 20 — x%)
1
= 5 (”5671 — w1Bix, — ()’* - /LlBly*)”z + Hzn —x* Hz
% = 1Bk = (0 = By = (@ = x)|°)
1. -
S (e R R e e G O
+ 21 (BiXn — B1y*, Xn — zn + (x* — V) — u}||B1xa — Biy* Hz
1
< (= lon = = % = 20t (6 =y 2000 (B = By o = 2+ (5 1))
Thus, we have
%2 = V¥ 17 < %n = %P =% = %o = (% = ¥ P 2082 (0 — T — (8 — ), Baxn — Box*)— 13 | Boxa — Box*|*,  (3.17)
and
lzn — x* ”2 < [on — x* ||2—||5cn —zp + (= y*)||2+2p,1 | Bizn — Biy* || |%n — zn + (x* — ¥¥)| . (3.18)
Consequently, from (3.10), (3.11), (3.12) and (3.17) we have
x| 2 12 « |12
[%ne1 — 2|7 < Balln — x* [+ Q@ = Bp) |yn — x| + Moty
< Bl = 7 + (1 = Bo) (e Qo — 2+ 20 = 2[*) + Mety
< ullon ="+ (1= ) (n [ Qun ="+ [y |*) + Metn
2
< Bl =+ 1 = i [ @t — [ o = ] = 5= 5o = (= )]
+2u5 (xn — %n — (x* —¥"), Baxy — Box™)] + Moy,
< ra =7 = (0 = Bo) |20 = Fn — (& =)

#2.(1= Bo) o [0 = B — (6 = )| | Baa = Box*| + (M + | Qun = x*|*) .
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It follows that
1 s == (6 = 7)1 = (= s =2 ) s =+ (0 @3, =)
+2(1 = Bu) a2 || xn — % — (" = y*)|| | Baxa — Box*] .

Note that ||xn+1 - xn” — 0, o, > 0 and ||Bzx,, - Bzx*" — 0. Then we immediately
deduce that

lim |x, — %, — (x* —y*)| = 0. (3.19)

n—o0

Furthermore, utilizing (3.11), (3.12) and (3.18) we have
||xn+l —x* ||2 < Bn ”xn —x* ||2 +(1—=Bn) ”)/n —x* ||2 + Moy,
= Bl =7 + (0 = B (| Qo = 7 + [z = x°]7) + M,
< Bulg =27+ (1 = B [ Qun — |+ n = °|
— chn —zp+ (" — y*)Hz + 21 ”Blfcn — Byy* H ”Ecn —zp + (¥ — ) ”] + Moy,
< % =2 = @ = B % =2+ (" =)
#2001 (1= B) [ B = Bay' [ &0 — 2+ (" = ) | + (M + | Quy = x| ) e
So, we get
A= B & — 2+ (" = y)|* < Jn =" = Janer — 67 + 200 (1 = B) | BiZw — B1y*|
X% =zt (5 =y |+ (M + Q5o =2 .
Hence,

lim |%, — 2, + (x* —y*)| = 0. (3.20)

n—oo
Thus, from (3.19) and (3.20) we conclude that

lim ||x,, — z,|| = 0.
n—o0
Since

||5n (SYn - xn) || = ”xn+1 - xn” + Vn ”PC (zn - }\lAlzn) - xn”

< st = Xall + Vi [y — | + ynotn 11Q0n — P G = AaAnZn)l,
so we obtain that
lim Sy, — x| =0 and  lim Sy, —yu = 0.

Step 4. lim sup,,_, .. {Qx* - &%, x, - x*) < 0 where x* = PoQx".

Indeed, as H is reflexive and {x,} is bounded, we may assume, without loss of gener-
ality, that there exists a subsequence {xm} of {x,} such that X, — v and

lim sup (Qx* — x*, x, — x*) = lim sup (Qx™ — x*, x,, — x).
n—00 i—00

From Step 3 it is known that ||xn - yn” — 0 as n — oo. This together with Xp, — 7,
implies that Yn, = V. Again from Step 3 it is known that ||yn - Sy, " — 0 as n — oo,
Thus it is clear from
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Lemma 2.3 (ii) that v € Fix(S). Next, we prove that v e I'n [',. As a matter of fact,
observe that

[7n =G ()

< 0 | Qra — G (ya) | + (1 = @) | Pc [P (20 — A2A220) — MAIPC (20 — 22A2z) — G (1) |
= an | Q= G (yn) | + (1 = @) [ G () |

<y |Qra = G (ya) | + (1 =) 20 — 1|

— 0,
and

llzn — F zn) |l

< an [|Qxn — F @)l + (1 — o) IPc [Pc (xn — 2Baxn) — u1B1Pc (xn — p2Baxn) — F (z)l
= o [Qxp — F @) | + (1 — an) [IF () — F (20) ]

< oy |Qxn — F @) |l + (1 — o) llxn — 2zl

— 0,

where G and F are given in (1.4) and (1.7), respectively. According to Lemma 2.3 (ii)
we obtain v € I'n Iy Therefore, v € Q. Hence, it follows from (2.3) that

lim sup (Qx* — x*,x, — x*) = lim (Qx* — x*, x,,, — x¥)

n—oo 1—00
= (Qx* —x*, v —x*)
<o.
Step 5. lim,,_,.. x,, = x*.
Indeed, from (3.2) and the convexity of || - ||? we have

||xn+1 —x Hz = Bn (xn - x*) +Vn (Yn - x*) +3y (SYn - x*) + Ynon (Pc Zn — M1A1Z) — Qun) = ”2
=< ”ﬁn (xn - x*) +¥n ()/n - x*) +8n (S)’n - x*) ”2 + 2ynatn (PC (Zn — |M1A1Z0) — Qxy, Xpa1 — x*>

1
=< ﬁn”xn —x* ”2 +(1 =By 1—73 [)’n (Yn *x*) + 6 (S}/n 736*)] ”2

+2ynan (PC (Zn — MA1Zn) — X", X — x*> +2ynan <x* — Quxp, Xns1 — x*> .

(3.21)

By Lemma 3.1 and (3.21), we have

2w =]
< Bulln —x** + (1= Bu) [lyn — °|* + 2pm@n [ Pc G — 2 ArZn) — x| [5ner — x*]|
+ 2ty (X — QX Xn1 — x¥)
< Buln =[P+ (1 = B [(1 = ) [Pe o — 2aAiZ) — 2| + 20 Qo — ",y = )|
+ 2¥naty |Pe @n — MA1Zn) — x| [|xner — x| + 2ymen (¥ — Qxp, X1 — X¥)
= Bl =7+ (1= B [(1 = @) [ G @) = G () | + 20 [ Qi =y — )]
+2yutn || G @) — G (x°) || tner — x| + 2metn (¥ — Qutn, %1 — x*)
< Bultn =+ (1= B [ = ) w = |+ 200 [ Qi = 2", 30 = )]

+ 2Yn0tn ”zn —x* H ln1 — x| + 20y (x* — Quxp, X1 — x*> .

From (3.10), we note that "zy, - x” < "xn - x*" Hence, according to 1 - 8, = ¥, + J,,
we have
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Jtur =2
< Bulln — 27+ (1= B) (1 = etn) [Jon — | + 20 (1 = B) (Qutn — %,y — %)
+ 2yntty [0 — 2| [[xner = %[ + 2pmen (¢ — Qo xni1 —x7)
= [1— (1= B ol [ otn — 2% |* + 20y ( Qi — X, Y — X1
+ 2083 (Qxn — X,y — X*) + 200y %0 — x| 1 — 2
< 1= (1= B etnl |20 — || * + 20ty | Qutn — 2| |y — %01 |
+ 2085 (Qxn — X%, X — X*) + 200085 (Qxn — X, Y — Xn) + 200y 20 — x| [o0mer — x*|
< [1— (1= Ba)an] 20 — 2% + 200y | Qun — 2% [[yn — xs1 |
+ 208 || X0 — x* ||2 + 208, (Qx* — x*, X, — x*)
+ 2008y [| Q= x| [lyn = x| + 200mym [n = [ ot — 27|
<11 = (1= B ] [5n — 6| + 20y | Quw — | [[yn — 1 |

+ 208 || X0 — x* ||2 + 208, (Qx* — x*, X, — x¥)

+ 2ann @ = = 5l (3 = 5+ v =),

that is,

||xn+1 736*”2 <|1- 1 =2p)én— Vnan ”xn 7x*||2 + [ =20)6n — yulan
1 —oanyn

1 —anyn
29, X
- {(1 - 2p7)/8n —n IQn = [ lyn = x|
20n * 28y K ok
Y1 apys - (Rl (@ = = >}'
1—-2p)6, —
Note that lim infn_mo( ) P) = ¥n > 0. It follows that
—Qn¥n
1—2p)6, —
Zoo ( P)On = ¥ oy = 0. It is obvious that
n=0 1 —apyn
. 2vn . 3 25, . ~
hrjlilp{(l_zp)sn_yn Qs =l rn =l + (% Q=] ya =l
+ 2611 (Qx* _ x*,xn _ x*)} <0.
(1—=2p)6n—vn

Therefore, all conditions of Lemma 2.4 are satisfied. Consequently, in terms of
Lemma 2.4 we immediately deduce that x,, — x*. This completes the proof. O

Next we present some applications of Theorem 3.1 in several special cases.

Corollary 3.1. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H. Let the mapping A; : C — H be a;-inverse strongly monotone for i = 1, 2. Let S
: C — C be a k-strict pseudocontraction such that 2 :=Fix(S)NT #@. Let Q: C —> C

1
be a p-contraction with p € |:0, 2>. For given xq € C arbitrarily, let the sequences {x,},
{y.} be generated iteratively by

Yn = 0 Quxy + (1 - O‘n)PC [PC(xn - )\2A2xn) - AlAIPC(xn - )"2A2xn)] ’
Xne1 = BuXn + YnPc [Pe(%n — A2A2Xn) — MALPC(Xn — A2A2Xn)] + 8nSyn, VYN >0,

where A; € (0,2;) for i = 1, 2, and {o,.}, {B,.}, {yu}, {6,} are four sequences in [0, 1]
such that:

(i) B+ Yy + 0, =1and (y, + 5, )k <y, <(1 - 2p)d, for all n > 0;
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[o¢]
(i) lim ec 0ty = O and Yy~ atn = o3
(iii) 0 <lim inf,_,.. B, < lim sup,_,.. B, <1 and lim inf,_,.. §, >0;

. . Vn+1 Yn
(iv) lim,,_, ( — ) =0.
e 1- :3n+1 1-— IBn

Then the sequences {x,}, {y,} converge strongly to the same point x* = PoQx* and (x*
y*) is a solution of general system (1.2) of variational inequalities, where y* = Pc (x* -
AoAox*).

Proof. It is easy to see that if B; = 0 for i = 1, 2, then for any given E € (0,00) B; is
pBi-inverse strongly monotone. In Theorem 3.1, putting B; = 0 and taking 1 € (0, 28:)
for i = 1, 2 we have Q := Fix(S) n I'n I'y) = Fix(S) n I" and

zn = Pc [Pc(xn — waBaxn) — 1 B1Pc(xn — naBaxy)] = x5, V1 > 0.
In this case, algorithm (3.2) reduces to the following algorithm

Yn = aann + (1 - an)PC [PC(xn - )\2A2xn) - )\IAIPC(xn - )"2A2xn)] ’
Xne1 = BnXn + YnPc [PC(xn - )\2A2xn) - AlAIPC(xn - )\2A2xn)] + ans}’nr vn > 0,

Therefore, in terms of Theorem 3.1 we immediately obtain the desired result. ©

Remark 3.1. Compared with Theorem YLK (i.e., [[26], Theorem 3.2]), Corollary 3.1
coincides essentially with Theorem YLK. Therefore, Theorem 3.1 includes Theorem
YLK as a special case.

Corollary 3.2. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H. Assume that for i = 1, 2, the mappings A, B; : C — H are q; -inverse strongly
monotone and B; -inverse strongly monotone, respectively. Let S : C — C be a k-strict
pseudocontraction such that 2 := Fix(S)NTI' NIy # 0. For fixed u € C and given xy €
C arbitrarily, let the sequences {x,}, {y,} and {z,} be generated iteratively by

2zn = Pc [Pc(%n — p2Baxy) — 1B1Pe(xn — pnaBaxa)],

Yn = et + (1 — o) P [Pe(zn — A2A2zn) — MALPC (20 — A2A224) ],
Xne1 = Buxn + YaPc [Pc(zn — 22A2zn) — M1A1PC(2n — A2A2zy) ] + 84Sy, ¥ >0,

where Hzn —x* H2 < Hx,, —x* ||2—||5cn —zp + (x* — y*)||2+2ul HBIJ?,[ — Byy* || ||5cn —zn+ (X" — y*)” .

and 1; € (0, 2,31) and {0}, B}, (v}, 10,4} are four sequences in [0, 1] such that:

(i) By + Yo + 0, = 1 and (Y, + 6,)k < ¥,< J,, for all n > 0;
.. . o0
(ii) lim,,_,.. o, = 0 and Zn=0 oy = 00

(iii) 0 <lim inf,_,., B, < lim sup,_,.. B, <1 and lim inf,_,.. J, >0;

(iv) limy,_ o ( Yl Pn ) 0.
1-— :3n+1 1-— ,Bn

Then the sequences {x,}, (¥}, {z,} converge strongly to the same point x* = Pou, and
(x*, y*) and (x*,y*) are a solution of general system (1.2) of variational inequalities and
a solution of general system (1.6) of variational inequalities, respectively, where y* = Pc
(x* - AoAox®) and y* = Pc(x* — paBox™®).
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Corollary 3.3. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H. Assume that for i = 1, 2, the mappings A, B; : C — H are @; -inverse strongly
monotone and B; -inverse strongly monotone, respectively. Let S : C — C be a nonex-

pansive mapping such that 2 .= Fix(S)NT' NIy # 0. Let Q : C — C be a p-contraction
1

with p € |:0, 2) For given xq € C arbitrarily, let the sequences {x,}, {y,; and {z,} be

generated iteratively by

zy = Pc [PC(xn - Mszxn) - M1B1Pc(xn - Mszxn)] ,
Yn = anQxp + (1 — an)Pc [Pe(zn — A2A2zn) — MALPc(zn — AaA2zn)],
Xne1 = BuXn + ¥aPc [Pc(zn — A2A22n) — MA1Pc(2n — A2A2z) ] + 8,Syn,  ¥n =0,

where X; € (0,20;) and p; € (0, 2/7};)for i=1,2, and {0}, B}, (v}, 0.} are four
sequences in [0, 1] such that:

(i) By + Y+ 0, =1andy, <1 - 2p)d, for all n = 0;
00
(ii) limn—)oo o, = 0 ﬂnd ano ay = 00
(lll) 0 <lim infn%oo ﬁn < lim SUP;—seo ﬁn <1 and lim iI‘lfng)oO Y >0;

Ly Vn+l Vn
(iv) lim,,_, ( — ) =0.
" 1-— ,3n+1 1-— ,Bn

Then the sequences {x,}, .}, {z,} converge strongly to the same point x* = PoQx*,
and (x*, y*) and (x*,y*) are a solution of general system (1.2) of variational inequalities
and a solution of general system (1.6) of variational inequalities, respectively, where y*
= Po(x* - ApAgx®) and y* = Po(x* — paBax*).

Corollary 3.4. Let C be a nonempty bounded closed convex subset of a real Hilbert
space H. Assume that for i = 1, 2, the mappings A, B; : C — H are @; -inverse strongly
monotone and B; -inverse strongly monotone, respectively. Let S : C — C be a nonex-
pansive mapping such that 2 := Fix(S) N I" N Iy # 9. For fixed u € C and given xq €
C arbitrarily, let the sequences {x,}, {y,} and {z,} be generated iteratively by

zy = Pc [PC(xn - Mszxn) - M1B1Pc(xn - Mszxn)] ,
Yn = et + (1 — o) P [Pe(zn — A2A2zn) — MAIPc(2n — A2A2zn) ],
Xn+1 = BuXn + YnPc [PC(Zn — XA2zn) — MA1Pc(zn — MAzzn)] +6,Syn, Yn >0,

where A; € (0, 2&\1) and Wi € (0, 2,3:)][01” i=1,2, and {a,}, {ﬂn}: {}/n}r {04} arefour
sequences in [0, 1] such that:

(i) B+ Y.+ 6,=1andy, < d, forall n
[o¢]
(ll) limn_)m o, = 0 and Zn:O oy = 00;

(iii) 0 <lim inf,_,.. B, < lim sup,_,.. B, <1 and lim inf,_,.. 7, >0;

Ly Vn+l Yn
(iv) lim,,_, ( — ) =0.
" 1-— ,3n+1 1-— ,Bn

v
2

Then the sequences {x,}, {¥,.}, {z.} converge strongly to the same point x* = Pqu, and
(x* y*) and (x*,y*) are a solution of general system (1.2) of variational inequalities and
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a solution of general system (1.6) of variational inequalities, respectively, where y* = Pc
(x* - ApAox*) and y* = Pe(x* — uaBox*).
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